ANNEX I

SUMMARY OF PRODUCT CHARACTERISTICS
1. NAME OF THE MEDICINAL PRODUCT

Abraxane 5 mg/ml powder for dispersion for infusion.

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each vial contains 100 mg of paclitaxel formulated as albumin bound nanoparticles.
Each vial contains 250 mg of paclitaxel formulated as albumin bound nanoparticles.

After reconstitution, each ml of dispersion contains 5 mg of paclitaxel formulated as albumin bound nanoparticles.

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Powder for dispersion for infusion.
The reconstituted dispersion has a pH of 6-7.5 and an osmolality of 300-360 mOsm/kg.
The powder is white to yellow.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Abraxane monotherapy is indicated for the treatment of metastatic breast cancer in adult patients who have failed first-line treatment for metastatic disease and for whom standard, anthracycline containing therapy is not indicated (see section 4.4).

Abraxane in combination with gemcitabine is indicated for the first-line treatment of adult patients with metastatic adenocarcinoma of the pancreas.

Abraxane in combination with carboplatin is indicated for the first-line treatment of non-small cell lung cancer in adult patients who are not candidates for potentially curative surgery and/or radiation therapy.

4.2 Posology and method of administration

Abraxane should only be administered under the supervision of a qualified oncologist in units specialised in the administration of cytotoxic agents. It should not be substituted for or with other paclitaxel formulations.

Posology

Breast cancer
The recommended dose of Abraxane is 260 mg/m² administered intravenously over 30 minutes every 3 weeks.

Dose adjustments during treatment of breast cancer
Patients who experience severe neutropenia (neutrophil count < 500 cells/mm³ for a week or longer) or severe sensory neuropathy during Abraxane therapy should have the dose reduced to 220 mg/m² for subsequent courses. Following recurrence of severe neutropenia or severe sensory neuropathy, additional
dose reduction should be made to 180 mg/m². Abraxane should not be administered until neutrophil counts recover to >1500 cells/mm³. For Grade 3 sensory neuropathy, withhold treatment until resolution to Grade 1 or 2, followed by a dose reduction for all subsequent courses.

Pancreatic adenocarcinoma
The recommended dose of Abraxane in combination with gemcitabine is 125 mg/m² administered intravenously over 30 minutes on Days 1, 8 and 15 of each 28-day cycle. The concurrent recommended dose of gemcitabine is 1000 mg/m² administered intravenously over 30 minutes immediately after the completion of Abraxane administration on Days 1, 8 and 15 of each 28-day cycle.

Dose adjustments during treatment of pancreatic adenocarcinoma

Table 1: Dose level reductions for patients with pancreatic adenocarcinoma

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Abraxane Dose (mg/m²)</th>
<th>Gemcitabine Dose (mg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full dose</td>
<td>125</td>
<td>1000</td>
</tr>
<tr>
<td>1st dose level reduction</td>
<td>100</td>
<td>800</td>
</tr>
<tr>
<td>2nd dose level reduction</td>
<td>75</td>
<td>600</td>
</tr>
<tr>
<td>If additional dose reduction required</td>
<td>Discontinue treatment</td>
<td>Discontinue treatment</td>
</tr>
</tbody>
</table>

Table 2: Dose modifications for neutropenia and/or thrombocytopenia at the start of a cycle or within a cycle for patients with pancreatic adenocarcinoma

<table>
<thead>
<tr>
<th>Cycle Day</th>
<th>ANC count (cells/mm³)</th>
<th>Platelet count (cells/mm³)</th>
<th>Abraxane Dose</th>
<th>Gemcitabine Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>< 1500</td>
<td>OR < 100,000</td>
<td>Delay doses until recovery</td>
<td></td>
</tr>
<tr>
<td>Day 8</td>
<td>≥ 500 but < 1000</td>
<td>OR ≥ 50,000 but < 75,000</td>
<td>Reduce doses 1 dose level</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 500</td>
<td>OR < 50,000</td>
<td>Withhold doses</td>
<td></td>
</tr>
</tbody>
</table>

Day 15: If Day 8 doses were given without modification:

<table>
<thead>
<tr>
<th>Day 15</th>
<th>ANC count (cells/mm³)</th>
<th>Platelet count (cells/mm³)</th>
<th>Abraxane Dose</th>
<th>Gemcitabine Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥ 500 but < 1000</td>
<td>OR ≥ 50,000 but < 75,000</td>
<td>Treat with Day 8 dose level and follow with WBC Growth Factors OR Reduce doses 1 dose level from Day 8 doses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 500</td>
<td>OR < 50,000</td>
<td>Withhold doses</td>
<td></td>
</tr>
</tbody>
</table>

Day 15: If Day 8 doses were reduced:

<table>
<thead>
<tr>
<th>Day 15</th>
<th>ANC count (cells/mm³)</th>
<th>Platelet count (cells/mm³)</th>
<th>Abraxane Dose</th>
<th>Gemcitabine Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥ 1000 AND ≥ 75,000</td>
<td></td>
<td>Return to the Day 1 dose levels and follow with WBC Growth Factors OR Treat with same doses as Day 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 500 but < 1000 OR</td>
<td>≥ 50,000 but < 75,000</td>
<td>Treat with Day 8 dose levels and follow with WBC Growth Factors OR Reduce doses 1 dose level from Day 8 doses</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Dose modifications for other adverse drug reactions in patients with pancreatic adenocarcinoma

<table>
<thead>
<tr>
<th>Adverse Drug Reaction (ADR)</th>
<th>Abraxane Dose</th>
<th>Gemcitabine Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrile Neutropenia:</td>
<td>Withhold doses until fever resolves and ANC ≥ 1500; resume at next lower dose level<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Grade 3 or 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripheral Neuropathy:</td>
<td>Withhold dose until improves to ≤ Grade 1; resume at next lower dose level<sup>a</sup></td>
<td>Treat with same dose</td>
</tr>
<tr>
<td>Grade 3 or 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutaneous Toxicity:</td>
<td>Reduce to next lower dose level<sup>b</sup>; discontinue treatment if ADR persists</td>
<td></td>
</tr>
<tr>
<td>Grade 2 or 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal Toxicity:</td>
<td>Withhold doses until improves to ≤ Grade 1; resume at next lower dose level<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Grade 3 mucositis or diarrhoea</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a See Table 1 for dose level reductions

Non-small cell lung cancer:
The recommended dose of Abraxane is 100 mg/m² administered as an intravenous infusion over 30 minutes on Days 1, 8 and 15 of each 21-day cycle. The recommended dose of carboplatin is AUC = 6 mg•min/mL on Day 1 only of each 21-day cycle, beginning immediately after the end of Abraxane administration.

Dose adjustments during treatment of non-small cell lung cancer:
Abraxane should not be administered on Day 1 of a cycle until absolute neutrophil count (ANC) is ≥1500 cells/mm³ and platelet count is ≥100,000 cells/mm³. For each subsequent weekly dose of Abraxane, patients must have an ANC ≥500 cells/mm³ and platelets ≥50,000 cells/mm³ or the dose is to be withheld until counts recover. When counts recover, resume dosing the following week according to the criteria in Table 4. Reduce subsequent dose only if criteria in Table 4 are met.
Table 4: Dose reductions for haematologic toxicities in patients with non-small cell lung cancer

<table>
<thead>
<tr>
<th>Haematologic Toxicity</th>
<th>Occurrence</th>
<th>Dose of Abraxane (mg/m²)¹</th>
<th>Dose of carboplatin (AUC mg•min/mL)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nadir ANC <500/mm³ with neutropenic fever > 38°C OR Delay of next cycle due to persistent neutropenia² (Nadir ANC <1500/mm³) OR Nadir ANC <500/mm³ for > 1 week</td>
<td>First</td>
<td>75</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td>50</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Third</td>
<td></td>
<td>Discontinue Treatment</td>
</tr>
<tr>
<td>Nadir platelets <50,000/mm³</td>
<td>First</td>
<td>75</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Second</td>
<td></td>
<td>Discontinue Treatment</td>
</tr>
</tbody>
</table>

¹On Day 1 of the 21-day cycle reduce the dose of Abraxane and carboplatin simultaneously. On Days 8 or 15 of the 21-day cycle reduce the dose of Abraxane; reduce the dose of carboplatin in the subsequent cycle.
²Maximum of 7 days post scheduled Day 1 dose of next cycle.

For Grade 2 or 3 cutaneous toxicity, Grade 3 diarrhoea, or Grade 3 mucositis, interrupt treatment until the toxicity improves to ≤ Grade 1, then restart treatment according to the guidelines in Table 5. For ≥ Grade 3 peripheral neuropathy, withhold treatment until resolution to ≤ Grade 1. Treatment may be resumed at the next lower dose level in subsequent cycles according to the guidelines in Table 5. For any other Grade 3 or 4 non-haematologic toxicity, interrupt treatment until the toxicity improves to ≤ Grade 2, then restart treatment according to the guidelines in Table 5.

Table 5: Dose reductions for non-haematologic toxicities in patients with non-small cell lung cancer

<table>
<thead>
<tr>
<th>Non-haematologic Toxicity</th>
<th>Occurrence</th>
<th>Dose of Abraxane (mg/m²)¹</th>
<th>Dose of carboplatin (AUC mg•min/mL)¹</th>
</tr>
</thead>
</table>
| Grade 2 or 3 cutaneous toxicity
Grade 3 diarrhoea
Grade 3 mucositis
≥ Grade 3 peripheral neuropathy
Any other Grade 3 or 4 non-haematologic toxicity
Grade 4 cutaneous toxicity, diarrhoea, or mucositis | First | 75 | 4.5 |
| | Second | 50 | 3.0 |
| | Third | | Discontinue Treatment |
| | First | | Discontinue Treatment |

¹On Day 1 of the 21-day cycle reduce the dose of Abraxane and carboplatin simultaneously. On Days 8 or 15 of the 21-day cycle reduce the dose of Abraxane; reduce the dose of carboplatin in the subsequent cycle.

Special populations

Hepatic impairment

For patients with mild hepatic impairment (total bilirubin > 1 to ≤ 1.5 x ULN and aspartate aminotransferase [AST] ≤ 10 x ULN), no dose adjustments are required, regardless of indication. Treat with same doses as patients with normal hepatic function.

For metastatic breast cancer patients and non-small cell lung cancer patients with moderate to severe hepatic impairment (total bilirubin > 1.5 to ≤ 5 x ULN and AST ≤ 10 x ULN), a 20% reduction in dose is recommended. The reduced dose may be escalated to the dose for patients with normal hepatic function if the patient is tolerating the treatment for at least two cycles (see sections 4.4 and 5.2).

For patients with metastatic adenocarcinoma of the pancreas that have moderate to severe hepatic impairment, there are insufficient data to permit dosage recommendations (see sections 4.4 and 5.2).

For patients with total bilirubin > 5 x ULN or AST > 10 x ULN, there are insufficient data to permit dosage recommendations regardless of indication (see sections 4.4 and 5.2).
Renal impairment
Adjustment of the starting Abraxane dose is not required for patients with mild to moderate renal impairment (estimated creatinine clearance ≥30 to <90 ml/min). There are insufficient data available to recommend dose modifications of Abraxane in patients with severe renal impairment or end-stage renal disease (estimated creatinine clearance <30 ml/min) (see section 5.2).

Elderly
No additional dosage reductions, other than those for all patients, are recommended for patients 65 years and older.

Of the 229 patients in the randomized study who received Abraxane monotherapy for breast cancer, 13% were at least 65 years of age and <2% were 75 years and older. No toxicities occurred notably more frequently among patients at least 65 years of age who received Abraxane. However, a subsequent analysis in 981 patients receiving Abraxane monotherapy for metastatic breast cancer, of which 15% were ≥ 65 years old and 2% were ≥ 75 years old, showed a higher incidence of epistaxis, diarrhoea, dehydration, fatigue and peripheral oedema in patients ≥ 65 years.

