ANNEX I

SUMMARY OF PRODUCT CHARACTERISTICS
This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions.

1. **NAME OF THE MEDICINAL PRODUCT**

 Kaftrio 37.5 mg/25 mg/50 mg film-coated tablets
 Kaftrio 75 mg/50 mg/100 mg film-coated tablets

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**

 Kaftrio 37.5 mg/25 mg/50 mg film-coated tablets

 Each film-coated tablet contains 37.5 mg of ivacaftor, 25 mg of tezacaftor and 50 mg of elexacaftor.

 Kaftrio 75 mg/50 mg/100 mg film-coated tablets

 Each film-coated tablet contains 75 mg of ivacaftor, 50 mg of tezacaftor and 100 mg of elexacaftor.

 For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**

 Film-coated tablet (tablet)

 Kaftrio 37.5 mg/25 mg/50 mg film-coated tablets

 Light orange, capsule-shaped tablet debossed with “T50” on one side and plain on the other (dimensions 6.4 mm x 12.2 mm).

 Kaftrio 75 mg/50 mg/100 mg film-coated tablets

 Orange, capsule-shaped tablet debossed with “T100” on one side and plain on the other (dimensions 7.9 mm x 15.5 mm).

4. **CLINICAL PARTICULARS**

 4.1 Therapeutic indications

 Kaftrio is indicated in a combination regimen with ivacaftor for the treatment of cystic fibrosis (CF) in patients aged 6 years and older who have at least one F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (see section 5.1).

 4.2 Posology and method of administration

 Kaftrio should only be prescribed by healthcare professionals with experience in the treatment of CF. If the patient’s genotype is unknown, an accurate and validated genotyping method should be performed to confirm the presence of at least one F508del mutation using a genotyping assay (see section 5.1).

 Posology

 Adults and paediatric patients aged 6 years and older should be dosed according to Table 1.
Table 1: Dosing recommendation for patients aged 6 years and older

<table>
<thead>
<tr>
<th>Age</th>
<th>Morning dose</th>
<th>Evening dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 to <12 years weighing <30 kg</td>
<td>Two tablets, each containing ivacaftor 37.5 mg/tezacaftor 25 mg/elexacaftor 50 mg</td>
<td>One tablet containing ivacaftor 75 mg</td>
</tr>
<tr>
<td>6 to <12 years weighing ≥30 kg</td>
<td>Two tablets, each containing ivacaftor 75 mg/tezacaftor 50 mg/elexacaftor 100 mg</td>
<td>One tablet containing ivacaftor 150 mg</td>
</tr>
<tr>
<td>≥12 years</td>
<td>Two tablets, each containing ivacaftor 75 mg/tezacaftor 50 mg/elexacaftor 100 mg</td>
<td>One tablet containing ivacaftor 150 mg</td>
</tr>
</tbody>
</table>

The morning and evening dose should be taken approximately 12 hours apart, with fat-containing food (see Method of administration).

Missed dose
If 6 hours or less have passed since the missed morning or evening dose, the patient should take the missed dose as soon as possible and continue on the original schedule. If more than 6 hours have passed since:
- the missed morning dose, the patient should take the missed dose as soon as possible and should not take the evening dose. The next scheduled morning dose should be taken at the usual time.
- the missed evening dose, the patient should not take the missed dose. The next scheduled morning dose should be taken at the usual time.

Morning and evening doses should not be taken at the same time.

Concomitant use of CYP3A inhibitors
When co-administered with moderate CYP3A inhibitors (e.g., fluconazole, erythromycin, verapamil) or strong CYP3A inhibitors (e.g., ketoconazole, itraconazole, posaconazole, voriconazole, telithromycin, and clarithromycin), the dose should be reduced as in Table 2 (see sections 4.4 and 4.5).

Table 2: Dosing schedule for concomitant use with moderate and strong CYP3A inhibitors

<table>
<thead>
<tr>
<th>Moderate CYP3A inhibitors</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning Dose</td>
<td>Two IVA/TEZ/ELX tablets</td>
<td>One IVA tablet</td>
<td>Two IVA/TEZ/ELX tablets</td>
<td>One IVA tablet</td>
</tr>
<tr>
<td>Evening Dose^</td>
<td>No dose</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Continue dosing with two IVA/TEZ/ELX tablets and one IVA tablet on alternate days.
^ The evening dose of IVA tablet should not be taken.

<table>
<thead>
<tr>
<th>Strong CYP3A inhibitors</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morning Dose</td>
<td>Two IVA/TEZ/ELX tablets</td>
<td>No dose</td>
<td>No dose</td>
<td>Two IVA/TEZ/ELX tablets</td>
</tr>
<tr>
<td>Evening Dose^</td>
<td>No dose</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Continue dosing with two IVA/TEZ/ELX tablets twice a week, approximately 3 to 4 days apart.
^ The evening dose of IVA tablet should not be taken.

Special populations

Elderly population
No dose adjustment is recommended for the elderly patient population (see sections 4.4 and 5.2).

Hepatic impairment
Treatment of patients with moderate hepatic impairment (Child-Pugh Class B) is not recommended. For patients with moderate hepatic impairment, the use of Kaftrio should only be considered when
there is a clear medical need, and the benefits are expected to outweigh the risks. If used, it should be used with caution at a reduced dose (see Table 3).

Studies have not been conducted in patients with severe hepatic impairment (Child-Pugh Class C), but the exposure is expected to be higher than in patients with moderate hepatic impairment. Patients with severe hepatic impairment should not be treated with Kaftrio.

No dose adjustment is recommended for patients with mild (Child-Pugh Class A) hepatic impairment (see Table 3) (see sections 4.4, 4.8 and 5.2).

<table>
<thead>
<tr>
<th>Table 3: Recommendation for use in patients with hepatic impairment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild (Child-Pugh Class A)</td>
</tr>
<tr>
<td>Morning</td>
</tr>
<tr>
<td>Evening</td>
</tr>
</tbody>
</table>

* For patients with moderate hepatic impairment, use of IVA/TEZ/ELX should only be considered when there is a clear medical need, and the benefits are expected to outweigh the risks.

Renal impairment
No dose adjustment is recommended for patients with mild and moderate renal impairment. There is no experience in patients with severe renal impairment or end-stage renal disease (see sections 4.4 and 5.2).

Paediatric population
The safety and efficacy of Kaftrio in combination with ivacaftor in children aged less than 6 years have not yet been established.
No data are available (see section 5.1).

Method of administration
For oral use. Patients should be instructed to swallow the tablets whole. The tablets should not be chewed, crushed, or broken before swallowing because there are no clinical data currently available to support other methods of administration; chewing or crushing the tablet is not recommended.

Kaftrio tablets should be taken with fat-containing food. Examples of meals or snacks that contain fat are those prepared with butter or oils or those containing eggs, cheeses, nuts, whole milk, or meats (see section 5.2).

Food or drink containing grapefruit should be avoided during treatment with Kaftrio (see section 4.5).

4.3 Contraindications
Hypersensitivity to the active substance(s) or to any of the excipients listed in section 6.1.

4.4 Special warnings and precautions for use

Elevated transaminases and hepatic injury
In a patient with cirrhosis and portal hypertension liver failure leading to transplantation has been reported while receiving Ivacaftor/Tezacaftor/Elexacaftor (IVA/TEZ/ELX) in combination with ivacaftor. IVA/TEZ/ELX in combination with IVA should be used with caution in patients with pre-existing advanced liver disease (e.g., cirrhosis, portal hypertension) and only if the benefits are
expected to outweigh the risks. If used in these patients, they should be closely monitored after the initiation of treatment (see sections 4.2, 4.8, and 5.2).

Elevated transaminases are common in patients with CF and have been observed in some patients treated with IVA/TEZ/ELX in combination with IVA. In patients taking IVA/TEZ/ELX in combination with IVA, these elevations have sometimes been associated with concomitant elevations in total bilirubin. Assessments of transaminases (ALT and AST) and total bilirubin are recommended for all patients prior to initiating treatment, every 3 months during the first year of treatment and annually thereafter. For patients with a history of liver disease or transaminase elevations, more frequent monitoring should be considered. In the event of ALT or AST >5 x the upper limit of normal (ULN), or ALT or AST >3 x ULN with bilirubin >2 x ULN, dosing should be interrupted, and laboratory tests closely followed until the abnormalities resolve. Following the resolution of transaminase elevations, the benefits and risks of resuming treatment should be considered (see sections 4.2, 4.8 and 5.2).

Hepatic impairment

Treatment of patients with moderate hepatic impairment is not recommended. For patients with moderate hepatic impairment, the use of IVA/TEZ/ELX should only be considered when there is a clear medical need, and the benefits are expected to outweigh the risks. If used, it should be used with caution at a reduced dose (see Table 3). Patients with severe hepatic impairment should not be treated with IVA/TEZ/ELX (see sections 4.2, 4.8 and 5.2).

Renal impairment

There is no experience in patients with severe renal impairment/end-stage renal disease therefore caution is recommended in this population (see sections 4.2 and 5.2).

Patients after organ transplantation

IVA/TEZ/ELX in combination with IVA has not been studied in patients with CF who have undergone organ transplantation. Therefore, use in transplanted patients is not recommended. See section 4.5 for interactions with commonly used immunosuppressants.