Of the 421 patients with pancreatic adenocarcinoma in the randomized study who received Abraxane in combination with gemcitabine, 41% were 65 years and older and 10% were 75 years and older. In patients aged 75 years and older who received Abraxane and gemcitabine, there was a higher incidence of serious adverse reactions and adverse reactions that led to treatment discontinuation (see section 4.4). Patients with pancreatic adenocarcinoma aged 75 years and older should be carefully assessed before treatment is considered (see section 4.4).

Of the 514 patients with non-small cell lung cancer in the randomized study who received Abraxane in combination with carboplatin, 31% were 65 years or older and 3.5% were 75 years or older. Myelosuppression events, peripheral neuropathy events, and arthralgia were more frequent in patients 65 years or older compared to patients younger than 65 years of age. There is limited experience of Abraxane/carboplatin use in patients 75 years or older.

Pharmacokinetic/pharmacodynamic modelling using data from 125 patients with advanced solid tumours indicates that patients ≥ 65 years of age may be more susceptible to development of neutropenia within the first treatment cycle.

Paediatric population
The safety and efficacy of Abraxane in children and adolescents aged 0 to less than 18 years has not been established. Currently available data are described in sections 4.8, 5.1 and 5.2 but no recommendation on a posology can be made. There is no relevant use of Abraxane in the paediatric population for the indication of metastatic breast cancer or pancreatic adenocarcinoma or non-small cell lung cancer.

Method of administration
Administer reconstituted Abraxane dispersion intravenously using an infusion set incorporating a 15 µm filter. Following administration, it is recommended that the intravenous line be flushed with sodium chloride 9 mg/ml (0.9%) solution for injection to ensure administration of the complete dose.

For instructions on reconstitution of the medicinal product before administration, see section 6.6.
4.3 **Contraindications**

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.
Lactation (see section 4.6).
Patients who have baseline neutrophil counts < 1500 cells/mm³.

4.4 **Special warnings and precautions for use**

Abraxane is an albumin-bound nanoparticle formulation of paclitaxel, which may have substantially different pharmacological properties compared to other formulations of paclitaxel (see sections 5.1 and 5.2). It should not be substituted for or with other paclitaxel formulations.

Hypersensitivity

Rare occurrences of severe hypersensitivity reactions, including very rare events of anaphylactic reactions with fatal outcome, have been reported. If a hypersensitivity reaction occurs, the medicinal product should be discontinued immediately, symptomatic treatment should be initiated, and the patient should not be rechallenged with paclitaxel.

Haematology

Bone marrow suppression (primarily neutropenia) occurs frequently with Abraxane. Neutropenia is dose-dependent and a dose-limiting toxicity. Frequent monitoring of blood cell counts should be performed during Abraxane therapy. Patients should not be retreated with subsequent cycles of Abraxane until neutrophils recover to >1500 cells/mm³ and platelets recover to >100,000 cells/mm³ (see section 4.2).

Neuropathy

Sensory neuropathy occurs frequently with Abraxane, although development of severe symptoms is less common. The occurrence of Grade 1 or 2 sensory neuropathy does not generally require dose reduction. When Abraxane is used as monotherapy, if Grade 3 sensory neuropathy develops, treatment should be withheld until resolution to Grade 1 or 2 followed by a dose reduction for all subsequent courses of Abraxane is recommended (see section 4.2). For combination use of Abraxane and gemcitabine, if Grade 3 or higher peripheral neuropathy develops, withhold Abraxane; continue treatment with gemcitabine at the same dose. Resume Abraxane at reduced dose when peripheral neuropathy improves to Grade 0 or 1 (see section 4.2). For combination use of Abraxane and carboplatin, if Grade 3 or higher peripheral neuropathy develops, treatment should be withheld until improvement to Grade 0 or 1 followed by a dose reduction for all subsequent courses of Abraxane and carboplatin (see section 4.2).

Sepsis

Sepsis was reported at a rate of 5% in patients with or without neutropenia who received Abraxane in combination with gemcitabine. Complications due to the underlying pancreatic cancer, especially biliary obstruction or presence of biliary stent, were identified as significant contributing factors. If a patient becomes febrile (regardless of neutrophil count), initiate treatment with broad spectrum antibiotics. For febrile neutropenia, withhold Abraxane and gemcitabine until fever resolves and ANC ≥ 1500 cells/mm³, then resume treatment at reduced dose levels (see section 4.2).

Pneumonitis

Pneumonitis occurred in 1% of patients when Abraxane was used as monotherapy and in 4% of patients when Abraxane was used in combination with gemcitabine. Closely monitor all patients for signs and symptoms of pneumonitis. After ruling out infectious etiology and upon making a diagnosis of pneumonitis, permanently discontinue treatment with Abraxane and gemcitabine and promptly initiate appropriate treatment and supportive measures (see section 4.2).
Hepatic impairment
Because the toxicity of paclitaxel can be increased with hepatic impairment, administration of Abraxane in patients with hepatic impairment should be performed with caution. Patients with hepatic impairment may be at increased risk of toxicity, particularly from myelosuppression; such patients should be closely monitored for development of profound myelosuppression.

Abraxane is not recommended in patients that have total bilirubin > 5 x ULN or AST > 10 x ULN. In addition, Abraxane is not recommended in patients with metastatic adenocarcinoma of the pancreas that have moderate to severe hepatic impairment (total bilirubin > 1.5 x ULN and AST ≤ 10 x ULN) (see section 5.2).

Cardiotoxicity
Rare reports of congestive heart failure and left ventricular dysfunction have been observed among individuals receiving Abraxane. Most of the individuals were previously exposed to cardiotoxic medicinal products such as anthracyclines or had underlying cardiac history. Thus, patients receiving Abraxane should be vigilantly monitored by physicians for the occurrence of cardiac events.

CNS metastases
The effectiveness and safety of Abraxane in patients with central nervous system (CNS) metastases has not been established. CNS metastases are generally not well controlled by systemic chemotherapy.

Gastrointestinal symptoms
If patients experience nausea, vomiting and diarrhoea following the administration of Abraxane, they may be treated with commonly used anti-emetics and constipating agents.

Eye disorders
Cystoid macular oedema (CMO) has been reported in patients treated with Abraxane. Patients with impaired vision should undergo a prompt and complete ophthalmologic examination. In case CMO is diagnosed, Abraxane treatment should be discontinued and appropriate treatment initiated (see section 4.8).

Patients 75 years and older
For patients of 75 years and older, no benefit for the combination treatment of Abraxane and gemcitabine in comparison to gemcitabine monotherapy has been demonstrated. In the very elderly (≥ 75 years) who received Abraxane and gemcitabine, there was a higher incidence of serious adverse reactions and adverse reactions that led to treatment discontinuation including haematologic toxicities, peripheral neuropathy, decreased appetite and dehydration. Patients with pancreatic adenocarcinoma aged 75 years and older should be carefully assessed for their ability to tolerate Abraxane in combination with gemcitabine with special consideration to performance status, co-morbidities and increased risk of infections (see section 4.2 and 4.8).

Other
Although limited data is available, no clear benefit in terms of prolonged overall survival has been demonstrated in pancreatic adenocarcinoma patients with normal CA 19-9 levels prior to start of treatment with Abraxane and gemcitabine (see section 5.1).

Erlotinib should not be co-administered with Abraxane plus gemcitabine (see section 4.5).

Excipients
This medicine contains less than 1 mmol sodium (23 mg) per 100 mg, that is to say essentially ‘sodium free’.

4.5 Interactions with other medicinal products and other forms of interaction
The metabolism of paclitaxel is catalysed, in part, by cytochrome P450 isoenzymes CYP2C8 and CYP3A4 (see section 5.2). Therefore, in the absence of a PK drug-drug interaction study, caution should be exercised when administering paclitaxel concomitantly with medicines known to inhibit either CYP2C8 or CYP3A4 (e.g. ketoconazole and other imidazole antifungals, erythromycin, fluoxetine, gemfibrozil, clopidogrel, cimetidine, ritonavir, saquinavir, indinavir, and nelfinavir) because toxicity of paclitaxel may be increased due to higher paclitaxel exposure. Administering paclitaxel concomitantly with medicines known to induce either CYP2C8 or CYP3A4 (e.g. rifampicin, carbamazepine, phenytoin, efavirenz, nevirapine) is not recommended because efficacy may be compromised because of lower paclitaxel exposures.

Paclitaxel and gemcitabine do not share a common metabolic pathway. Paclitaxel clearance is primarily determined by CYP2C8 and CYP3A4 mediated metabolism followed by biliary excretion, while gemcitabine is inactivated by cytidine deaminase followed by urinary excretion. Pharmacokinetic interactions between Abraxane and gemcitabine have not been evaluated in humans.

A pharmacokinetic study was conducted with Abraxane and carboplatin in non-small cell lung cancer patients. There were no clinically relevant pharmacokinetic interactions between Abraxane and carboplatin.

Abraxane is indicated as monotherapy for breast cancer, in combination with gemcitabine for pancreatic adenocarcinoma, or in combination with carboplatin for non-small cell lung cancer (see section 4.1). Abraxane should not be used in combination with other anticancer agents.

Paediatric population

Interaction studies have only been performed in adults.

4.6 Fertility, pregnancy and lactation

Contraception in males and females

Women of childbearing potential should use effective contraception during treatment and up to 1 month after receiving treatment with Abraxane. Male patients treated with Abraxane are advised to use effective contraception and to avoid fathering a child during and up to six months after treatment.

Pregnancy

There are very limited data on the use of paclitaxel in human pregnancy. Paclitaxel is suspected to cause serious birth defects when administered during pregnancy. Studies in animals have shown reproductive toxicity (see section 5.3). Women of childbearing potential should have a pregnancy test prior to starting treatment with Abraxane. Abraxane should not be used in pregnancy, and in women of childbearing potential not using effective contraception, unless the clinical condition of the mother requires treatment with paclitaxel.

Breast-feeding

Paclitaxel and/or its metabolites were excreted into the milk of lactating rats (see section 5.3). It is not known if paclitaxel is excreted in human milk. Because of potential serious adverse reactions in breast-feeding infants, Abraxane is contraindicated during lactation. Breast-feeding must be discontinued for the duration of therapy.

Fertility

Abraxane induced infertility in male rats (see section 5.3). Based on findings in animals, male and female fertility may be compromised. Male patients should seek advice on conservation of sperm prior to treatment because of the possibility of irreversible infertility due to therapy with Abraxane.
4.7 Effects on ability to drive and use machines

Abraxane has minor or moderate influence on the ability to drive and use machines. Abraxane may cause adverse reactions such as tiredness (very common) and dizziness (common) that may affect the ability to drive and use machinery. Patients should be advised not to drive and use machines if they feel tired or dizzy.

4.8 Undesirable effects

Summary of the safety profile
The most common clinically significant adverse reactions associated with the use of Abraxane have been neutropenia, peripheral neuropathy, arthralgia/myalgia and gastrointestinal disorders.

Tabulated list of adverse reactions
Table 6 lists adverse reactions associated with Abraxane monotherapy at any dose in any indication during clinical trials (N = 789), Abraxane in combination with gemcitabine for pancreatic adenocarcinoma from the phase III clinical trial (N = 421), Abraxane in combination with carboplatin for non-small cell lung cancer from the phase III clinical trial (N = 514) and from post-marketing use. Frequencies are defined as: very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100), rare (≥1/10,000 to <1/1,000), very rare (<1/10,000), not known (cannot be estimated from the available data). Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.

Table 6: Adverse reactions reported with Abraxane

<table>
<thead>
<tr>
<th>Infections and infestations</th>
<th>Monotherapy (N=789)</th>
<th>Combination therapy with gemcitabine (N =421)</th>
<th>Combination therapy with carboplatin (N = 514)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common:</td>
<td>Infection, urinary tract infection, folliculitis, upper respiratory tract infection, candidiasis, sinusitis</td>
<td>Sepsis, pneumonia, oral candidiasis</td>
<td>Pneumonia, bronchitis, upper respiratory tract infection, urinary tract infection</td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Sepsis¹, neutropenic sepsis¹, pneumonia, oral candidiasis, nasopharyngitis, cellulitis, herpes simplex, viral infection, herpes zoster, fungal infection, catheter-related infection, injection site infection</td>
<td></td>
<td>Sepsis, oral candidiasis</td>
</tr>
</tbody>
</table>

Neoplasms benign, malignant and unspecified (including cysts and polyps)

| Uncommon: | Tumour necrosis, metastatic pain |

Blood and lymphatic system disorders

Very common:	Bone marrow suppression, neutropenia, thrombocytopenia, anaemia, leukopenia, lymphopenia	Neutropenia, thrombocytopenia, anaemia	Neutropenia², thrombocytopenia³, anaemia³, leukopenia³
Common:	Febrile neutropenia	Pancytopenia	Febrile neutropenia, lymphopenia
Uncommon:			
Rare:	Pancytopenia		

Immune system disorders

<table>
<thead>
<tr>
<th>Side Effect</th>
<th>Monotherapy (N=789)</th>
<th>Combination therapy with gemcitabine (N =421)</th>
<th>Combination therapy with carboplatin (N = 514)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncommon:</td>
<td>Hypersensitivity</td>
<td>Drug hypersensitivity, hypersensitivity</td>
<td></td>
</tr>
<tr>
<td>Rare:</td>
<td>Severe hypersensitivity¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very common:</td>
<td>Anorexia</td>
<td>Dehydration, decreased appetite, hypokalaemia</td>
<td>Decreased appetite</td>
</tr>
<tr>
<td>Common:</td>
<td>Dehydration, decreased appetite, hypokalaemia</td>
<td></td>
<td>Dehydration</td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Hypophosphataemia, fluid retention, hypoalbuminaemia, polydipsia, hyperglycaemia, hypocalcaemia, hypoglycaemia, hyponatraemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not known:</td>
<td>Tumour lysis syndrome¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very common:</td>
<td>Depression, insomnia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common:</td>
<td>Depression, insomnia, anxiety</td>
<td>Anxiety</td>
<td>Insomnia</td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Restlessness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very common:</td>
<td>Peripheral neuropathy, neuropathy, hypoaesthesia, paraesthesia</td>
<td>Peripheral neuropathy, dizziness, headache, dysgeusia</td>
<td>Peripheral neuropathy</td>
</tr>
<tr>
<td>Common:</td>
<td>Peripheral sensory neuropathy, dizziness, peripheral motor neuropathy, ataxia, headache, sensory disturbance, somnolence, dysgeusia</td>
<td></td>
<td>Dizziness, headache, dysgeusia</td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Polyneuropathy, areflexia, syncope, postural dizziness, dyskinesia, hyporeflexia, neuralgia, neuropathic pain, tremor, sensory loss</td>
<td>VIIth nerve paralysis</td>
<td></td>
</tr>
<tr>
<td>Not known:</td>
<td>Cranial nerve palsies multiple¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common:</td>
<td>Vision blurred, lacrimation increased, dry eye, keratoconjunctivitis sicca, madarosis</td>
<td>Lacrimation increased</td>
<td>Vision blurred</td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Reduced visual acuity, abnormal vision, eye irritation, eye pain, conjunctivitis, visual disturbance, eye pruritus, keratitis</td>
<td>Cystoid macular oedema</td>
<td></td>
</tr>
<tr>
<td>Rare:</td>
<td>Cystoid macular oedema¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common:</td>
<td>Vertigo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncommon:</td>
<td>Tinnitus, ear pain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common:</td>
<td>Arrhythmia, tachycardia, supraventricular tachycardia</td>
<td>Cardiac failure congestive, tachycardia</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension, lymphoedema, flushing, hot flushes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension, orthostatic hypotension, peripheral coldness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flushing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombosis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respiratory, thoracic and mediastinal disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very common:</td>
</tr>
<tr>
<td>Interstitial pneumonitis<sup>2</sup>, dyspnoea, epistaxis, pharyngolaryngeal pain, cough, rhinitis, rhinorrhoea</td>
</tr>
<tr>
<td>Pneumonitis, nasal congestion</td>
</tr>
<tr>
<td>Dry throat, nasal dryness</td>
</tr>
<tr>
<td>Vocal cord paresis<sup>1</sup></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gastrointestinal disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very common:</td>
</tr>
<tr>
<td>Diarrhoea, vomiting, nausea, constipation, stomatitis</td>
</tr>
<tr>
<td>Diarrhoea, vomiting, nausea, constipation, abdominal pain, abdominal pain upper</td>
</tr>
<tr>
<td>Stomatitis, dyspepsia, dysphagia, abdominal pain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hepatobiliary disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common:</td>
</tr>
<tr>
<td>Cholangitis</td>
</tr>
<tr>
<td>Hyperbilirubinaemia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skin and subcutaneous tissue disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very common:</td>
</tr>
<tr>
<td>Alopecia, rash</td>
</tr>
<tr>
<td>Alopecia, rash</td>
</tr>
<tr>
<td>Alopecia, rash</td>
</tr>
<tr>
<td>Pruritus, dry skin, nail disorder, erythema, nail pigmentation/discolouration, skin hyperpigmentation, onycholysis, nail changes</td>
</tr>
<tr>
<td>Pruritus, dry skin, nail disorder</td>
</tr>
<tr>
<td>Pruritus, nail disorder</td>
</tr>
<tr>
<td>Uncommon:</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Very rare:</td>
</tr>
<tr>
<td>Not known:</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
</tr>
<tr>
<td>Common:</td>
</tr>
<tr>
<td>Uncommon:</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
</tr>
<tr>
<td>Uncommon:</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
</tr>
<tr>
<td>Common:</td>
</tr>
<tr>
<td>Uncommon:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Rare:</td>
</tr>
<tr>
<td>Investigations</td>
</tr>
<tr>
<td>Very common:</td>
</tr>
<tr>
<td>Common:</td>
</tr>
<tr>
<td>Uncommon:</td>
</tr>
</tbody>
</table>

Injury, poisoning and procedural complications

| Uncommon: | Contusion | | |
| Rare: | Radiation recall phenomenon, radiation pneumonitis | | |

1 As reported in the post-marketing surveillance of Abraxane.
2 The frequency of pneumonitis is calculated based on pooled data in 1310 patients in clinical trials receiving Abraxane monotherapy for breast cancer and for other indications.
3 Based on laboratory assessments: maximal degree of myelosuppression (treated population).
4 In some patients previously exposed to capecitabine.

Description of selected adverse reactions

This section contains the most common and clinically relevant adverse reactions related to Abraxane.

Adverse reactions were assessed in 229 patients with metastatic breast cancer who were treated with 260 mg/m² Abraxane once every three weeks in the pivotal phase III clinical study (Abraxane monotherapy).

Adverse reactions were assessed in 421 patients with metastatic pancreatic cancer who were treated with Abraxane in combination with gemcitabine (125 mg/m² Abraxane in combination with gemcitabine at a dose of 1000 mg/m² given on Days 1, 8 and 15 of each 28-day cycle) and 402 gemcitabine monotherapy-treated patients receiving first-line systemic treatment for metastatic adenocarcinoma of the pancreas (Abraxane/gemcitabine).

Adverse reactions were assessed in 514 patients with non-small cell lung cancer who were treated with Abraxane in combination with carboplatin (100mg/m² Abraxane given on Days 1, 8 and 15 of each 21-day cycle in combination with carboplatin given on Day 1 of each cycle) in the phase III randomized, controlled clinical trial (Abraxane/carboplatin). Patient-reported taxane toxicity was assessed using the 4 subscales of the Functional Assessment of Cancer Therapy (FACT)-Taxane questionnaire. Using repeated measure analysis, 3 of the 4 subscales (peripheral neuropathy, pain hands/feet and hearing) favored Abraxane and carboplatin (p ≤ 0.002). For the other subscale (oedema), there was no difference in the
Infections and infestations

Abraxane/gemcitabine

Sepsis was reported at a rate of 5% in patients with or without neutropenia who received Abraxane in combination with gemcitabine during the conduct of a trial in pancreatic adenocarcinoma. Of the 22 cases of sepsis reported in patients treated with Abraxane in combination with gemcitabine, 5 had a fatal outcome. Complications due to the underlying pancreatic cancer, especially biliary obstruction or presence of biliary stent, were identified as significant contributing factors. If a patient becomes febrile (regardless of neutrophil count), initiate treatment with broad spectrum antibiotics. For febrile neutropenia, withhold Abraxane and gemcitabine until fever resolves and ANC ≥ 1500 cells/mm³, then resume treatment at reduced dose levels (see section 4.2).

Blood and lymphatic system disorders

Abraxane monotherapy-metastatic breast cancer

In patients with metastatic breast cancer, neutropenia was the most notable important haematological toxicity (reported in 79% of patients) and was rapidly reversible and dose-dependent; leukopenia was reported in 71% of patients. Grade 4 neutropenia (< 500 cells/mm³) occurred in 9% of patients treated with Abraxane. Febrile neutropenia occurred in four patients on Abraxane. Anaemia (Hb < 10 g/dl) was observed in 46% of patients on Abraxane and was severe (Hb < 8 g/dl) in three cases. Lymphopenia was observed in 45% of the patients.

Abraxane/gemcitabine

Table 7 provides the frequency and severity of haematologic laboratory-detected abnormalities for patients treated with Abraxane in combination with gemcitabine or with gemcitabine.

Table 7: Haematologic laboratory-detected abnormalities in pancreatic adenocarcinoma trial

<table>
<thead>
<tr>
<th></th>
<th>Abraxane (125 mg/m²)/Gemcitabine</th>
<th>Gemcitabine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grades 1-4 (%)</td>
<td>Grade 3-4 (%)</td>
</tr>
<tr>
<td>Anaemia</td>
<td>97</td>
<td>13</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>73</td>
<td>38</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>74</td>
<td>13</td>
</tr>
</tbody>
</table>

a 405 patients assessed in Abraxane/gemcitabine-treated group
b 388 patients assessed in gemcitabine-treated group
c 404 patients assessed in Abraxane/gemcitabine-treated group

Abraxane/carboplatin

Anaemia and thrombocytopenia were more commonly reported in the Abraxane and carboplatin arm than in the Taxol and carboplatin arm (54% versus 28% and 45% versus 27% respectively).

Nervous system disorders

Abraxane monotherapy-metastatic breast cancer

In general, the frequency and severity of neurotoxicity was dose-dependent in patients receiving Abraxane. Peripheral neuropathy (mostly Grade 1 or 2 sensory neuropathy) was observed in 68% of patients on Abraxane with 10% being Grade 3, and no cases of Grade 4.

Abraxane/gemcitabine

For patients treated with Abraxane in combination with gemcitabine, the median time to first occurrence of Grade 3 peripheral neuropathy was 140 days. The median time to improvement by at least 1 grade was
21 days, and the median time to improvement from Grade 3 peripheral neuropathy to Grade 0 or 1 was 29 days. Of the patients with treatment interrupted due to peripheral neuropathy, 44% (31/70 patients) were able to resume Abraxane at a reduced dose. No patients treated with Abraxane in combination with gemcitabine had Grade 4 peripheral neuropathy.