Rash events

The incidence of rash events was higher in females than in males, particularly in females taking hormonal contraceptives. A role for hormonal contraceptives in the occurrence of rash cannot be excluded. For patients taking hormonal contraceptives who develop rash, interrupting treatment with IVA/TEZ/ELX in combination with IVA and hormonal contraceptives should be considered. Following the resolution of rash, it should be considered if resuming IVA/TEZ/ELX in combination with IVA without hormonal contraceptives is appropriate. If rash does not recur, resumption of hormonal contraceptives can be considered (see section 4.8).

Elderly population

Clinical studies of IVA/TEZ/ELX in combination with IVA did not include sufficient number of patients aged 65 years and older to determine whether response in these patients is different from younger adults. Dose recommendations are based on the pharmacokinetic profile and knowledge from studies with tezacaftor/ivacaftor in combination with ivacaftor, and ivacaftor monotherapy (see sections 4.2 and 5.2).
Interactions with medicinal products

CYP3A inducers
Exposure to IVA is significantly decreased and exposures to ELX and TEZ are expected to decrease by the concomitant use of CYP3A inducers, potentially resulting in the reduced efficacy of IVA/TEZ/ELX and IVA; therefore, co-administration with strong CYP3A inducers is not recommended (see section 4.5).

CYP3A inhibitors
Exposures of ELX, TEZ and IVA are increased when co-administered with strong or moderate CYP3A inhibitors. The dose of IVA/TEZ/ELX and IVA should be adjusted when used concomitantly with strong or moderate CYP3A inhibitors (see section 4.5 and Table 2 in section 4.2).

Cataracts
Cases of non-congenital lens opacities without impact on vision have been reported in paediatric patients treated with IVA-containing regimens. Although other risk factors were present in some cases (such as corticosteroid use, exposure to radiation) a possible risk attributable to treatment with IVA cannot be excluded. Baseline and follow-up ophthalmological examinations are recommended in paediatric patients initiating treatment with IVA/TEZ/ELX in combination with IVA (see section 5.3).

Sodium content
This medicinal product contains less than 1 mmol sodium (23 mg) per tablet, that is to say essentially ‘sodium-free’.

4.5 Interaction with other medicinal products and other forms of interaction

Medicinal products affecting the pharmacokinetics of ELX, TEZ and/or IVA

CYP3A inducers
ELX, TEZ and IVA are substrates of CYP3A (IVA is a sensitive substrate of CYP3A). Concomitant use of strong CYP3A inducers may result in reduced exposures and thus reduced IVA/TEZ/ELX efficacy. Co-administration of IVA with rifampicin, a strong CYP3A inducer, significantly decreased IVA area under the curve (AUC) by 89%. ELX and TEZ exposures are also expected to decrease during co-administration with strong CYP3A inducers; therefore, co-administration with strong CYP3A inducers is not recommended (see section 4.4).

Examples of strong CYP3A inducers include:
- rifampicin, rifabutin, phenobarbital, carbamazepine, phenytoin and St. John’s wort *(Hypericum perforatum)*

CYP3A inhibitors
Co-administration with itraconazole, a strong CYP3A inhibitor, increased ELX AUC by 2.8-fold and TEZ AUC by 4.0- to 4.5-fold. When co-administered with itraconazole and ketoconazole, IVA AUC increased by 15.6-fold and 8.5-fold, respectively. The dose of IVA/TEZ/ELX and IVA should be reduced when co-administered with strong CYP3A inhibitors (see Table 2 in section 4.2 and section 4.4).

Examples of strong CYP3A inhibitors include:
- ketoconazole, itraconazole, posaconazole and voriconazole
- telithromycin and clarithromycin

Simulations indicated that co-administration with moderate CYP3A inhibitors fluconazole, erythromycin and verapamil, may increase ELX and TEZ AUC by approximately 1.9- to 2.3-fold. Co-administration of fluconazole increased IVA AUC by 2.9-fold. The dose of IVA/TEZ/ELX and IVA
should be reduced when co-administered with moderate CYP3A inhibitors (see Table 2 in section 4.2 and section 4.4).

Examples of moderate CYP3A inhibitors include:

- fluconazole
- erythromycin

Co-administration with grapefruit juice, which contains one or more components that moderately inhibit CYP3A, may increase exposure of ELX, TEZ and IVA. Food or drink containing grapefruit should be avoided during treatment with IVA/TEZ/ELX and IVA (see section 4.2).

Potential for interaction with transporters

In vitro studies showed that ELX is a substrate for the efflux transporters P-gp and Breast Cancer Resistance Protein (BCRP) but is not a substrate for OATP1B1 or OATP1B3. Exposure to ELX is not expected to be affected significantly by concomitant use of P-gp and BCRP inhibitors due to its high intrinsic permeability and low likelihood of being excreted intact.

In vitro studies showed that TEZ is a substrate for the uptake transporter OATP1B1 and efflux transporters P-gp and BCRP. TEZ is not a substrate for OATP1B3. Exposure to TEZ is not expected to be affected significantly by concomitant inhibitors of OATP1B1, P-gp, or BCRP due to its high intrinsic permeability and low likelihood of being excreted intact. However, exposure to M2-TEZ (TEZ metabolite) may be increased by inhibitors of P-gp. Therefore, caution should be used when P-gp inhibitors (e.g. ciclosporin) are used with IVA/TEZ/ELX.

In vitro studies showed that IVA is not a substrate for OATP1B1, OATP1B3, or P-gp. IVA and its metabolites are substrates of BCRP in vitro. Due to its high intrinsic permeability and low likelihood of being excreted intact, co-administration of BCRP inhibitors is not expected to alter exposure of IVA and M1-IVA, while any potential changes in M6-IVA exposures are not expected to be clinically relevant.

Medicinal products affected by ELX, TEZ and/or IVA

CYP2C9 substrates
IVA may inhibit CYP2C9; therefore, monitoring of the international normalised ratio (INR) during co-administration of warfarin with IVA/TEZ/ELX and IVA is recommended. Other medicinal products for which exposure may be increased include glimepiride and glipizide; these medicinal products should be used with caution.

Potential for interaction with transporters

Co-administration of IVA or TEZ/IVA with digoxin, a sensitive P-gp substrate, increased digoxin AUC by 1.3-fold, consistent with weak inhibition of P-gp by IVA. Administration of IVA/TEZ/ELX and IVA may increase systemic exposure of medicinal products that are sensitive substrates of P-gp, which may increase or prolong their therapeutic effect and adverse reactions. When used concomitantly with digoxin or other substrates of P-gp with a narrow therapeutic index such as ciclosporin, everolimus, sirolimus and tacrolimus, caution and appropriate monitoring should be used.

ELX and M23-ELX inhibit uptake by OATP1B1 and OATP1B3 in vitro. TEZ/IVA increased the AUC of pitavastatin, an OATP1B1 substrate, by 1.2-fold. Co-administration with IVA/TEZ/ELX in combination with IVA may increase exposures of medicinal products that are substrates of these transporters, such as statins, glyburide, nateglinide and repaglinide. When used concomitantly with substrates of OATP1B1 or OATP1B3, caution and appropriate monitoring should be used. Bilirubin is an OATP1B1 and OATP1B3 substrate. In study 445-102, mild increases in mean total bilirubin were observed (up to 4.0 µmol/L change from baseline). This finding is consistent with the in vitro inhibition of bilirubin transporters OATP1B1 and OATP1B3 by ELX and M23-ELX.
ELX and IVA are inhibitors of BCRP. Co-administration of IVA/TEZ/ELX, and IVA may increase exposures of medicinal products that are substrates of BCRP, such as rosuvastatin. When used concomitantly with substrates of BCRP, appropriate monitoring should be used.

Hormonal contraceptives

IVA/TEZ/ELX in combination with IVA has been studied with ethinyl estradiol/levonorgestrel and was found to have no clinically relevant effect on the exposures of the oral contraceptive. IVA/TEZ/ELX and IVA is not expected to have an impact on the efficacy of oral contraceptives.

Paediatric population

Interaction studies have only been performed in adults.

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no or limited amount of data (less than 300 pregnancy outcomes) from the use of ELX, TEZ or IVA in pregnant women. Animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity (see section 5.3). As a precautionary measure, it is preferable to avoid the use of IVA/TEZ/ELX during pregnancy.

Breast-feeding

It is unknown whether ELX, TEZ, IVA, or their metabolites are excreted in human milk. Available pharmacokinetic/toxicological data in animals have shown excretion of ELX, TEZ and IVA into the milk of lactating female rats (see section 5.3). A risk to the newborns/infants cannot be excluded. A decision must be made whether to discontinue breast-feeding or to discontinue/abstain from IVA/TEZ/ELX therapy taking into account the benefit of breast-feeding for the child and the benefit of therapy for the woman.

Fertility

There are no data available on the effect of ELX, TEZ and IVA on fertility in humans. TEZ had no effects on fertility and reproductive performance indices in male and female rats at clinically relevant exposures. ELX and IVA had an effect on fertility in rats (see section 5.3).

4.7 Effects on ability to drive and use machines

IVA/TEZ/ELX in combination with IVA has a minor influence on the ability to drive or use machines. Dizziness has been reported in patients receiving IVA/TEZ/ELX in combination with IVA, TEZ/IVA in combination with IVA as well as IVA (see section 4.8). Patients experiencing dizziness should be advised not to drive or use machines until symptoms abate.

4.8 Undesirable effects

Summary of the safety profile

The most common adverse reactions experienced by patients aged 12 years and older who received IVA/TEZ/ELX in combination with IVA were headache (17.3%), diarrhoea (12.9%) and upper respiratory tract infection (11.9%).

Serious adverse reactions of rash were reported in 3 (1.5%) patients treated with IVA/TEZ/ELX in combination with IVA compared to 1 (0.5%) in placebo.
Tabulated list of adverse reactions

Table 4 reflects adverse reactions observed with IVA/TEZ/ELX in combination with IVA, TEZ/IVA in combination with IVA, and IVA monotherapy. Adverse reactions are listed by MedDRA system organ class and frequency: very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000); not known (cannot be estimated from the available data). Within each frequency grouping, adverse reactions are presented in the order of decreasing seriousness.

<table>
<thead>
<tr>
<th>MedDRA System Organ Class</th>
<th>Adverse Reactions</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Upper respiratory tract infection*, Nasopharyngitis</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Rhinitis*, Influenza*</td>
<td>common</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Hypoglycaemia*</td>
<td>common</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Headache*, Dizziness*</td>
<td>very common</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Ear pain, Ear discomfort, Tinnitus, Tympanic membrane hyperaemia, Vestibular disorder</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Ear congestion</td>
<td>uncommon</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Oropharyngeal pain, Nasal congestion*</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Rhinorrhoea*, Sinus congestion, Pharyngeal erythema, Abnormal breathing*</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Wheezing*</td>
<td>uncommon</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhoea*, Abdominal pain*</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Nausea, Abdominal pain upper*, Flatusulence*</td>
<td>common</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>Transaminase elevations</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Alanine aminotransferase increased*, Aspartate aminotransferase increased*</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Liver injury‡</td>
<td>not known</td>
</tr>
<tr>
<td></td>
<td>Total bilirubin elevations‡</td>
<td>not known</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Rash*</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Acne*, Pruritus*</td>
<td>common</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td>Breast mass</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Breast inflammation, Gynaecomastia, Nipple disorder, Nipple pain</td>
<td>uncommon</td>
</tr>
<tr>
<td>Investigations</td>
<td>Bacteria in sputum</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Blood creatine phosphokinase increased*</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Blood pressure increased*</td>
<td>uncommon</td>
</tr>
</tbody>
</table>

*Adverse reactions observed during clinical studies with IVA/TEZ/ELX in combination with IVA.
‡Liver injury (ALT and AST and total bilirubin elevations) reported from post-marketing data with IVA/TEZ/ELX in combination with IVA. This also included liver failure leading to transplantation in a patient with pre-existing cirrhosis and portal hypertension. Frequency cannot be estimated from the available data.

Safety data from the following studies were consistent with the safety data observed in study 445-102.
- A 4-week, randomised, double-blind, active-controlled study in 107 patients (study 445-103).
- A 96-week, open-label safety and efficacy study (study 445-105) for patients rolled over from studies 445-102 and 445-103, with interim analysis performed on 510 patients including 271 patients with ≥48 weeks of cumulative treatment with IVA/TEZ/ELX in combination with IVA.
- An 8-week, randomised, double-blind, active-controlled study in 258 patients (study 445-104)
- A 24-week, open-label study (study 445-106) in 66 patients aged 6 to less than 12 years.
- A 24-week, randomised, placebo-controlled study (study 445-116) in 121 patients aged 6 to less than 12 years.

Description of selected adverse reactions

Transaminase elevations
In study 445-102, the incidence of maximum transaminase (ALT or AST) >8, >5, or >3 x the ULN was 1.5%, 2.5% and 7.9% in IVA/TEZ/ELX-treated patients and 1.0%, 1.5% and 5.5% in placebo-treated patients. The incidence of adverse reactions of transaminase elevations was 10.9% in IVA/TEZ/ELX-treated patients and 4.0% in placebo-treated patients.

Post marketing cases of treatment discontinuation due to elevated transaminases have been reported (see section 4.4).

Rash events
In study 445-102, the incidence of rash events (e.g., rash, rash pruritic) was 10.9% in IVA/TEZ/ELX- and 6.5% in placebo-treated patients. The rash events were generally mild to moderate in severity. The incidence of rash events by patient sex was 5.8% in males and 16.3% in females in IVA/TEZ/ELX-treated patients and 4.8% in males and 8.3% in females in placebo-treated patients. In patients treated with IVA/TEZ/ELX, the incidence of rash events was 20.5% in females taking hormonal contraceptive and 13.6% in females not taking hormonal contraceptive (see section 4.4).

Increased creatine phosphokinase
In study 445-102, the incidence of maximum creatine phosphokinase >5 x the ULN was 10.4% in IVA/TEZ/ELX- and 5.0% in placebo-treated patients. The observed creatine phosphokinase elevations were generally transient and asymptomatic and many were preceded by exercise. No IVA/TEZ/ELX-treated patients discontinued treatment for increased creatine phosphokinase.

Increased blood pressure
In study 445-102, the maximum increase from baseline in mean systolic and diastolic blood pressure was 3.5 mmHg and 1.9 mmHg, respectively for IVA/TEZ/ELX-treated patients (baseline: 113 mmHg systolic and 69 mmHg diastolic) and 0.9 mmHg and 0.5 mmHg, respectively for placebo-treated patients (baseline: 114 mmHg systolic and 70 mmHg diastolic).

The proportion of patients who had systolic blood pressure >140 mmHg or diastolic blood pressure >90 mmHg on at least two occasions was 5.0% and 3.0%, respectively in IVA/TEZ/ELX-treated patients compared with 3.5% and 3.5%, respectively in placebo-treated patients.

Paediatric population
The safety data of IVA/TEZ/ELX in combination with IVA in studies 102, 103, 104 and 106 was evaluated in 138 patients between 6 to less than 18 years of age. The safety profile is generally consistent among adolescents and adult patients.

During study 445-106 in patients aged 6 to less than 12 years, the incidence of maximum transaminase (ALT or AST) >8, >5, and >3 x ULN were 0%, 1.5%, and 10.6%, respectively. No IVA/TEZ/ELX-treated patients had transaminase elevation >3 x ULN associated with elevated total bilirubin >2 x ULN or discontinued treatment due to transaminase elevations (see section 4.4).

Other special populations
With the exception of sex differences in rash, the safety profile of IVA/TEZ/ELX in combination with IVA was generally similar across all subgroups of patients, including analysis by age, baseline percent predicted forced expiratory volume in one second (ppFEV1) and geographic regions.
Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

No specific antidote is available for overdose with IVA/TEZ/ELX. Treatment of overdose consists of general supportive measures including monitoring of vital signs and observation of the clinical status of the patient.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Other respiratory system products, ATC code: R07AX32

Mechanism of action

ELX and TEZ are CFTR correctors that bind to different sites on the CFTR protein and have an additive effect in facilitating the cellular processing and trafficking of F508del-CFTR to increase the amount of CFTR protein delivered to the cell surface compared to either molecule alone. IVA potentiates the channel open probability (or gating) of the CFTR protein at the cell surface.

The combined effect of ELX, TEZ and IVA is increased quantity and function of F508del-CFTR at the cell surface, resulting in increased CFTR activity as measured by CFTR mediated chloride transport. With regard to non-F508del CFTR variants on the second allele, it is not clear whether and to what extent the combination of ELX, TEZ and IVA also increases the amount of these mutated CFTR variants on the cell surface and potentiates its channel open probability (or gating).

Pharmacodynamic effects

Effects on sweat chloride
In study 445-102 (patients with an F508del mutation on one allele and a mutation on the second allele that predicts either no production of a CFTR protein or a CFTR protein that does not transport chloride and is not responsive to other CFTR modulators [IVA and TEZ/IVA] in vitro), a reduction in sweat chloride was observed from baseline at week 4 and sustained through the 24-week treatment period. The treatment difference of IVA/TEZ/ELX in combination with IVA compared to placebo for mean absolute change in sweat chloride from baseline through week 24 was -41.8 mmol/L (95% CI: -44.4, -39.3; \(P < 0.0001 \)).

In study 445-103 (patients homozygous for the F508del mutation), the treatment difference of IVA/TEZ/ELX in combination with IVA compared to TEZ/IVA in combination with IVA for mean absolute change in sweat chloride from baseline at week 4 was -45.1 mmol/L (95% CI: -50.1, -40.1; \(P < 0.0001 \)).

In Study 445-104 (patients heterozygous for the F508del mutation and a mutation on the second allele with a gating defect or residual CFTR activity), the mean absolute change in sweat chloride from baseline through week 8 for the IVA/TEZ/ELX in combination with IVA group was -22.3 mmol/L (95% CI: -24.5, -20.2; \(P < 0.0001 \)). The treatment difference of IVA/TEZ/ELX in combination with IVA compared to the control group (IVA group or TEZ/IVA in combination with IVA group) was -23.1 mmol/L (95% CI: -26.1, -20.1; \(P < 0.0001 \)).
In study 445-106 (patients aged 6 to less than 12 years who are homozygous for the \textit{F508del} mutation or heterozygous for the \textit{F508del} mutation and a minimal function mutation), the mean absolute change in sweat chloride from baseline (n=62) through week 24 (n=60) was -60.9 mmol/L (95% CI: -63.7, -58.2)*. The mean absolute change in sweat chloride from baseline through week 12 (n=59) was -58.6 mmol/L (95% CI: -61.1, -56.1).