Abraxane/carboplatin
For non-small cell lung cancer patients treated with Abraxane and carboplatin, the median time to first occurrence of Grade 3 treatment-related peripheral neuropathy was 121 days, and the median time to improvement from Grade 3 treatment related peripheral neuropathy to Grade 1 was 38 days. No patients treated with Abraxane and carboplatin experienced Grade 4 peripheral neuropathy.

Eye disorders
There have been rare reports during post-marketing surveillance of reduced visual acuity due to cystoid macular oedema during treatment with Abraxane (see section 4.4).

Respiratory, thoracic and mediastinal disorders
Abraxane/gemcitabine
Pneumonitis has been reported at a rate of 4% with the use of Abraxane in combination with gemcitabine. Of the 17 cases of pneumonitis reported in patients treated with Abraxane in combination with gemcitabine, 2 had a fatal outcome. Monitor patients closely for signs and symptoms of pneumonitis. After ruling out infectious etiology and upon making a diagnosis of pneumonitis, permanently discontinue treatment with Abraxane and gemcitabine and promptly initiate appropriate treatment and supportive measures (see section 4.2).

Gastrointestinal disorders
Abraxane monotherapy-metastatic breast cancer
Nausea occurred in 29% of the patients and diarrhoea in 25% of the patients.

Skin and subcutaneous tissue disorders
Abraxane monotherapy-metastatic breast cancer
Alopecia was observed in >80% of the patients treated with Abraxane. The majority of alopecia events occurred less than one month after initiation of Abraxane. Pronounced hair loss ≥ 50% is expected for the majority of patients who experience alopecia.

Musculoskeletal and connective tissue disorders
Abraxane monotherapy-metastatic breast cancer
Arthralgia occurred in 32% of patients on Abraxane and was severe in 6% of cases. Myalgia occurred in 24% of patients on Abraxane and was severe in 7% of cases. The symptoms were usually transient, typically occurred three days after Abraxane administration and resolved within a week.

General disorders and administration site conditions
Abraxane monotherapy-metastatic breast cancer
Asthenia/Fatigue was reported in 40% of the patients.

Paediatric population
The study consisted of 106 patients, 104 of whom were paediatric patients aged from 6 months to less than 18 years (see section 5.1). Every patient experienced at least 1 adverse reaction. The most frequently reported adverse reactions were neutropenia, anaemia, leukopenia and pyrexia. Serious adverse reactions reported in more than 2 patients were pyrexia, back pain, peripheral oedema and vomiting. No new safety signals were identified in the limited number of paediatric patients treated with Abraxane and the safety profile was similar to that of the adult population.
Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

There is no known antidote for paclitaxel overdose. In the event of an overdose, the patient should be closely monitored. Treatment should be directed at the major anticipated toxicities, which are bone marrow suppression, mucositis and peripheral neuropathy.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Antineoplastic agents, plant alkaloids and other natural products, taxanes, ATC Code: L01CD01

Mechanism of action
Paclitaxel is an antimicrotubule agent that promotes the assembly of microtubules from tubulin dimers and stabilises microtubules by preventing depolymerisation. This stability results in the inhibition of the normal dynamic reorganisation of the microtubule network that is essential for vital interphase and mitotic cellular functions. In addition, paclitaxel induces abnormal arrays or “bundles” of microtubules throughout the cell cycle and multiple asters of microtubules during mitosis.

Abraxane contains human serum albumin-paclitaxel nanoparticles of approximately 130 nm in size, where the paclitaxel is present in a non-crystalline, amorphous state. Upon intravenous administration, the nanoparticles dissociate rapidly into soluble, albumin bound paclitaxel complexes of approximately 10 nm in size. Albumin is known to mediate endothelial caveolar transcytosis of plasma constituents, and in vitro studies demonstrated that the presence of albumin in Abraxane enhances transport of paclitaxel across endothelial cells. It is hypothesised that this enhanced transendothelial caveolar transport is mediated by the gp-60 albumin receptor, and that there is enhanced accumulation of paclitaxel in the area of tumour due to the albumin-binding protein Secreted Protein Acidic Rich in Cysteine (SPARC).

Clinical efficacy and safety

Breast cancer
Data from 106 patients accrued in two single-arm open-label studies and from 454 patients treated in a randomised Phase III comparative study are available to support the use of Abraxane in metastatic breast cancer. This information is presented below.

Single-arm open-label studies
In one study, Abraxane was administered as a 30-minute infusion at a dose of 175 mg/m² to 43 patients with metastatic breast cancer. The second trial utilised a dose of 300 mg/m² as a 30-minute infusion in 63 patients with metastatic breast cancer. Patients were treated without steroid pre-treatment or planned G-CSF support. Cycles were administered at 3-week intervals. The response rates in all patients were 39.5% (95% CI: 24.9%-54.2%) and 47.6% (95% CI: 35.3%-60.0%), respectively. The median time to disease progression was 5.3 months (175 mg/m²; 95% CI: 4.6-6.2 months) and 6.1 months (300 mg/m²; 95% CI: 4.2-9.8 months).
Randomised comparative study
This multi-centre trial was conducted in patients with metastatic breast cancer, who were treated every 3 weeks with single-agent paclitaxel, either as solvent-based paclitaxel 175 mg/m² given as a 3-hour infusion with premedication to prevent hypersensitivity (N = 225), or as Abraxane 260 mg/m² given as a 30 minute infusion without premedication (N = 229).

Sixty-four percent of patients had impaired performance status (ECOG 1 or 2) at study entry; 79% had visceral metastases; and 76% had > 3 sites of metastases. Fourteen percent of the patients had not received prior chemotherapy; 27% had received chemotherapy in the adjuvant setting only, 40% in the metastatic setting only, and 19% in both metastatic and adjuvant settings. Fifty-nine percent received study medicinal product as second or greater than second-line therapy. Seventy-seven percent of the patients had been previously exposed to anthracyclines.

Results for overall response rate and time to disease progression, and progression-free survival and survival for patients receiving > 1st-line therapy, are shown below.

Table 8: Results for overall response rate, median time to disease progression, and progression-free survival as assessed by the investigator

<table>
<thead>
<tr>
<th>Efficacy variable</th>
<th>Abraxane (260 mg/m²)</th>
<th>Solvent-based paclitaxel (175 mg/m²)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response rate [95% CI] (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1st-line therapy</td>
<td>26.5 [18.98, 34.05] (n = 132)</td>
<td>13.2 [7.54, 18.93] (n = 136)</td>
<td>0.006*</td>
</tr>
<tr>
<td>*Median time to disease progression [95% CI] (weeks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1st-line therapy</td>
<td>20.9 [15.7, 25.9] (n = 131)</td>
<td>16.1 [15.0, 19.3] (n = 135)</td>
<td>0.011b</td>
</tr>
<tr>
<td>*Median progression free survival [95% CI] (weeks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1st-line therapy</td>
<td>20.6 [15.6, 25.9] (n = 131)</td>
<td>16.1 [15.0, 18.3] (n = 135)</td>
<td>0.010b</td>
</tr>
<tr>
<td>*Survival [95% CI] (weeks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 1st-line therapy</td>
<td>56.4 [45.1, 76.9] (n = 131)</td>
<td>46.7 [39.0, 55.3] (n = 136)</td>
<td>0.020b</td>
</tr>
</tbody>
</table>

*This data is based on Clinical Study Report: CA012-2 Addendum dated Final (23 March-2005)

* Chi-squared test

Two hundred and twenty nine patients treated with Abraxane in the randomized, controlled clinical trial were evaluated for safety. Neurotoxicity to paclitaxel was evaluated through improvement by one grade for patients experiencing Grade 3 peripheral neuropathy at any time during therapy. The natural course of
peripheral neuropathy to resolution to baseline due to cumulative toxicity of Abraxane after > 6 courses of treatment was not evaluated and remains unknown.

Pancreatic adenocarcinoma

A multicenter, multinational, randomized, open-label study was conducted in 861 patients to compare Abraxane/gemcitabine versus gemcitabine monotherapy as first-line treatment in patients with metastatic adenocarcinoma of the pancreas. Abraxane was administered to patients (N = 431) as an intravenous infusion over 30-40 minutes at a dose of 125 mg/m² followed by gemcitabine as an intravenous infusion over 30-40 minutes at a dose of 1000 mg/m² given on Days 1, 8 and 15 of each 28-day cycle. In the comparator treatment arm, gemcitabine monotherapy was administered to patients (N = 430) in accordance with the recommended dose and regimen. Treatment was administered until disease progression or development of an unacceptable toxicity. Of the 431 patients with pancreatic adenocarcinoma who were randomized to receive Abraxane in combination with gemcitabine, the majority (93%) were white, 4% were black and 2% were Asian. 16% had a Karnofsky Performance Status of 100; 42% had a KPS of 90; 35% had a KPS of 80; 7% had a KPS of 70; and <1% of patients had a KPS of below 70. Patients with high cardiovascular risk, history of peripheral artery disease and/or of connective tissue disorders and/or interstitial lung disease were excluded from the study.

Patients received a median treatment duration of 3.9 months in the Abraxane/gemcitabine arm and 2.8 months in the gemcitabine arm. 32% of patients in the Abraxane/gemcitabine arm compared with 15% of patients in the gemcitabine arm received 6 or more months of treatment. For the treated population, the median relative dose intensity for gemcitabine was 75% in the Abraxane/gemcitabine arm and 85% in the gemcitabine arm. The median relative dose intensity of Abraxane was 81%. A higher median cumulative dose of gemcitabine was delivered in the Abraxane/gemcitabine arm (11400 mg/m²) when compared with the gemcitabine arm (9000 mg/m²).

The primary efficacy endpoint was overall survival (OS). The key secondary endpoints were progression-free survival (PFS) and overall response rate (ORR), both assessed by independent, central, blinded radiological review using RECIST guidelines (Version 1.0).

Table 9: Efficacy results from randomized study in patients with pancreatic adenocarcinoma (Intent-to-treat population)

<table>
<thead>
<tr>
<th></th>
<th>Abraxane(125 mg/m²)/gemcitabine (N=431)</th>
<th>Gemcitabine (N=430)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of deaths (%)</td>
<td>333 (77)</td>
<td>359 (83)</td>
</tr>
<tr>
<td>Median Overall Survival, months (95% CI)</td>
<td>8.5 (7.89, 9.53)</td>
<td>6.7 (6.01, 7.23)</td>
</tr>
<tr>
<td>HR_{A+G/G} (95% CI)^a</td>
<td>0.72 (0.617, 0.835)</td>
<td></td>
</tr>
<tr>
<td>P-value^b</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Survival Rate % (95% CI) at</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Year</td>
<td>35% (29.7, 39.5)</td>
<td>22% (18.1, 26.7)</td>
</tr>
<tr>
<td>2 Year</td>
<td>9% (6.2, 13.1)</td>
<td>4% (2.3, 7.2)</td>
</tr>
<tr>
<td>75th Percentile Overall Survival (months)</td>
<td>14.8</td>
<td>11.4</td>
</tr>
<tr>
<td>Progression-free Survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death or progression, n (%)</td>
<td>277 (64)</td>
<td>265 (62)</td>
</tr>
<tr>
<td>Median Progression-free Survival, months (95% CI)</td>
<td>5.5 (4.47, 5.95)</td>
<td>3.7 (3.61, 4.04)</td>
</tr>
<tr>
<td>HR_{A+G/G} (95% CI)^a</td>
<td>0.69 (0.581, 0.821)</td>
<td></td>
</tr>
<tr>
<td>P-value^b</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Overall Response Rate</td>
<td>Abraxane(125 mg/m²)/gemcitabine (N=431)</td>
<td>Gemcitabine (N=430)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Confirmed complete or partial overall response, n (%)</td>
<td>99 (23)</td>
<td>31 (7)</td>
</tr>
<tr>
<td>95% CI</td>
<td>19.1, 27.2</td>
<td>5.0, 10.1</td>
</tr>
<tr>
<td>p_{A+G}/p_G (95% CI)</td>
<td>3.19 (2.178, 4.662)</td>
<td></td>
</tr>
<tr>
<td>P-value (chi-square test)</td>
<td><0.0001</td>
<td></td>
</tr>
</tbody>
</table>

CI = confidence interval, HR$_{A+G/G}$ = hazard ratio of Abraxane+gemcitabine/gemcitabine, p_{A+G}/p_G = response rate ratio of Abraxane+gemcitabine/gemcitabine

There was a statistically significant improvement in OS for patients treated with Abraxane/gemcitabine versus gemcitabine alone, with 1.8 months increase in median OS, 28% overall reduction in risk of death, 59% improvement in 1-year survival, and 125% improvement in 2-year survival rates.