* Not all participants included in the analyses had data available for all follow-up visits, especially from week 16 onwards. The ability to collect data at week 24 was hampered by the COVID-19 pandemic. Week 12 data were less impacted by the pandemic.

In study 445-116 (patients aged 6 to less than 12 years who are heterozygous for the \textit{F508del} mutation and a minimal function mutation), treatment with IVA/TEZ/ELX in combination with IVA resulted in reduction in sweat chloride through week 24, as compared to placebo. The LS mean treatment difference for the IVA/TEZ/ELX in combination with IVA group versus placebo for absolute change in sweat chloride from baseline through week 24 was -51.2 mmol/L (95% CI: -55.3, -47.1; nominal \(P<0.0001\)).

Cardiovascular effects

Effect on QT interval

At doses up to 2 times the maximum recommended dose of ELX and 3 times the maximum recommended dose of TEZ and IVA, the QT/QTc interval in healthy subjects was not prolonged to any clinically relevant extent.

Heart rate

In study 445-102, mean decreases in heart rate of 3.7 to 5.8 beats per minute (bpm) from baseline (76 bpm) were observed in IVA/TEZ/ELX-treated patients.

Clinical efficacy and safety

The efficacy of IVA/TEZ/ELX in combination with IVA in patients with CF was demonstrated in three Phase 3 studies. Patients enrolled in these studies were homozygous for the \textit{F508del} mutation or heterozygous for the \textit{F508del} mutation and a mutation with minimal function (MF), a gating defect, or residual CFTR activity on the second allele. Not all \textit{F508del} heterozygotes have been clinically evaluated with IVA/TEZ/ELX in combination with IVA.

Study 445-102 was a 24-week, randomised, double-blind, placebo-controlled study in patients who had an \textit{F508del} mutation on one allele and an MF mutation on the second allele. CF patients eligible for this study were required to either have Class I mutations that predicted no CFTR protein being produced (including nonsense mutations, canonical splice mutations and insertion/deletion frameshift mutations both small (\(\leq 3\) nucleotide) and non-small (>3 nucleotide)), or missense mutations which results in CFTR protein that does not transport chloride and is not responsive to IVA and TEZ/IVA \textit{in vitro}. The most frequent alleles with minimal function assessed in the study were \textit{G542X, W1282X, R553X, and R1162X; 621+1G→T, 1717-1G→A, and 1898+1G→A; 3659delC, and 394delTT; CFTRdele2,3; and N1303K, I507del, G85E, R347P, and R560T}. A total of 403 patients aged 12 years and older (mean age 26.2 years) were randomised and dosed to receive placebo or IVA/TEZ/ELX in combination with IVA. Patients had a ppFEV1 at screening between 40-90%. The mean ppFEV1 at baseline was 61.4% (range: 32.3%, 97.1%).

Study 445-103 was a 4-week, randomised, double-blind, active-controlled study in patients who were homozygous for the \textit{F508del} mutation. A total of 107 patients aged 12 years and older (mean age 28.4 years) received TEZ/IVA in combination with IVA during a 4-week open-label run-in period and were then randomised and dosed to receive either IVA/TEZ/ELX in combination with IVA or TEZ/IVA in combination with IVA during a 4-week double-blind treatment period. Patients had a ppFEV1 at screening between 40-90%. The mean ppFEV1 at baseline, following the run-in period was 60.9% (range: 35.0%, 89.0%).
Study 445-104 was an 8-week, randomised, double-blind, active-controlled study in patients who were heterozygous for the F508del mutation and a mutation on the second allele with a gating defect (Gating) or residual CFTR activity (RF). A total of 258 patients aged 12 years and older (mean age 37.7 years) received either IVA (F/Gating) or TEZ/IVA in combination with IVA (F/RF) during a 4-week open-label run-in period, and were then randomised and dosed to receive either IVA/TEZ/ELX in combination with IVA or remained on the CFTR modulator therapy received during the run-in period. Patients with the F/R117H genotype received IVA during the run-in period. The mean ppFEV1 at baseline, following the run-in period, was 67.6% (range: 29.7%, 113.5%).

Study 445-106 was a 24-week open-label study in 66 patients aged 6 to less than 12 years (mean age at baseline 9.3 years) who are homozygous for the F508del mutation and a minimal function mutation. Patients weighing <30 kg at baseline were administered two IVA 37.5 mg/TEZ 25 mg/ELX 50 mg tablets in the morning and one IVA 75 mg tablet in the evening. Patients weighing ≥30 kg at baseline were administered two IVA 75 mg/TEZ 50 mg/ELX 100 mg tablets in the morning and one IVA 150 mg tablet in the evening. Patients had a screening ppFEV1 ≥40% [mean ppFEV1 at baseline of 88.8% (range: 39.0%, 127.1%)] and weighed ≥15 kg. Patients in these studies continued on their CF therapies (e.g., bronchodilators, inhaled antibiotics, dornase alfa and hypertonic saline), but discontinued any previous CFTR modulator therapies, except for study medicinal products. Patients had a confirmed diagnosis of CF.

Patients who had lung infection with organisms associated with a more rapid decline in pulmonary status, including but not limited to Burkholderia cenocepacia, Burkholderia dolosa, or Mycobacterium abscessus, or who had an abnormal liver function test at screening (ALT, AST, ALP, or GGT ≥3 x ULN, or total bilirubin ≥2 x ULN), were excluded. Patients in studies 445-102 and 445-103 were eligible to roll over into a 96-week open-label extension study (Study 445-105). Patients in studies 445-104, 445-106, and 445-116 were eligible to roll over into separate open-label extension studies.

Study 445-102
In study 445-102 the primary endpoint was mean absolute change in ppFEV1 from baseline through week 24. Treatment with IVA/TEZ/ELX in combination with IVA compared to placebo resulted in statistically significant improvement in ppFEV1 of 14.3 percentage points (95% CI: 12.7, 15.8; P<0.0001) (Table 5). Mean improvement in ppFEV1 was observed at the first assessment on Day 15 and sustained through the 24-week treatment period. Improvements in ppFEV1 were observed regardless of age, baseline ppFEV1, sex, and geographic region. A total of 18 patients receiving IVA/TEZ/ELX in combination with IVA had ppFEV1 <40 percentage points at baseline. The safety and efficacy in this subgroup were consistent to those observed in the overall population. The mean treatment difference of IVA/TEZ/ELX in combination with IVA- compared to placebo-treated patients for absolute change in ppFEV1 through week 24 in this subgroup was 18.4 percentage points (95% CI: 11.5, 25.3).

See Table 5 for a summary of primary and key secondary outcomes.
Table 5: Primary and key secondary efficacy analyses, full analysis set (study 445-102)

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Statistic</th>
<th>Placebo N=203</th>
<th>IVA/TEZ/ELX in combination with IVA N=200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline ppFEV₁</td>
<td>Mean (SD)</td>
<td>61.3 (15.5)</td>
<td>61.6 (15.0)</td>
</tr>
<tr>
<td>Absolute change in ppFEV₁ from baseline</td>
<td>Treatment difference (95% CI)</td>
<td>NA</td>
<td>14.3 (12.7, 15.8)</td>
</tr>
<tr>
<td>through week 24 (percentage points)</td>
<td>P value</td>
<td>NA</td>
<td>P<0.0001</td>
</tr>
<tr>
<td></td>
<td>Within-group change (SE)</td>
<td>-0.4 (0.5)</td>
<td>13.9 (0.6)</td>
</tr>
<tr>
<td>Key Secondary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute change in ppFEV₁ from baseline</td>
<td>Treatment difference (95% CI)</td>
<td>NA</td>
<td>13.7 (12.0, 15.3)</td>
</tr>
<tr>
<td>at week 4 (percentage points)</td>
<td>P value</td>
<td>NA</td>
<td>P<0.0001</td>
</tr>
<tr>
<td></td>
<td>Within-group change (SE)</td>
<td>-0.2 (0.6)</td>
<td>13.5 (0.6)</td>
</tr>
<tr>
<td>Number of pulmonary exacerbations from baseline</td>
<td>Number of events (event rate per year ‡)</td>
<td>113 (0.98)</td>
<td>41 (0.37)</td>
</tr>
<tr>
<td>through week 24</td>
<td>Rate ratio (95% CI)</td>
<td>NA</td>
<td>0.37 (0.25, 0.55)</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td></td>
<td>P<0.0001</td>
</tr>
<tr>
<td>Baseline sweat chloride (mmol/L)</td>
<td>Mean (SD)</td>
<td>102.9 (9.8)</td>
<td>102.3 (11.9)</td>
</tr>
<tr>
<td>Absolute change in sweat chloride</td>
<td>Treatment difference (95% CI)</td>
<td>NA</td>
<td>-41.8 (-44.4, -39.3)</td>
</tr>
<tr>
<td>from baseline through week 24 (mmol/L)</td>
<td>P value</td>
<td>NA</td>
<td>P<0.0001</td>
</tr>
<tr>
<td></td>
<td>Within-group change (SE)</td>
<td>-0.4 (0.9)</td>
<td>-42.2 (0.9)</td>
</tr>
<tr>
<td>Absolute change in sweat chloride</td>
<td>Treatment difference (95% CI)</td>
<td>NA</td>
<td>-41.2 (-44.0, -38.5)</td>
</tr>
<tr>
<td>from baseline at week 4 (mmol/L)</td>
<td>P value</td>
<td>NA</td>
<td>P<0.0001</td>
</tr>
<tr>
<td></td>
<td>Within-group change (SE)</td>
<td>0.1 (1.0)</td>
<td>-41.2 (1.0)</td>
</tr>
<tr>
<td>Baseline CFQ-R respiratory domain score (points)</td>
<td>Mean (SD)</td>
<td>70.0 (17.8)</td>
<td>68.3 (16.9)</td>
</tr>
<tr>
<td>Absolute change in CFQ-R respiratory</td>
<td>Treatment difference (95% CI)</td>
<td>NA</td>
<td>20.2 (17.5, 23.0)</td>
</tr>
<tr>
<td>domain score from baseline through week 24</td>
<td>P value</td>
<td>NA</td>
<td>P<0.0001</td>
</tr>
<tr>
<td>(points)</td>
<td>Within-group change (SE)</td>
<td>-2.7 (1.0)</td>
<td>17.5 (1.0)</td>
</tr>
<tr>
<td>Absolute change in CFQ-R respiratory</td>
<td>Treatment difference (95% CI)</td>
<td>NA</td>
<td>20.1 (16.9, 23.2)</td>
</tr>
<tr>
<td>domain score from baseline at week 4 (points)</td>
<td>P value</td>
<td>NA</td>
<td>P<0.0001</td>
</tr>
<tr>
<td></td>
<td>Within-group change (SE)</td>
<td>-1.9 (1.1)</td>
<td>18.1 (1.1)</td>
</tr>
<tr>
<td>Baseline BMI (kg/m²)</td>
<td>Mean (SD)</td>
<td>21.31 (3.14)</td>
<td>21.49 (3.07)</td>
</tr>
<tr>
<td>Absolute change in BMI from baseline</td>
<td>Treatment difference (95% CI)</td>
<td>NA</td>
<td>1.04 (0.85, 1.23)</td>
</tr>
<tr>
<td>at week 24 (kg/m²)</td>
<td>P value</td>
<td>NA</td>
<td>P<0.0001</td>
</tr>
<tr>
<td></td>
<td>Within-group change (SE)</td>
<td>0.09 (0.07)</td>
<td>1.13 (0.07)</td>
</tr>
</tbody>
</table>

ppFEV₁: percent predicted forced expiratory volume in 1 second; CI: confidence interval; SD: Standard Deviation; SE: Standard Error; NA: not applicable; CFQ-R: Cystic Fibrosis Questionnaire-Revised; BMI: body mass index.
‡ A pulmonary exacerbation was defined as a change in antibiotic therapy (IV, inhaled, or oral) as a result of 4 or more of 12 pre-specified sino-pulmonary signs/symptoms.
‡‡ Estimated event rate per year was calculated based on 48 weeks per year.

Study 445-103
In study 445-103 the primary endpoint was mean absolute change in ppFEV₁ from baseline at week 4 of the double-blind treatment period. Treatment with IVA/TEZ/ELX in combination with IVA compared to TEZ/IVA in combination with IVA resulted in a statistically significant improvement in ppFEV₁ of 10.0 percentage points (95% CI: 7.4, 12.6; P<0.0001) (Table 6). Improvements in ppFEV₁ were observed regardless of age, sex, baseline ppFEV₁ geographic region.

See Table 6 for a summary of primary and key secondary outcomes in the overall trial population.
In a post hoc analysis of patients with (N=66) and without (N=41) recent CFTR modulator use, an improvement in ppFEV$_1$ of 7.8 percentage points (95% CI: 4.8, 10.8) and 13.2 percentage points (95% CI: 8.5, 17.9), respectively was observed.

<p>| Table 6: Primary and key secondary efficacy analyses, full analysis set (study 445-103) |</p>
<table>
<thead>
<tr>
<th>Analysis*</th>
<th>Statistic</th>
<th>TEZ/IVA in combination with IVA N=52</th>
<th>IVA/TEZ/ELX in combination with IVA N=55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline ppFEV$_1$</td>
<td>Mean (SD)</td>
<td>60.2 (14.4)</td>
<td>61.6 (15.4)</td>
</tr>
<tr>
<td>Absolute change in ppFEV$_1$ from baseline at week 4 (percentage points)</td>
<td>Treatment difference (95% CI)</td>
<td>NA</td>
<td>10.0 (7.4, 12.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P value</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Within-group change (SE)</td>
<td>0.4 (0.9)</td>
</tr>
<tr>
<td>Key secondary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline sweat chloride (mmol/L)</td>
<td>Mean (SD)</td>
<td>90.0 (12.3)</td>
<td>91.4 (11.0)</td>
</tr>
<tr>
<td>Absolute change in sweat chloride from baseline at week 4 (mmol/L)</td>
<td>Treatment difference (95% CI)</td>
<td>NA</td>
<td>-45.1 (-50.1, -40.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P value</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Within-group change (SE)</td>
<td>1.7 (1.8)</td>
</tr>
<tr>
<td>Baseline CFQ-R respiratory domain score (points)</td>
<td>Mean (SD)</td>
<td>72.6 (17.9)</td>
<td>70.6 (16.2)</td>
</tr>
<tr>
<td>Absolute change in CFQ-R respiratory domain score from baseline at week 4 (points)</td>
<td>Treatment difference (95% CI)</td>
<td>NA</td>
<td>17.4 (11.8, 23.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P value</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Within-group change (SE)</td>
<td>-1.4 (2.0)</td>
</tr>
</tbody>
</table>

ppFEV$_1$: percent predicted forced expiratory volume in 1 second; CI: confidence interval; SD: Standard Deviation; SE: Standard Error; NA: not applicable; CFQ-R: Cystic Fibrosis Questionnaire-Revised.

* Baseline for primary and key secondary endpoints is defined as the end of the 4-week run-in period of TEZ/IVA in combination with IVA.

Study 445-104
In study 445-104 the primary endpoint was within-group mean absolute change in ppFEV$_1$ from baseline through week 8 for the IVA/TEZ/ELX in combination with IVA group. Treatment with IVA/TEZ/ELX in combination with IVA resulted in statistically significant improvement in ppFEV$_1$ from baseline of 3.7 percentage points (95% CI: 2.8, 4.6; $P<0.0001$) (see Table 7). Overall improvements in ppFEV$_1$ were observed regardless of age, sex, baseline ppFEV$_1$ geographic region, and genotype groups (F/Gating or F/RF).

See Table 7 for a summary of primary and secondary outcomes in the overall trial population.

In a subgroup analysis of patients with an F/Gating genotype, the treatment difference of IVA/TEZ/ELX in combination with IVA (N=50) compared with IVA (N=45) for mean absolute change in ppFEV$_1$ was 5.8 percentage points (95% CI: 3.5, 8.0). In a subgroup analysis of patients with an F/RF genotype, the treatment difference of IVA/TEZ/ELX in combination with IVA (N=82) compared with TEZ/IVA in combination with IVA (N=81) for mean absolute change in ppFEV$_1$ was 2.0 percentage points (95% CI: 0.5, 3.4). The results of the F/Gating and the F/RF genotype subgroups for improvement in sweat chloride and CFQ-R respiratory domain score were consistent with the overall results.
Table 7: Primary and secondary efficacy analyses, full analysis set (study 445-104)

<table>
<thead>
<tr>
<th>Analysis*</th>
<th>Statistic</th>
<th>Control group*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IVA/TEZ/ELX in combination with IVA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N=126</td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline ppFEV₁</td>
<td>Mean (SD)</td>
<td>68.1 (16.4)</td>
</tr>
<tr>
<td>Absolute change in ppFEV₁ from baseline through week 8 (percentage points)</td>
<td>Within-group change (95% CI)</td>
<td>0.2 (-0.7, 1.1)</td>
</tr>
<tr>
<td>Absolute change in sweat chloride from baseline through week 8 (mmol/L)</td>
<td>Within-group change (95% CI)</td>
<td>0.7 (-1.4, 2.8)</td>
</tr>
<tr>
<td>Absolute change in CFQ-R respiratory domain score from baseline through week 8 (points)</td>
<td>Within-group change (95% CI)</td>
<td>1.6 (-0.8, 4.1)</td>
</tr>
<tr>
<td>Absolute change in CFQ-R respiratory domain score from baseline through week 8 (points) compared to the control group</td>
<td>Treatment difference (95% CI)</td>
<td>NA</td>
</tr>
</tbody>
</table>

Key and other secondary

Absolute change in ppFEV₁ from baseline through week 8 compared to the control group (percentage points)	Treatment difference (95% CI)	NA	3.5 (2.2, 4.7)
Baseline sweat chloride (mmol/L)	Mean (SD)	56.4 (25.5)	59.5 (27.0)
Absolute change in sweat chloride from baseline through week 8 (mmol/L)	Within-group change (95% CI)	0.7 (-1.4, 2.8)	NA
Absolute change in sweat chloride from baseline through week 8 compared to the control group (mmol/L)	Treatment difference (95% CI)	NA	-23.1 (-26.1, -20.1)
Absolute change in sweat chloride from baseline through week 8 compared to the control group (mmol/L)	Treatment difference (95% CI)	NA	-23.1 (-26.1, -20.1)
Baseline CFQ-R respiratory domain score (points)	Mean (SD)	77.3 (15.8)	76.5 (16.6)
Absolute change in CFQ-R respiratory domain score from baseline through week 8 (points)	Within-group change (95% CI)	1.6 (-0.8, 4.1)	10.3 (8.0, 12.7)
Absolute change in CFQ-R respiratory domain score from baseline through week 8 (points) compared to the control group	Treatment difference (95% CI)	NA	8.7 (5.3, 12.1)

ppFEV₁: percent predicted forced expiratory volume in 1 second; CI: confidence interval; SD: Standard Deviation; NA: not applicable; CFQ-R: Cystic Fibrosis Questionnaire-Revised.