Figure 1: Kaplan-Meier curve of overall survival (intent-to-treat population)

![Kaplan-Meier curve](image)

Treatment effects on OS favoured the Abraxane/gemcitabine arm across the majority of pre-specified subgroups (including gender, KPS, geographic region, primary location of pancreatic cancer, stage at diagnosis, presence of liver metastases, presence of peritoneal carcinomatosis, prior Whipple procedure, presence of biliary stent at baseline, presence of pulmonary metastases, and number of metastatic sites). For patients \geq 75 years of age in the Abraxane/gemcitabine and gemcitabine arms the survival Hazard Ratio (HR) was 1.08 (95% CI 0.653, 1.797). For patients with normal baseline CA 19-9 levels the survival HR was 1.07 (95% CI 0.692, 1.661).
There was a statistically significant improvement in PFS for patients treated with Abraxane/gemcitabine versus gemcitabine alone, with 1.8 months increase in median PFS.

Non-small cell lung cancer

A multicenter, randomized, open-label study was conducted in 1052 chemotherapy-naive patients with Stage IIIb/IV non-small cell lung cancer. The study compared Abraxane in combination with carboplatin versus solvent-based paclitaxel in combination with carboplatin as first-line treatment in patients with advanced non-small cell lung cancer. Over 99% of patients had an ECOG (Eastern Cooperative Oncology Group) performance status of 0 or 1. Patients with pre-existing neuropathy of Grade ≥ 2 or serious medical risk factors involving any of the major organ systems were excluded. Abraxane was administered to patients (N=521) as an intravenous infusion over 30 minutes at a dose of 100 mg/m² on Days 1, 8 and 15 of each 21-day cycle without any steroid premedication and without granulocyte colony stimulating factor prophylaxis. Beginning immediately after the end of Abraxane administration, carboplatin at a dose of AUC = 6 mg•min/mL was administered intravenously on Day 1 only of each 21-day cycle. Solvent-based paclitaxel was administered to patients (N=531) at a dose of 200 mg/m² as an intravenous infusion over 3 hours with standard premedication, immediately followed by carboplatin administered intravenously at AUC = 6 mg•min/mL. Each drug was administered on Day 1 of each 21-day cycle. In both study arms treatment was administered until disease progression or development of an unacceptable toxicity. Patients received a median of 6 cycles of treatment in both study arms.

The primary efficacy endpoint was overall response rate defined as the percentage of patients who achieved an objective confirmed complete response or partial response based on an independent, central, blinded radiological review using RECIST (Version 1.0). Patients in the Abraxane/carboplatin arm had a significantly higher overall response rate compared with patients in the control arm: 33% versus 25%, p = 0.005 (Table 10). There was a significant difference in overall response rate in the Abraxane/carboplatin arm compared to the control arm in patients with non-small cell lung cancer of squamous histology (N=450, 41% vs. 24%, p<0.001), however this difference did not translate into a difference in PFS or OS. There was no difference in ORR between the treatment arms in patients with non-squamous histology (N=602, 26% vs 25%, p=0.808).

Table 10: Overall response rate in randomized non-small cell lung cancer trial (intent-to-treat population)

<table>
<thead>
<tr>
<th>Efficacy Parameter</th>
<th>Abraxane (100 mg/m²/week) + carboplatin (N=521)</th>
<th>Solvent-based paclitaxel (200 mg/m² every 3 weeks) + carboplatin (N=531)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Response Rate (independent review)</td>
<td>170 (33%)</td>
<td>132 (25%)</td>
</tr>
<tr>
<td>95% CI (%)</td>
<td>28.6, 36.7</td>
<td>21.2, 28.5</td>
</tr>
<tr>
<td>pₐ/pₚ (95.1% CI)</td>
<td>1.313 (1.082, 1.593)</td>
<td></td>
</tr>
<tr>
<td>P-valueᵃ</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

Cl = confidence interval; HRₐ/T = hazard ratio of Abraxane/carboplatin to solvent-based paclitaxel/carboplatin; pₐ/pₚ = response rate ratio of Abraxane/carboplatin to solvent-based paclitaxel/carboplatin.

ᵃ P-value is based on a chi-square test.

There was no statistically significant difference in progression-free survival (by blinded radiologist assessment) and overall survival between the two treatment arms. A non-inferiority analysis was conducted for PFS and OS, with a pre-specified non-inferiority margin of 15%. The non-inferiority criterion was met for both PFS and OS with the upper bound of the 95% confidence interval for the associated hazard ratios being less than 1.176 (Table 11).
Table 11: Non-inferiority analyses on progression-free survival and overall survival in randomized non-small cell lung cancer trial (intent-to-treat population)

<table>
<thead>
<tr>
<th>Efficacy Parameter</th>
<th>Abraxane (100 mg/m²/week) + carboplatin (N=521)</th>
<th>Solvent-based paclitaxel (200 mg/m² every 3 weeks) + carboplatin (N=531)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progression-free Survival (independent review)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death or progression, n (%)</td>
<td>429 (82%)</td>
<td>442 (83%)</td>
</tr>
<tr>
<td>Median PFS (95% CI) (months)</td>
<td>6.8 (5.7, 7.7)</td>
<td>6.5 (5.7, 6.9)</td>
</tr>
<tr>
<td>HR_{AT} (95% CI)</td>
<td>0.949 (0.830, 1.086)</td>
<td></td>
</tr>
<tr>
<td>Overall Survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of deaths, n (%)</td>
<td>360 (69%)</td>
<td>384 (72%)</td>
</tr>
<tr>
<td>Median OS (95% CI) (months)</td>
<td>12.1 (10.8, 12.9)</td>
<td>11.2 (10.3, 12.6)</td>
</tr>
<tr>
<td>HR_{AT} (95.1% CI)</td>
<td>0.922 (0.797, 1.066)</td>
<td></td>
</tr>
</tbody>
</table>

CI = confidence interval; HR_{AT} = hazard ratio of Abraxane/carboplatin to solvent-based paclitaxel/carboplatin; p_{A}/p_{T} = response rate ratio of Abraxane/carboplatin to solvent-based paclitaxel/carboplatin.

* Per EMA methodological considerations for PFS endpoint, missing observations or initiation of subsequent new therapy were not used for censoring.

Paediatric population
Safety and effectiveness in paediatric patients have not been established (see section 4.2).

Study ABI-007-PST-001, a Phase 1/2, multicenter, open-label, dose-finding study to assess the safety, tolerability and preliminary efficacy of weekly Abraxane in paediatric patients with recurrent or refractory solid tumours included a total of 106 patients aged ≥ 6 months to ≤ 24 years.

The Phase 1 portion of the study included a total of 64 patients aged from 6 months to less than 18 years old and determined the maximum tolerated dose (MTD) to be 240 mg/m², administered as an intravenous infusion over 30 minutes, on Days 1, 8, and 15 of each 28-day cycle.

The Phase 2 portion enrolled a total of 42 patients using a Simon two-stage minimax design, aged from 6 months to 24 years with recurrent or refractory Ewing’s sarcoma, neuroblastoma or rhabdomyosarcoma for the evaluation of antitumour activity assessed by the overall response rate (ORR). Of the 42 patients, 1 patient was < 2, 27 were aged ≥ 2 to < 12, 12 were aged ≥12 to < 18 and 2 adult patients were aged ≥ 18 to 24 years old.

Patients were treated for a median of 2 cycles at the MTD. From the 41 patients eligible for efficacy evaluation in stage 1, 1 patient in the rhabdomyosarcoma group (N=14) had a confirmed partial response (PR) resulting in an ORR of 7.1% (95% CI: 0.2, 33.9). No confirmed complete response (CR) or PR was observed in either the Ewing’s sarcoma group (N=13) or the neuroblastoma group (N=14). None of the study arms continued into stage 2 because the protocol-defined requirement of ≥ 2 patients to have a confirmed response was not met.

The median overall survival results, including the 1-year follow-up period were 32.1 weeks (95% CI: 21.4, 72.9), 32.0 weeks (95% CI: 12, not established) and 19.6 weeks (95% CI: 4, 25.7) for the Ewing’s sarcoma, neuroblastoma and rhabdomyosarcoma groups, respectively.

The overall safety profile of Abraxane in paediatric patients was consistent with the known safety profile of Abraxane in adults (see section 4.8). Based on these results, it was concluded that Abraxane as monotherapy does not have meaningful clinical activity or survival benefit that warrants further development in the paediatric population.
5.2 Pharmacokinetic properties

The pharmacokinetics of total paclitaxel following 30- and 180-minute infusions of Abraxane at dose levels of 80 to 375 mg/m² were determined in clinical studies. The paclitaxel exposure (AUC) increased linearly from 2653 to 16736 ng.hr/ml following dosing from 80 to 300 mg/m².

In a study in patients with advanced solid tumours, the pharmacokinetic characteristics of paclitaxel following Abraxane administered intravenously at 260 mg/m² over 30 minutes were compared with those following 175 mg/m² of the solvent-based paclitaxel injection administered over 3 hours. Based on non-compartmental PK analysis, the plasma clearance of paclitaxel with Abraxane was larger (43%) than that following a solvent-based paclitaxel injection and its volume of distribution was also higher (53%). There were no differences in terminal half-lives. In a repeat dose study with 12 patients receiving Abraxane administered intravenously at 260 mg/m², intra-patient variability in AUC was 19% (range = 3.21%-37.70%). There was no evidence for accumulation of paclitaxel with multiple treatment courses.

Distribution

Following Abraxane administration to patients with solid tumours, paclitaxel is evenly distributed into blood cells and plasma and is highly bound to plasma proteins (94%).

The protein binding of paclitaxel following Abraxane was evaluated by ultrafiltration in a within-patient comparison study. The fraction of free paclitaxel was significantly higher with Abraxane (6.2%) than with solvent-based paclitaxel (2.3%). This resulted in significantly higher exposure to unbound paclitaxel with Abraxane compared with solvent-based paclitaxel, even though the total exposure is comparable. This is possibly due to paclitaxel not being trapped in Cremophor EL micelles as with solvent-based paclitaxel. Based on the published literature, in vitro studies of binding to human serum proteins, (using paclitaxel at concentrations ranging from 0.1 to 50 µg/ml), indicate that the presence of cimetidine, ranitidine, dexamethasone, or diphenhydramine did not affect protein binding of paclitaxel.

Based on population pharmacokinetic analysis, the total volume of distribution is approximately 1741 L; the large volume of distribution indicates extensive extravascular distribution and/or tissue binding of paclitaxel.