* Baseline for primary and secondary endpoints is defined as the end of the 4-week run-in period of IVA or TEZ/IVA in combination with IVA.

IVA group or TEZ/IVA in combination with IVA group.

Study 445-105

An ongoing, 96-week open-label extension study to evaluate the safety and efficacy of long-term treatment with IVA/TEZ/ELX in combination with IVA is being conducted in patients who rolled over from studies 445-102 and 445-103. In this open-label extension study all patients received IVA/TEZ/ELX in combination with IVA. For patients who rolled over from studies 445-102 (N=400) and 445-103 (N=107), an interim efficacy analysis was conducted when they completed the week 24 visit of study 445-105.

Patients homozygous for the F508del mutation who received IVA/TEZ/ELX in combination with IVA in study 445-103, and continued on the same treatment in study 445-105, showed sustained improvements in ppFEV₁, CFQ-R respiratory domain score, and sweat chloride, through 28 weeks of cumulative treatment (i.e., through week 24 in study 445-105). The outcomes of annualised pulmonary exacerbation event rate through 28 weeks of cumulative treatment (i.e., through week 24 in study 445-105), and BMI and BMI-z score at 28 weeks of cumulative treatment (at week 24 in study 445-105), were consistent with those seen in patients with the genotypes studied in study 445-102.
Paediatric population

Paediatric patients aged 6 to <12 years

Study 445-106
In study 445-106 the primary endpoint of safety and tolerability was evaluated through 24 weeks. Secondary endpoints were evaluation of pharmacokinetics and efficacy.

See Table 8 for a summary of secondary efficacy outcomes.

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Baseline Mean (SD)</th>
<th>Absolute change through Week 12</th>
<th>Absolute change through Week 24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=62</td>
<td>n=59</td>
<td>n=59</td>
</tr>
<tr>
<td>ppFEV₁ (percentage points)</td>
<td>88.8 (17.7)</td>
<td>9.6 (7.3, 11.9)</td>
<td>10.2 (7.9, 12.6)</td>
</tr>
<tr>
<td></td>
<td>n=65</td>
<td>n=58</td>
<td>n=65</td>
</tr>
<tr>
<td>CFQ-R Respiratory Domain score (points)</td>
<td>80.3 (15.2)</td>
<td>5.6 (2.9, 8.2)</td>
<td>7.0 (4.7, 9.2)</td>
</tr>
<tr>
<td>BMI-for-age z-score</td>
<td>n=66</td>
<td>-0.16 (0.74)</td>
<td>0.22 (0.13, 0.30)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n=58</td>
<td>0.37 (0.26, 0.48)</td>
</tr>
<tr>
<td>Weight-for-age z-score</td>
<td>n=66</td>
<td>-0.22 (0.76)</td>
<td>0.13 (0.07, 0.18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n=58</td>
<td>0.25 (0.16, 0.33)</td>
</tr>
<tr>
<td>Height-for-age z-score</td>
<td>n=66</td>
<td>-0.11 (0.98)</td>
<td>-0.03 (-0.06, 0.00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n=58</td>
<td>-0.05 (-0.12, 0.01)</td>
</tr>
<tr>
<td>Number of pulmonary exacerbations‡</td>
<td>N/A</td>
<td>N/A</td>
<td>n=66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 (0.12)††</td>
</tr>
<tr>
<td>LCI₂₅</td>
<td>n=53</td>
<td>-1.83 (-2.18, -1.49)</td>
<td>n=50</td>
</tr>
<tr>
<td></td>
<td>9.77 (2.68)</td>
<td></td>
<td>-1.71 (-2.11, -1.30)</td>
</tr>
</tbody>
</table>

SD: Standard Deviation; CI: confidence interval; ppFEV₁: percent predicted forced expiratory volume in 1 second; CFQ-R: Cystic Fibrosis Questionnaire-Revised; BMI: Body Mass Index; N/A: Not applicable; LCI: Lung Clearance Index.

‡ A pulmonary exacerbation was defined as a change in antibiotic therapy (IV, inhaled, or oral) as a result of 4 or more of 12 pre-specified sino-pulmonary signs/symptoms.

†† Number of events and estimated event rate per year based on 48 weeks per year.

At week 12 assessment.

± At week 24 assessment.

** Not all participants included in the analyses had data available for all follow-up visits, especially from week 16 onwards. The ability to collect data at week 24 was hampered by the COVID-19 pandemic. Week 12 data were less impacted by the pandemic.

Study 445-116
In study 445-116, treatment with IVA/TEZ/ELX in combination with IVA resulted in statistically significant improvement through 24 weeks in the primary endpoint (LCI₂₅). The LS mean treatment difference for the IVA/TEZ/ELX in combination with IVA group versus placebo for the absolute change in LCI₂₅ from baseline through week 24 was -2.26 (95% CI: -2.71, -1.81; P<0.0001).

The European Medicines Agency has deferred the obligation to submit the results of studies with IVA/TEZ/ELX in combination with IVA in one or more subset of the paediatric population in cystic fibrosis (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

The pharmacokinetics of ELX, TEZ and IVA are similar between healthy adult subjects and patients with CF. Following initiation of once-daily dosing of ELX and TEZ and twice-daily dosing of IVA, plasma concentrations of ELX, TEZ and IVA reach steady state within approximately 7 days for ELX,
within 8 days for TEZ, and within 3-5 days for IVA. Upon dosing IVA/TEZ/ELX to steady state, the accumulation ratio is approximately 3.6 for ELX, 2.8 for TEZ and 4.7 for IVA. Key pharmacokinetic parameters for ELX, TEZ and IVA at steady state in patients with CF aged 12 years and older are shown in Table 9.

<table>
<thead>
<tr>
<th>Dose</th>
<th>Active Substance</th>
<th>C_{max} (mcg/mL)</th>
<th>AUC${0-24h, \text{ss}}$ or AUC${0-12h, \text{ss}}$ (mcg∙h/mL)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVA 150 mg every 12 hours/TEZ 100 mg and ELX 200 mg once daily</td>
<td>ELX</td>
<td>9.15 (2.09)</td>
<td>162 (47.5)</td>
</tr>
<tr>
<td></td>
<td>TEZ</td>
<td>7.67 (1.68)</td>
<td>89.3 (23.2)</td>
</tr>
<tr>
<td></td>
<td>IVA</td>
<td>1.24 (0.34)</td>
<td>11.7 (4.01)</td>
</tr>
</tbody>
</table>

* AUC$_{0-24h}$ for ELX and TEZ and AUC$_{0-12h}$ for IVA
SD: Standard Deviation; C_{max}: maximum observed concentration; AUC$_{\text{ss}}$: area under the concentration versus time curve at steady state.

Absorption

The absolute bioavailability of ELX when administered orally in the fed state is approximately 80%. ELX is absorbed with a median (range) time to maximum concentration (t_{max}) of approximately 6 hours (4 to 12 hours) while the median (range) t_{max} of TEZ and IVA is approximately 3 hours (2 to 4 hours) and 4 (3 to 6 hours), respectively. ELX exposure (AUC) increases approximately 1.9- to 2.5-fold when administered with a moderate-fat meal relative to fasted conditions. IVA exposure increases approximately 2.5- to 4-fold when administered with fat-containing meals relative to fasted conditions, while food has no effect on the exposure of TEZ (see section 4.2).

Distribution

ELX is >99% bound to plasma proteins and TEZ is approximately 99% bound to plasma proteins, in both cases primarily to albumin. IVA is approximately 99% bound to plasma proteins, primarily to albumin, and also to alpha 1-acid glycoprotein and human gamma-globulin. After oral administration of IVA/TEZ/ELX in combination with IVA, the mean (±SD) apparent volume of distribution of ELX, TEZ and IVA was 53.7 L (17.7), 82.0 L (22.3) and 293 L (89.8), respectively. ELX, TEZ and IVA do not partition preferentially into human red blood cells.

Biotransformation

ELX is metabolized extensively in humans, mainly by CYP3A4/5. Following oral administration of a single dose of 200 mg 14C-ELX to healthy male subjects, M23-ELX was the only major circulating metabolite. M23-ELX has similar potency to ELX and is considered pharmacologically active.

TEZ is metabolized extensively in humans, mainly by CYP3A4/5. Following oral administration of a single dose of 100 mg 14C-TEZ to healthy male subjects, M1-TEZ, M2-TEZ and M5-TEZ were the 3 major circulating metabolites of TEZ in humans. M1-TEZ has similar potency to that of TEZ and is considered pharmacologically active. M2-TEZ is much less pharmacologically active than TEZ or M1-TEZ and M5-TEZ is not considered pharmacologically active. Another minor circulating metabolite, M3-TEZ, is formed by direct glucuronidation of TEZ.

IVA is also metabolized extensively in humans. In vitro and in vivo data indicate that IVA is metabolized primarily by CYP3A4/5. M1-IVA and M6-IVA are the two major metabolites of IVA in humans. M1-IVA has approximately one-sixth the potency of IVA and is considered pharmacologically active. M6-IVA is not considered pharmacologically active.
The effect of the CYP3A4*22 heterozygous genotype on TEZ, IVA and ELX exposure is consistent with the effect of co-administration of a weak CYP3A4 inhibitor, which is not clinically relevant. No dose-adjustment of TEZ, IVA or ELX is considered necessary. The effect in CYP3A4*22 homozygous genotype patients is expected to be stronger. However, no data are available for such patients.

Elimination

Following multiple dosing in the fed state, the mean (±SD) apparent clearance values of ELX, TEZ and IVA at steady state were 1.18 (0.29) L/h, 0.79 (0.10) L/h and 10.2 (3.13) L/h, respectively. The mean (SD) terminal half-lives of ELX, TEZ and IVA following administration of the IVA/TEZ/ELX fixed-dose combination tablets are approximately 24.7 (4.87) hours, 60.3 (15.7) hours and 13.1 (2.98) hours, respectively. The mean (SD) effective half-life of TEZ following administration of the IVA/TEZ/ELX fixed-dose combination tablets is 11.9 (3.79) hours.

Following oral administration of ¹⁴C-ELX alone, the majority of ELX (87.3%) was eliminated in the faeces, primarily as metabolites.

Following oral administration of ¹⁴C-TEZ alone, the majority of the dose (72%) was excreted in the faeces (unchanged or as the M2-TEZ) and about 14% was recovered in urine (mostly as M2-TEZ), resulting in a mean overall recovery of 86% up to 26 days after the dose.

Following oral administration of ¹⁴C-IVA alone, the majority of IVA (87.8%) was eliminated in the faeces after metabolic conversion.

For ELX, TEZ and IVA there was negligible urinary excretion of unchanged medicine.

Hepatic impairment

ELX alone or in combination with TEZ and IVA has not been studied in subjects with severe hepatic impairment (Child-Pugh Class C, score 10-15). Following multiple doses of ELX, TEZ and IVA for 10 days, subjects with moderately impaired hepatic function (Child-Pugh Class B, score 7 to 9) had an approximately 25% higher AUC and a 12% higher Cₘₐₓ for ELX, 73% higher AUC and a 70% higher Cₘₐₓ for M23-ELX, 20% higher AUC but similar Cₘₐₓ for TEZ, 22% lower AUC and a 20% lower Cₘₐₓ for M1-TEZ, and a 1.5-fold higher AUC and a 10% higher Cₘₐₓ for IVA compared with healthy subjects matched for demographics. The effect of moderately impaired hepatic function on total exposure (based on summed values of ELX and its M23-ELX metabolite) was 36% higher AUC and a 24% higher Cₘₐₓ compared with healthy subjects matched for demographics (see sections 4.2, 4.4 and 4.8).

Tezacaftor and ivacaftor

Following multiple doses of TEZ and IVA for 10 days, subjects with moderately impaired hepatic function had an approximately 36% higher AUC and a 10% higher Cₘₐₓ for TEZ, and a 1.5-fold higher AUC but similar Cₘₐₓ for IVA compared with healthy subjects matched for demographics.

Ivacaftor

In a study with IVA alone, subjects with moderately impaired hepatic function had similar IVA Cₘₐₓ, but an approximately 2.0-fold higher IVA AUC₀-∞ compared with healthy subjects matched for demographics.

Renal impairment

ELX alone or in combination with TEZ and IVA has not been studied in patients with severe renal impairment [estimated glomerular filtration rate (eGFR) less than 30 mL/min] or in patients with end-stage renal disease.
In human pharmacokinetic studies of ELX, TEZ and IVA, there was minimal elimination of ELX, TEZ and IVA in urine (only 0.23%, 13.7% [0.79% as unchanged medicine] and 6.6% of total radioactivity, respectively).

Based on population pharmacokinetic (PK) analysis, exposure of ELX was similar in patients with mild renal impairment (N=75, eGFR 60 to less than 90 mL/min) relative to those with normal renal function (N=341, eGFR 90 mL/min or greater).

In population PK analysis conducted in 817 patients administered TEZ alone or in combination with IVA in Phase 2 or Phase 3 studies indicated that mild renal impairment (N=172; eGFR 60 to less than 90 mL/min) and moderate renal impairment (N=8; eGFR 30 to less than 60 mL/min) did not affect the clearance of TEZ significantly (see sections 4.2 and 4.4).

Gender

The pharmacokinetic parameters of ELX (244 males compared to 174 females), TEZ and IVA are similar in males and females.

Race

Race had no clinically meaningful effect on ELX exposure based on population PK analysis in whites (N=373) and non-whites (N=45). The non-white races consisted of 30 Blacks or African Americans, 1 with multiple racial background and 14 with other ethnic background (no Asians).

Very limited PK data indicate comparable exposure of TEZ in whites (N=652) and non-whites (N=8). The non-white races consisted of 5 Blacks or African Americans and 3 Native Hawaiians or other Pacific Islanders.

Race had no clinically meaningful effect on the PK of IVA in whites (N=379) and non-whites (N=29) based on a population PK analysis. The non-white races consisted of 27 African Americans and 2 Asians.

Elderly

Clinical trials of IVA/TEZ/ELX in combination with IVA did not include sufficient number of patients aged 65 years and older to determine whether response in these patients is different from younger adults (see sections 4.2 and 4.4).

Paediatric population

ELX, TEZ and IVA exposures observed in Phase 3 studies as determined using population PK analysis are presented by age group in Table 10. Exposures of ELX, TEZ and IVA in patients aged 6 to less than 18 years are within the range observed in patients aged 18 years and older.
Table 10. Mean (SD) ELX, M23-ELX, TEZ, M1-TEZ and IVA exposures observed at steady state by age group and dose administered

<table>
<thead>
<tr>
<th>Age group</th>
<th>Dose</th>
<th>ELX AUC_{0-24hss} (mcg∙h/mL)</th>
<th>M23-ELX AUC_{0-24hss} (μg∙h/mL)</th>
<th>TEZ AUC_{0-24hss} (mcg∙h/mL)</th>
<th>M1-TEZ AUC_{0-24hss} (μg∙h/mL)</th>
<th>IVA AUC_{0-12hss} (mcg∙h/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients aged 6 to <12 years weighing <30 kg (N=36)</td>
<td>IVA 75 mg q12h/ TEZ 50 mg qd/ ELX 100 mg qd</td>
<td>116 (39.4)</td>
<td>45.4 (25.2)</td>
<td>67.0 (22.3)</td>
<td>153 (36.5)</td>
<td>9.78 (4.50)</td>
</tr>
<tr>
<td>Patients aged 6 to <12 years weighing ≥30 kg (N=30)</td>
<td>IVA 150 mg q12h/ TEZ 100 mg qd/ ELX 200 mg qd</td>
<td>195 (59.4)</td>
<td>104 (52)</td>
<td>103 (23.7)</td>
<td>220 (37.5)</td>
<td>17.5 (4.97)</td>
</tr>
<tr>
<td>Adolescent patients (12 to <18 years) (N=72)</td>
<td>IVA150 mg q12h/ TEZ 100 mg qd/ ELX 200 mg qd</td>
<td>147 (36.8)</td>
<td>58.5 (25.6)</td>
<td>88.8 (21.8)</td>
<td>148 (33.3)</td>
<td>10.6 (3.35)</td>
</tr>
<tr>
<td>Adult patients (≥18 years) (N=179)</td>
<td>IVA150 mg q12h/ TEZ 100 mg qd/ ELX 200 mg qd</td>
<td>168 (49.9)</td>
<td>64.6 (28.9)</td>
<td>89.5 (23.7)</td>
<td>128 (33.7)</td>
<td>12.1 (4.17)</td>
</tr>
</tbody>
</table>

SD: Standard Deviation; AUC_{ss}: area under the concentration versus time curve at steady state.

5.3 Preclinical safety data

Elexacaftor

Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity. Assessment of the carcinogenic potential of ELX is currently being conducted.

Fertility and pregnancy

The No Observed Adverse Effect Level (NOAEL) for fertility findings was 55 mg/kg/day (2 times the maximum recommended human dose (MRHD) based on summed AUCs of ELX and its metabolite) in male rats and 25 mg/kg/day (4 times the MRHD based on summed AUCs of ELX and its metabolite) in female rats. In rat, at doses exceeding the maximum tolerated dose (MTD), degeneration and atrophy of seminiferous tubules are correlated to oligo-/aspermia and cellular debris in epididymides. In dog testes, minimal or mild, bilateral degeneration/atrophy of the seminiferous tubules was present in males administered 14 mg/kg/day ELX (14 times the MRHD based on summed AUCs of ELX and its metabolite) that did not resolve during the recovery period, however without further sequelae. The human relevance of these findings is unknown.