Biotransformation and elimination

Based on the published literature, in vitro studies with human liver microsomes and tissue slices show that paclitaxel is metabolised primarily to 6α-hydroxypaclitaxel; and to two minor metabolites, 3'-p-hydroxypaclitaxel and 6α-3'-p-dihydroxypaclitaxel. The formation of these hydroxylated metabolites is catalysed by CYP2C8, CYP3A4, and both CYP2C8 and CYP3A4 isoenzymes, respectively.

In patients with metastatic breast cancer, after a 30-minute infusion of Abraxane at 260 mg/m², the mean value for cumulative urinary excretion of unchanged active substance accounted for 4% of the total administered dose with less than 1% as the metabolites 6α-hydroxypaclitaxel and 3'-p-hydroxypaclitaxel, indicating extensive non-renal clearance. Paclitaxel is principally eliminated by hepatic metabolism and biliary excretion.

At the clinical dose range of 80 to 300 mg/m², the mean plasma clearance of paclitaxel ranges from 13 to 30 L/h/m², and the mean terminal half-life ranges from 13 to 27 hours.

Hepatic impairment

The effect of hepatic impairment on population pharmacokinetics of Abraxane was studied in patients with advanced solid tumours. This analysis included patients with normal hepatic function (n=130), and pre-existing mild (n=8), moderate (n=7), or severe (n=5) hepatic impairment (according to NCI Organ Dysfunction Working Group criteria). The results show that mild hepatic impairment (total bilirubin >1 to
≤1.5 x ULN) has no clinically important effect on pharmacokinetics of paclitaxel. Patients with moderate (total bilirubin >1.5 to ≤3 x ULN) or severe (total bilirubin >3 to ≤5 x ULN) hepatic impairment have a 22% to 26% decrease in the maximum elimination rate of paclitaxel and approximately 20% increase in mean paclitaxel AUC compared with patients with normal hepatic function. Hepatic impairment has no effect on mean paclitaxel C_max. In addition, elimination of paclitaxel shows an inverse correlation with total bilirubin and a positive correlation with serum albumin.

Pharmacokinetic/pharmacodynamic modeling indicates that there is no correlation between hepatic function (as indicated by the baseline albumin or total bilirubin level) and neutropenia after adjusting for Abraxane exposure.

Pharmacokinetic data are not available for patients with total bilirubin >5 x ULN or for patients with metastatic adenocarcinoma of the pancreas (see section 4.2).

Renal impairment
Population pharmacokinetic analysis included patients with normal renal function (n=65), and pre-existing mild (n=61), moderate (n=23), or severe (n=1) renal impairment (according to draft FDA guidance criteria 2010). Mild to moderate renal impairment (creatinine clearance ≥30 to <90 ml/min) has no clinically important effect on the maximum elimination rate and systemic exposure (AUC and C_max) of paclitaxel. Pharmacokinetic data are insufficient for patients with severe renal impairment and not available for patients with end stage kidney disease.

Elderly
Population pharmacokinetic analysis for Abraxane included patients with ages ranging from 24 to 85 years old and shows that age does not significantly influence the maximum elimination rate and systemic exposure (AUC and C_max) of paclitaxel.

Pharmacokinetic/pharmacodynamic modelling using data from 125 patients with advanced solid tumours indicates that patients ≥ 65 years of age may be more susceptible to development of neutropenia within the first treatment cycle, although the plasma paclitaxel exposure is not affected by age.

Paediatric population
The pharmacokinetics of paclitaxel following 30 minutes of intravenous administration at dose levels of 120 mg/m² to 270 mg/m² were determined in 64 patients (2 to ≤ 18 years) in Phase 1 of a Phase 1/2 study in recurrent or refractory paediatric solid tumours. Following dosing increase from 120 to 270 mg/m², the paclitaxel mean AUC(0-inf) and C_max ranged from 8867 to 14361 ng*hr/ml and from 3488 to 8078 ng/ml, respectively.

Dose normalized peak drug exposure values were comparable across the dose range studied; however, dose-normalized total drug exposure values were only comparable across 120 mg/m² to 240 mg/m²; with lower dose-normalized AUC∞ at the 270 mg/m² dose level. At the MTD of 240 mg/m², the mean CL was 19.1 L/h and the mean terminal half-life was 13.5 hours.

In children and adolescent patients, exposure to paclitaxel increased with higher dosing and weekly drug exposures were higher than in adult patients.

Other intrinsic factors
Population pharmacokinetic analyses for Abraxane indicate that gender, race (Asian vs. White), and type of solid tumours do not have a clinically important effect on systemic exposure (AUC and C_max) of paclitaxel. Patients weighing 50 kg had paclitaxel AUC approximately 25% lower than those weighing 75 kg. The clinical relevance of this finding is uncertain.
5.3 Preclinical safety data

The carcinogenic potential of paclitaxel has not been studied. However, based on the published literature, paclitaxel is a potentially carcinogenic and genotoxic agent at clinical doses, based upon its pharmacodynamic mechanism of action. Paclitaxel has been shown to be clastogenic in vitro (chromosome aberrations in human lymphocytes) and in vivo (micronucleus test in mice). Paclitaxel has been shown to be genotoxic in vivo (micronucleus test in mice), but it did not induce mutagenicity in the Ames test or the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) gene mutation assay.

Paclitaxel at doses below the human therapeutic dose was associated with low fertility when administered prior and during mating in male and female rats and foetal toxicity in rats. Animal studies with Abraxane showed non-reversible, toxic effects on the male reproductive organs at clinically relevant exposure levels.

Paclitaxel and/or its metabolites were excreted into the milk of lactating rats. Following intravenous administration of radiolabelled paclitaxel to rats on days 9 to 10 postpartum, concentrations of radioactivity in milk were higher than in plasma and declined in parallel with the plasma concentrations.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Human albumin solution (containing sodium caprylate and N-acetyl-L-tryptophan).

6.2 Incompatibilities

This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.

6.3 Shelf life

Unopened vials
3 years

Stability of reconstituted dispersion in the vial
Chemical and physical in-use stability has been demonstrated for 24 hours at 2°C-8°C in the original carton, protected from light.

Stability of the reconstituted dispersion in the infusion bag
Chemical and physical in-use stability has been demonstrated for 24 hours at 2°C-8°C followed by 4 hours at 25°C, protected from light.

However, from a microbiological point of view, unless the method of reconstituting and filling of the infusion bags precludes the risks of microbial contamination, the product should be used immediately after reconstitution and filling of the infusion bags.

If not used immediately, in-use storage times and conditions are the responsibility of the user.

The total combined storage time of reconstituted medicinal product in the vial and in the infusion bag when refrigerated and protected from light is 24 hours. This may be followed by storage in the infusion bag for 4 hours below 25°C.
6.4 Special precautions for storage

Unopened vials
Keep the vial in the outer carton in order to protect from light. Neither freezing nor refrigeration adversely affects the stability of the product. This medicinal product does not require any special temperature storage conditions.

Reconstituted dispersion
For storage conditions after reconstitution of the medicinal product, see section 6.3.

6.5 Nature and contents of container

50 ml vial (type 1 glass) with a stopper (butyl rubber), with an overseal (aluminium), containing 100 mg of paclitaxel formulated as albumin bound nanoparticles.

100 ml vial (type 1 glass) with a stopper (butyl rubber), with an overseal (aluminium), containing 250 mg of paclitaxel formulated as albumin bound nanoparticles.

Pack size of one vial.

6.6 Special precautions for disposal and other handling

Preparation and administration precautions
Paclitaxel is a cytotoxic anticancer medicinal product and, as with other potentially toxic compounds, caution should be exercised in handling Abraxane. The use of gloves, goggles and protective clothing is recommended. If the dispersion contacts the skin, the skin should be washed immediately and thoroughly with soap and water. If it contacts mucous membranes, the membranes should be flushed thoroughly with water. Abraxane should only be prepared and administered by personnel appropriately trained in the handling of cytotoxic agents. Pregnant staff should not handle Abraxane.

Given the possibility of extravasation, it is advisable to closely monitor the infusion site for possible infiltration during administration of the medicinal product. Limiting the infusion of Abraxane to 30 minutes, as directed, reduces the likelihood of infusion-related reactions.

Reconstitution and administration of the product
Abraxane is supplied as a sterile lyophilised powder for reconstitution before use. After reconstitution, each ml of dispersion contains 5 mg of paclitaxel formulated as albumin bound nanoparticles.

100 mg vial: Using a sterile syringe, 20 ml of sodium chloride 9 mg/ml (0.9%) solution for infusion should slowly be injected into a vial of Abraxane over a minimum of 1 minute.

250 mg vial: Using a sterile syringe, 50 ml of sodium chloride 9 mg/ml (0.9%) solution for infusion should slowly be injected into a vial of Abraxane over a minimum of 1 minute.

The solution should be directed onto the inside wall of the vial. The solution should not be injected directly onto the powder as this will result in foaming.

Once the addition is complete, the vial should be allowed to stand for a minimum of 5 minutes to ensure proper wetting of the solid. Then, the vial should gently and slowly be swirled and/or inverted for at least 2 minutes until complete redispersion of any powder occurs. The generation of foam must be avoided. If foaming or clumping occurs, the dispersion must stand for at least 15 minutes until foam subsides.
The reconstituted dispersion should be milky and homogenous without visible precipitates. Some settling of the reconstituted dispersion may occur. If precipitates or settling are visible, the vial should be gently inverted again to ensure complete redispersion prior to use.

Inspect the dispersion in the vial for particulate matter. Do not administer the reconstituted dispersion if particulate matter is observed in the vial.

The exact total dosing volume of 5 mg/ml dispersion required for the patient should be calculated and the appropriate amount of reconstituted Abraxane should be injected into an empty, sterile, PVC or non-PVC type intravenous bag.

The use of medical devices containing silicone oil as a lubricant (i.e. syringes and IV bags) to reconstitute and administer Abraxane may result in the formation of proteinaceous strands. Administer Abraxane using an infusion set incorporating a 15 µm filter to avoid administration of these strands. Use of a 15 µm filter removes strands and does not change the physical or chemical properties of the reconstituted product.

Use of filters with a pore size less than 15 µm may result in blockage of the filter.

The use of specialized di(2-ethylhexyl)phthalate (DEHP)-free solution containers or administration sets is not necessary to prepare or administer Abraxane infusions.

Following administration, it is recommended that the intravenous line be flushed with sodium chloride 9 mg/ml (0.9%) solution for injection to ensure administration of the complete dose.

Any unused product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

Bristol-Myers Squibb Pharma EEIG
Plaza 254
Blanchardstown Corporate Park 2
Dublin 15, D15 T867
Ireland

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/07/428/001
EU/1/07/428/002

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 11 January 2008
Date of latest renewal: 14 January 2013
10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu
ANNEX II

A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer responsible for batch release

Celgene Distribution B.V.
Orteliuslaan 1000
3528 BD Utrecht
Netherlands

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to restricted medical prescription (see Annex I: Summary of Product Characteristics, section 4.2).

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

- **Periodic safety update reports (PSUR)**
 The requirements for submission of PSURs for this medicinal product are set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and any subsequent updates published on the European medicines web-portal.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

- **Risk management plan (RMP)**
 The marketing authorisation holder (MAH) shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2. of the marketing authorisation and any agreed subsequent updates of the RMP.

 An updated RMP should be submitted:
 - At the request of the European Medicines Agency;
 - Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.
ANNEX III

LABELLING AND PACKAGE LEAFLET
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

Carton

1. NAME OF THE MEDICINAL PRODUCT

Abraxane 5 mg/ml powder for dispersion for infusion
paclitaxel

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each vial contains 100 mg of paclitaxel formulated as albumin bound nanoparticles.

After reconstitution, each ml of dispersion contains 5 mg of paclitaxel formulated as albumin bound nanoparticles.

3. LIST OF EXCIPIENTS

Excipients: Human albumin solution (containing sodium caprylate and N-acetyl-L-tryptophan).

4. PHARMACEUTICAL FORM AND CONTENTS

Powder for dispersion for infusion.

1 vial

100 mg/20 ml

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Intravenous use.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

Abraxane should not be substituted for or with other paclitaxel formulations.
8. **EXPIRY DATE**

EXP

9. **SPECIAL STORAGE CONDITIONS**

Unopened vials: Keep the vial in the outer carton in order to protect from light.

Reconstituted dispersion: It can be stored refrigerated at 2°C to 8°C for up to 24 hours in either the vial or an infusion bag, protected from light. The total combined storage time of reconstituted medicinal product in the vial and in the infusion bag when refrigerated and protected from light is 24 hours. This may be followed by storage in the infusion bag for 4 hours below 25°C.

10. **SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE**

Any unused product or waste material should be disposed of in accordance with local requirements.

11. **NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER**

Bristol-Myers Squibb Pharma EEIG
Plaza 254
Blanchardstown Corporate Park 2
Dublin 15, D15 T867
Ireland

12. **MARKETING AUTHORISATION NUMBER(S)**

EU/1/07/428/001

13. **BATCH NUMBER**

Lot

14. **GENERAL CLASSIFICATION FOR SUPPLY**

15. **INSTRUCTIONS ON USE**

16. **INFORMATION IN BRAILLE**

Justification for not including Braille accepted.
17. **UNIQUE IDENTIFIER – 2D BARCODE**

2 D bar code carrying the unique identifier

18. **UNIQUE IDENTIFIER – HUMAN READABLE DATA**

<table>
<thead>
<tr>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
</tr>
<tr>
<td>NN</td>
</tr>
</tbody>
</table>
PARTICULARS TO APPEAR ON THE IMMEDIATE PACKAGING

Vial

1. NAME OF THE MEDICINAL PRODUCT

Abraxane 5 mg/ml powder for dispersion for infusion

paclitaxel

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each vial contains 100 mg of paclitaxel formulated as albumin bound nanoparticles.

After reconstitution, each ml of dispersion contains 5 mg of paclitaxel.

3. LIST OF EXCIPIENTS

Excipients: Human albumin solution (containing sodium caprylate and N-acetyl-L-tryptophan).

4. PHARMACEUTICAL FORM AND CONTENTS

Powder for dispersion for infusion.

1 vial

100 mg/20 ml

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Intravenous use

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.
7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS

Unopened vials: Keep the vial in the outer carton in order to protect from light.

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

Any unused product or waste material should be disposed of in accordance with local requirements.

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Bristol-Myers Squibb Pharma EEIG
Plaza 254
Blanchardstown Corporate Park 2
Dublin 15, D15 T867
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/07/428/001

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Justification for not including Braille accepted.

17. UNIQUE IDENTIFIER – 2D BARCODE
2D bar code carrying the unique identifier

18. **UNIQUE IDENTIFIER – HUMAN READABLE DATA**

PC
SN
NN
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

Carton

1. NAME OF THE MEDICINAL PRODUCT

Abraxane 5 mg/ml powder for dispersion for infusion

Paclitaxel

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each vial contains 250 mg of paclitaxel formulated as albumin bound nanoparticles.

After reconstitution, each ml of dispersion contains 5 mg of paclitaxel formulated as albumin bound nanoparticles.

3. LIST OF EXCIPIENTS

Excipients: Human albumin solution (containing sodium caprylate and N-acetyl-L-tryptophan).

4. PHARMACEUTICAL FORM AND CONTENTS

Powder for dispersion for infusion.

1 vial

250 mg/50 ml

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Intravenous use.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

Abraxane should not be substituted for or with other paclitaxel formulations.
8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS

Unopened vials: Keep the vial in the outer carton in order to protect from light.

Reconstituted dispersion: It can be stored refrigerated at 2°C to 8°C for up to 24 hours in either the vial or an infusion bag, protected from light. The total combined storage time of reconstituted medicinal product in the vial and in the infusion bag when refrigerated and protected from light is 24 hours. This may be followed by storage in the infusion bag for 4 hours below 25°C.

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

Any unused product or waste material should be disposed of in accordance with local requirements.

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Bristol-Myers Squibb Pharma EEIG
Plaza 254
Blanchardstown Corporate Park 2
Dublin 15, D15 T867
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/07/428/002

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Justification for not including Braille accepted.
17. **UNIQUE IDENTIFIER – 2D BARCODE**

2 D bar code carrying the unique identifier

18. **UNIQUE IDENTIFIER – HUMAN READABLE DATA**

PC
SN
NN
PARTICULARS TO APPEAR ON THE IMMEDIATE PACKAGING

Vial

<table>
<thead>
<tr>
<th>1.</th>
<th>NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abraxane 5 mg/ml powder for dispersion for infusion</td>
</tr>
<tr>
<td></td>
<td>paclitaxel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.</th>
<th>STATEMENT OF ACTIVE SUBSTANCE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Each vial contains 250 mg of paclitaxel formulated as albumin bound nanoparticles.</td>
</tr>
<tr>
<td></td>
<td>After reconstitution, each ml of dispersion contains 5 mg of paclitaxel.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.</th>
<th>LIST OF EXCIPIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Excipients: Human albumin solution (containing sodium caprylate and N-acetyl-L-tryptophan).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4.</th>
<th>PHARMACEUTICAL FORM AND CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Powder for dispersion for infusion.</td>
</tr>
<tr>
<td></td>
<td>1 vial</td>
</tr>
<tr>
<td></td>
<td>250 mg/50 ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.</th>
<th>METHOD AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Read the package leaflet before use.</td>
</tr>
<tr>
<td></td>
<td>Intravenous use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.</th>
<th>SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keep out of the sight and reach of children.</td>
</tr>
</tbody>
</table>
7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS

Unopened vials: Keep the vial in the outer carton in order to protect from light.

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

Any unused product or waste material should be disposed of in accordance with local requirements.

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Bristol-Myers Squibb Pharma EEIG
Plaza 254
Blanchardstown Corporate Park 2
Dublin 15, D15 T867
Ireland

12. MARKETING AUTHORITY NUMBER(S)

EU/1/07/428/002

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Justification for not including Braille accepted.

17. UNIQUE IDENTIFIER – 2D BARCODE
2 D bar code carrying the unique identifier

<table>
<thead>
<tr>
<th>18. UNIQUE IDENTIFIER – HUMAN READABLE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
</tr>
<tr>
<td>SN</td>
</tr>
<tr>
<td>NN</td>
</tr>
</tbody>
</table>
B. PACKAGE LEAFLET
Package leaflet: Information for the user

Abraxane 5 mg/ml powder for dispersion for infusion

paclitaxel

Read all of this leaflet carefully before you start using this medicine because it contains important information for you.

- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor or nurse.
- This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours.
- If you get any side effects, talk to your doctor or nurse. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet:
1. What Abraxane is and what it is used for
2. What you need to know before you are given Abraxane
3. How to use Abraxane
4. Possible side effects
5. How to store Abraxane
6. Contents of the pack and other information

1. What Abraxane is and what it is used for

What Abraxane is
Abraxane contains, as its active substance, paclitaxel attached to the human protein albumin, in the form of tiny particles known as nanoparticles. Paclitaxel belongs to a group of medicines called “taxanes” used in cancer.

- Paclitaxel is the part of the medicine that affects the cancer, it works by stopping cancer cells from dividing – this means that they die.
- Albumin is the part of the medicine that helps paclitaxel dissolve in the blood and get across the walls of the blood vessels into the tumour. This means that other chemicals that can cause side effects that can be life threatening are not needed. Such side effects occur far less with Abraxane.

What Abraxane is used for
Abraxane is used to treat the following types of cancer:

Breast Cancer
- Breast cancer which has spread to other parts of the body (this is called “metastatic” breast cancer).
- Abraxane is used in metastatic breast cancer when at least one other therapy has been tried but has not worked and you are unsuitable for treatments containing a group of medicines called “anthracyclines”.
- People with metastatic breast cancer who received Abraxane where another therapy had failed, were more likely to experience a reduction in tumour size, and lived longer than people who took an alternative therapy.

Pancreatic cancer
- Abraxane is used together with a medicine called gemcitabine if you have metastatic cancer of the pancreas. People with metastatic pancreatic cancer (pancreatic cancer that has spread to other parts
of the body) who received Abraxane with gemcitabine in a clinical trial lived longer than people who had only received gemcitabine.

Lung Cancer
- Abraxane is also used together with a medicine called carboplatin if you have the most common type of lung cancer, called “non-small cell lung cancer”.
- Abraxane is used in non-small cell lung cancer where surgery or radiotherapy would not be suitable to treat the disease.

2. What you need to know before you are given Abraxane

Do not use Abraxane
- if you are allergic (hypersensitive) to paclitaxel or any of the other ingredients of Abraxane (listed in section 6);
- if you are breast-feeding;
- if you have a low white blood cell count (baseline neutrophil counts <1500 cells/mm³ - your doctor will advise you on this).

Warnings and precautions
Talk to your doctor or nurse before using Abraxane
- if you have poor kidney function;
- if you have severe liver problems;
- if you have heart problems.

Talk to your doctor or nurse if you experience any of these conditions whilst being treated with Abraxane, your doctor may wish to stop treatment or reduce the dose:
- if you experience any abnormal bruising, bleeding, or signs of infections such as a sore throat or a fever;
- if you experience numbness, tingling, pricking sensations, sensitivity to touch, or muscle weakness;
- if you experience breathing problems, like shortness of breath or dry cough.

Children and adolescents
Abraxane is only for adults and should not be taken by children and adolescents aged below 18 years.

Other medicines and Abraxane
Tell your doctor if you are taking or have recently taken any other medicines. This includes medicines obtained without a prescription, including herbal medicines. This is because Abraxane can affect the way some other medicines work. Also, some other medicines can affect the way Abraxane works.

Take care and speak to your doctor when taking Abraxane at the same time as any of the following:
- medicines for treating infections (i.e. antibiotics such erythromycin, rifampicin, etc.; ask your doctor, nurse or pharmacist if you are unsure whether the medicine you are taking is an antibiotic), and including medicines for treating fungal infections (e.g. ketoconazole)
- medicines used to help you stabilize your mood also sometimes referred to as anti-depressants (e.g. fluoxetine)
- medicines used to treat seizures (epilepsy) (e.g. carbamazepine, phenytoin)
- medicines used to help you lower blood lipid levels (e.g. gemfibrozil)
- medicine used for heartburn or stomach ulcers (e.g. cimetidine)
- medicines used to treat HIV and AIDS (e.g. ritonavir, saquinavir, indinavir, nelfinavir, efavirenz, nevirapine)
- a medicine called clopidogrel used to prevent blood clots.
Pregnancy breast-feeding and fertility
Paclitaxel may cause serious birth defects and should therefore not be used if you are pregnant. Your doctor will arrange a pregnancy test before starting treatment with Abraxane.

Women of childbearing age should use effective contraception during and up to 1 month after receiving treatment with Abraxane.

Do not breast feed when taking Abraxane as it is not known if the active ingredient paclitaxel passes into the mother’s milk.

Male patients are advised to use effective contraception and to avoid fathering a child during and up to six months after treatment and should seek advice on conservation of sperm prior to treatment because of the possibility of irreversible infertility due to therapy with Abraxane.

Ask your doctor for advice before taking this medicine.

Driving and using machines
Some people may feel tired or dizzy after being given Abraxane. If this happens to you, do not drive or use any tools or machines.

If you are given other medicines as part of your treatment, you should ask your doctor for advice on driving and using machines.

Abraxane contains sodium
This medicine contains less than 1 mmol sodium (23 mg) per 100 mg, that is to say essentially ‘sodium free’.

3. How to use Abraxane

Abraxane will be given to you by a doctor or nurse into a vein from an intravenous drip. The dose you receive is based on your body surface area and blood test results. The usual dose is for breast cancer is 260 mg/m² of body surface area given over a 30 minute period. The usual dose for advanced pancreatic cancer is 125 mg/m² of body surface area given over a 30 minute period. The usual dose for non-small cell lung cancer is 100 mg/m² of body surface area given over a 30 minute period.

How often will you receive Abraxane?
For treatment of metastatic breast cancer, Abraxane is usually given once every three weeks (on day 1 of a 21-day cycle).

For treatment of advanced pancreatic cancer, Abraxane is given on days 1, 8 and 15 of each 28-day treatment cycle with gemcitabine being given immediately after the Abraxane.

For treatment of non-small cell lung cancer Abraxane is given once every week (i.e. on days 1, 8 and 15 of a 21-day cycle), with carboplatin being given once every three weeks (i.e. only on day 1 of each 21-day cycle), immediately after the Abraxane dose has been given.

If you have any further questions on the use of this medicine, ask your doctor or nurse.

4. Possible side effects

Like all medicines, this medicine can cause side effects, although not everyone gets them.
The **very common** side effects may affect more than 1 in 10 people:
- Loss of hair (the majority of cases of hair loss happened less than one month after starting Abraxane. When it happens, hair loss is pronounced (over 50%) in the majority of patients)
- Rash
- Abnormal decrease in the number of types of white blood cells (neutrophils, lymphocytes or leukocytes) in the blood
- Deficiency of red blood cells
- Reduction in the number of platelets in the blood
- Effect on peripheral nerves (pain, numbness, tingling or loss of feeling)
- Pain in a joint or joints
- Pain in the muscles
- Nausea, diarrhoea, constipation, sore mouth, loss of appetite
- Vomiting
- Weakness and tiredness, fever
- Dehydration, taste disturbance, weight loss
- Low levels of potassium in the blood
- Depression, sleep problems
- Headache
- Chills
- Difficulty in breathing
- Dizziness
- Swelling of mucosal and soft tissues
- Increased liver function tests
- Pain in extremities
- Cough
- Abdominal pain
- Nose bleeds

The **common** side effects may affect up to 1 in 10 people:
- Itching, dry skin, nail disorder
- Infection, fever with decrease in the number of a type of white blood cell (neutrophils) in the blood, flushing, thrush, severe infection in your blood which may be caused by reduced white blood cells
- Reduction in all blood cell counts
- Chest or throat pain
- Indigestion, abdominal discomfort
- Stuffy nose
- Pain in back, bone pain
- Diminished muscular coordination or difficulty in reading, increased or decreased tears, loss of eyelashes
- Changes in heart rate or rhythm, heart failure
- Decreased or increased blood pressure
- Redness or swelling at the site where the needle entered the body
- Anxiety
- Infection in the lungs
- Infection in the urinary tract
- Obstruction in the gut, inflammation of the large bowel, inflammation of the bile duct
- Acute kidney failure
- Increased bilirubin in the blood
- Coughing up blood
• Dry mouth, difficulty in swallowing
• Muscle weakness
• Blurred vision

The uncommon side effects may affect up to 1 in 100 people:
• Increased weight, increased lactate dehydrogenase in the blood, decreased kidney function, increased blood sugar, increased phosphorus in the blood
• Decreased or lack of reflexes, involuntary movements, pain along a nerve, fainting, dizziness when standing up, shaking, facial nerve paralysis
• Irritated eyes, painful eyes, red eyes, itchy eyes, double vision, reduced vision, or seeing flashing lights, blurred vision due to swelling of the retina (cystoid macular oedema)
• Ear pain, ringing in your ears
• Coughing with phlegm, shortness of breath when walking or climbing stairs, runny nose, or dry nose, decreased breath sounds, water on the lung, loss of voice, blood clot in the lung, dry throat
• Gas, stomach cramps, painful or sore gums, rectal bleeding
• Painful urination, frequent urination, blood in the urine, inability to hold your urine
• Fingernail pain, fingernail discomfort, loss of fingernails, hives, skin pain, red skin from sunlight, skin discoloration, increased sweating, night sweats, white areas on the skin, sores, swollen face
• Decreased phosphorus in the blood, fluid retention, low albumin in the blood, increased thirst, decreased calcium in the blood, decreased sugar in the blood, decreased sodium in the blood
• Pain and swelling in the nose, skin infections, infection due to catheter line
• Bruising
• Pain at site of tumour, death of the tumour
• Decreased blood pressure when standing up, coldness in your hands and feet
• Difficulty walking, swelling
• Allergic reaction
• Decreased liver function, increased size of liver
• Pain in the breast
• Restlessness
• Small bleedings in your skin due to blood clots
• A condition involving destruction of red blood cells and acute kidney failure

The rare side effects may affect up to 1 in 1,000 people:
• Skin reaction to another agent or lung inflammation following radiation
• Blood clot
• Very slow pulse, heart attack
• Leaking of drug outside the vein
• A disorder of the electrical conduction system of the heart (atrioventricular block)

The very rare side effects may affect up to 1 in 10,000 people:
• Severe inflammation/eruption of the skin and mucous membranes (Stevens-Johnson syndrome, toxic epidermal necrolysis)

Not known side effects (frequency cannot be estimated from the available data):
• Hardening/thickening of the skin (scleroderma).

Reporting of side effects
If you get any side effects, talk to your doctor or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.
5. **How to store Abraxane**

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the carton and the vial after EXP. The expiry date refers to the last day of that month.

Unopened vials: Keep the vial in the outer carton in order to protect from light.

After first reconstitution the dispersion should be used immediately. If not used immediately, the dispersion may be stored in a refrigerator (2°C-8°C) for up to 24 hours in the vial when kept in the outer carton in order to protect it from light.

The reconstituted dispersion in the intravenous drip may be stored in a refrigerator (2°C-8°C) for up to 24 hours protected from light.

The total combined storage time of reconstituted medicinal product in the vial and in the infusion bag when refrigerated and protected from light is 24 hours. This may be followed by storage in the infusion bag for 4 hours below 25°C.

Your doctor or pharmacist is responsible for disposing of any unused Abraxane correctly.

6. **Contents of the pack and further information**

What Abraxane contains

The active substance is paclitaxel.

Each vial contains 100 mg or 250 mg of paclitaxel formulated as albumin bound nanoparticles.

After reconstitution, each ml of dispersion contains 5 mg of paclitaxel formulated as albumin bound nanoparticles.

The other ingredient is human albumin solution (containing sodium caprylate and N-acetyl-L-tryptophan), see section 2 “Abraxane contains sodium”.

What Abraxane looks like and contents of the pack

Abraxane is a white to yellow powder for dispersion for infusion. Abraxane is available in glass vials containing 100 mg or 250 mg of paclitaxel formulated as albumin bound nanoparticles.

Each pack contains 1 vial.

Marketing Authorisation Holder

Bristol-Myers Squibb Pharma EEIG
Plaza 254
Blanchardstown Corporate Park 2
Dublin 15, D15 T867
Ireland

Manufacturer
Medical or healthcare professionals

The following information is intended for medical or healthcare professionals only:

Instructions for use, handling and disposal

Preparation and administration precautions

Paclitaxel is a cytotoxic anticancer medicinal product and, as with other potentially toxic compounds, caution should be exercised in handling Abraxane. Gloves, goggles and protective clothing should be used. If Abraxane dispersion contacts the skin, the skin should be washed immediately and thoroughly with soap and water. If Abraxane contacts mucous membranes, the membranes should be flushed thoroughly with water. Abraxane should only be prepared and administered by personnel appropriately trained in the handling of cytotoxic agents. Pregnant staff should not handle Abraxane.

Given the possibility of extravasation, it is advisable to closely monitor the infusion site for possible infiltration during administration of the medicinal product. Limiting the infusion of Abraxane to 30 minutes, as directed, reduces the likelihood of infusion-related reactions.

Reconstitution of the product and administration

Abraxane should be administered under the supervision of a qualified oncologist in units specialised in the administration of cytotoxic agents.

Abraxane is supplied as a sterile lyophilised powder for reconstitution before use. After reconstitution, each ml of dispersion contains 5 mg of paclitaxel formulated as albumin bound nanoparticles. Reconstituted Abraxane dispersion is administered intravenously using an infusion set incorporating a 15 µm filter.

Reconstitution of 100 mg:
Using a sterile syringe, 20 ml of sodium chloride 9 mg/ml (0.9%) solution for infusion should slowly be injected into the 100 mg vial of Abraxane over a minimum of 1 minute.

Reconstitution of 250 mg:
Using a sterile syringe, 50 ml of sodium chloride 9 mg/ml (0.9%) solution for infusion should slowly be injected into the 250 mg vial of Abraxane over a minimum of 1 minute.

The solution should be directed onto the inside wall of the vial. The solution should not be injected directly onto the powder as this will result in foaming.
Once the addition is complete, the vial should be allowed to stand for a minimum of 5 minutes to ensure proper wetting of the solid. Then, the vial should gently and slowly be swirled and/or inverted for at least 2 minutes until complete redispersion of any powder occurs. The generation of foam should be avoided. If foaming or clumping occurs, the dispersion should stand for at least 15 minutes until foam subsides.

The reconstituted dispersion should be milky and homogenous without visible precipitates. Some settling of the reconstituted dispersion may occur. If precipitates or settling are visible, the vial should be gently inverted again to ensure complete redispersion prior to use.

Inspect the dispersion in the vial for particulate matter. Do not administer the reconstituted dispersion if particulate matter is observed in the vial.

The exact total dosing volume of 5 mg/ml dispersion required for the patient should be calculated and the appropriate amount of reconstituted Abraxane should be injected into an empty, sterile, PVC or non-PVC type intravenous bag.

The use of medical devices containing silicone oil as a lubricant (i.e. syringes and IV bags) to reconstitute and administer Abraxane may result in the formation of proteinaceous strands. Administer Abraxane using an infusion set incorporating a 15 µm filter to avoid administration of these strands. Use of a 15 µm filter removes strands and does not change the physical or chemical properties of the reconstituted product.

Use of filters with a pore size less than 15 µm may result in blockage of the filter.

The use of specialized DEHP-free solution containers or administration sets is not necessary to prepare or administer Abraxane infusions.

Following administration, it is recommended that the intravenous line be flushed with sodium chloride 9 mg/ml (0.9%) solution for injection to ensure administration of the complete dose.

Any unused product or waste material should be disposed of in accordance with local requirements.

Stability

Unopened vials of Abraxane are stable until the date indicated on the package when the vial is kept in the outer carton in order to protect from light. Neither freezing nor refrigeration adversely affects the stability of the product. This medicinal product does not require any special temperature storage conditions.

Stability of the reconstituted dispersion in the vial

Chemical and physical in-use stability has been demonstrated for 24 hours at 2°C-8°C in the original carton, protected from light.

Stability of the reconstituted dispersion in the infusion bag

Chemical and physical in-use stability has been demonstrated for 24 hours at 2°C-8°C followed by 4 hours at 25°C, protected from light.

However, from a microbiological point of view, unless the method of reconstituting and filling of the infusion bags precludes the risks of microbial contamination, the product should be used immediately after reconstitution and filling of the infusion bags.

If not used immediately, in-use storage times and conditions are the responsibility of the user.

The total combined storage time of reconstituted medicinal product in the vial and in the infusion bag when refrigerated and protected from light is 24 hours. This may be followed by storage in the infusion bag for 4 hours below 25°C.