ELX was not teratogenic in rats at 40 mg/kg/day and at 125 mg/kg/day in rabbits (approximately 9 and 4 times, respectively, the MRHD based on summed AUCs of ELX and its metabolite [for rat] and AUC of ELX [for rabbit]) with developmental findings being limited to lower mean foetal body weight at ≥25 mg/kg/day.

Placental transfer of ELX was observed in pregnant rats.

Tezacaftor

Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential and toxicity to reproduction and development. Placental transfer of TEZ was observed in pregnant rats.
Ivacaftor

Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity and carcinogenic potential.

Fertility and pregnancy
The NOAEL for fertility findings was 100 mg/kg/day (5 times the MRHD based on summed AUCs of IVA and its metabolites) in male rats and 100 mg/kg/day (3 times the MRHD based on summed AUCs of IVA and its metabolites) in female rats.

In the pre- and post-natal study IVA decreased survival and lactation indices and caused a reduction in pup body weights. The NOAEL for viability and growth in the offspring provides an exposure level of approximately 3 times the systemic exposure of IVA and its metabolites in adult humans at the MRHD. Placental transfer of IVA was observed in pregnant rats and rabbits.

Juvenile animals studies
Findings of cataracts were observed in juvenile rats dosed from postnatal day 7 through day 35 at IVA exposure levels of 0.21 time the MRHD based on systemic exposure of IVA and its metabolites. This finding has not been observed in foetuses derived from rat dams treated with IVA on gestation days 7 to day 17, in rat pups exposed to IVA through milk ingestion up to postnatal day 20, in 7-week-old rats, nor in 3.5- to 5-month-old dogs treated with IVA. The potential relevance of these findings in humans is unknown (see section 4.4).

Ivacaftor/tezacaftor/elexacaftor
Combination repeat-dose toxicity studies in rats and dogs involving the co-administration of ELX, TEZ and IVA to assess the potential for additive and/or synergistic toxicity did not produce any unexpected toxicities or interactions. The potential for synergistic toxicity on male reproduction has not been assessed.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Tablet core

Hypermellose (E464)
Hypermellose acetate succinate
Sodium laurilsulfate (E487)
Croscarmellose sodium (E468)
Microcrystalline cellulose (E460(i))
Magnesium stearate (E470b)

Tablet film coat

Hypermellose (E464)
Hydroxypropyl cellulose (E463)
Titanium dioxide (E171)
Talc (E553b)
Iron oxide yellow (E172)
Iron oxide red (E172)

6.2 Incompatibilities

Not applicable.
6.3 Shelf life

Kaftrio 37.5 mg/25 mg/50 mg film-coated tablets
2 years

Kaftrio 75 mg/50 mg/100 mg film-coated tablets
3 years

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

6.5 Nature and contents of container

Blister consisting of PCTFE (polychlorotrifluoroethylene)/PVC (polyvinyl chloride) with a paper backed aluminium foil lidding.

Pack size of 56 tablets (4 blister cards, each with 14 tablets).

6.6 Special precautions for disposal

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/20/1468/001
EU/1/20/1468/002

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 21 August 2020

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
ANNEX II

A. MANUFACTURER(S) RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER(S) RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer(s) responsible for batch release

Almac Pharma Services (Ireland) Limited
Finnabair Industrial Estate
Dundalk
Co. Louth
A91 P9KD
Ireland

Almac Pharma Services Ltd.
Seagoe Industrial Estate
Craigavon
Co. Armagh BT63 5UA
United Kingdom (Northern Ireland)

The printed package leaflet of the medicinal product must state the name and address of the manufacturer responsible for the release of the concerned batch.

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to restricted medical prescription (see Annex I: Summary of Product Characteristics, section 4.2).

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

• Periodic safety update reports (PSURs)

The requirements for submission of PSURs for this medicinal product are set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and any subsequent updates published on the European medicines web-portal.

The marketing authorisation holder (MAH) shall submit the first PSUR for this product within 6 months following authorisation.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

• Risk management plan (RMP)

The marketing authorisation holder (MAH) shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2 of the marketing authorisation and any agreed subsequent updates of the RMP.

An updated RMP should be submitted:

• At the request of the European Medicines Agency;
• Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.
ANNEX III

LABELLING AND PACKAGE LEAFLET
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

OUTER CARTON

1. NAME OF THE MEDICINAL PRODUCT

Kaftrio 37.5 mg/25 mg/50 mg film-coated tablets
ivacaftor/tezacaftor/elexacaftor

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each tablet contains 37.5 mg of ivacaftor, 25 mg of tezacaftor and 50 mg of elexacaftor.

3. LIST OF EXCIPIENTS

4. PHARMACEUTICAL FORM AND CONTENTS

56 tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Oral use
Take the tablets with fat-containing food.
You may start taking Kaftrio on any day of the week.
Open
Insert tab below to close

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS
10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/20/1468/002

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Kaftrio 37.5/25/50 tablets

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC
SN
NN
PARTICULARS TO APPEAR ON THE IMMEDIATE PACKAGING

BLISTER CARD

1. NAME OF THE MEDICINAL PRODUCT

Kaftrio 37.5 mg/25 mg/50 mg film-coated tablets
ivacaftor/tezacaftor/elexacaftor

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each tablet contains 37.5 mg of ivacaftor, 25 mg of tezacaftor and 50 mg of elexacaftor.

3. LIST OF EXCIPIENTS

4. PHARMACEUTICAL FORM AND CONTENTS

14 tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Oral use

Take the tablets with fat-containing food.

You may start taking Kaftrio on any day of the week.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS
| 10. | SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE |
| 11. | NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER |
| Vertex Pharmaceuticals (Ireland) Limited |
| Unit 49, Block F2, Northwood Court, Santry, Dublin 9, D09 T665, Ireland |
| 12. | MARKETING AUTHORISATION NUMBER(S) |
| EU/1/20/1468/002 |
| 13. | BATCH NUMBER |
| Lot |
14.	GENERAL CLASSIFICATION FOR SUPPLY
15.	INSTRUCTIONS ON USE
16.	INFORMATION IN BRAILLE
17.	UNIQUE IDENTIFIER – 2D BARCODE
18.	UNIQUE IDENTIFIER - HUMAN READABLE DATA
MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS

BLISTER FOIL

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaftrio 37.5 mg/25 mg/50 mg tablets</td>
</tr>
<tr>
<td>ivacaftor/tezacaftor/elexacaftor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. NAME OF THE MARKETING AUTHORISATION HOLDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

OUTER CARTON

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaftrio 75 mg/50 mg/100 mg film-coated tablets</td>
</tr>
<tr>
<td>ivacaftor/tezacaftor/elexacaftor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. STATEMENT OF ACTIVE SUBSTANCE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each tablet contains 75 mg of ivacaftor, 50 mg of tezacaftor and 100 mg of elexacaftor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. LIST OF EXCIPIENTS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4. PHARMACEUTICAL FORM AND CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 tablets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. METHOD AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read the package leaflet before use.</td>
</tr>
<tr>
<td>Oral use</td>
</tr>
<tr>
<td>Take the tablets with fat-containing food.</td>
</tr>
<tr>
<td>You may start taking Kaftrio on any day of the week.</td>
</tr>
<tr>
<td>Open</td>
</tr>
<tr>
<td>Insert tab below to close</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep out of the sight and reach of children.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. OTHER SPECIAL WARNING(S), IF NECESSARY</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPECIAL STORAGE CONDITIONS</th>
</tr>
</thead>
</table>

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/20/1468/001

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

Kaftrio 75/50/100 tablets

16. INFORMATION IN BRAILLE

17. UNIQUE IDENTIFIER – 2D Barcode

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC
SN
NN
PARTICULARS TO APPEAR ON THE IMMEDIATE PACKAGING
BLISTER CARD

1. NAME OF THE MEDICINAL PRODUCT
Kaftrio 75 mg/50 mg/100 mg film-coated tablets
ivacaftor/tezacaftor/elexacaftor

2. STATEMENT OF ACTIVE SUBSTANCE(S)
Each tablet contains 75 mg of ivacaftor, 50 mg of tezacaftor and 100 mg of elexacaftor.

3. LIST OF EXCIPIENTS

4. PHARMACEUTICAL FORM AND CONTENTS
14 tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION
Read the package leaflet before use.
Oral use
Take the tablets with fat-containing food.
You may start taking Kaftrio on any day of the week.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN
Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE
EXP

9. SPECIAL STORAGE CONDITIONS
10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/20/1468/001

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

17. UNIQUE IDENTIFIER – 2D BARCODE

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA
<table>
<thead>
<tr>
<th>MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLISTER FOIL</td>
</tr>
<tr>
<td>1. NAME OF THE MEDICINAL PRODUCT</td>
</tr>
<tr>
<td>Kaftrio 75 mg/50 mg/100 mg tablets</td>
</tr>
<tr>
<td>ivacaftor/tezacaftor/elexacaftor</td>
</tr>
<tr>
<td>2. NAME OF THE MARKETING AUTHORISATION HOLDER</td>
</tr>
<tr>
<td>Vertex</td>
</tr>
<tr>
<td>3. EXPIRY DATE</td>
</tr>
<tr>
<td>EXP</td>
</tr>
<tr>
<td>4. BATCH NUMBER</td>
</tr>
<tr>
<td>Lot</td>
</tr>
<tr>
<td>5. OTHER</td>
</tr>
</tbody>
</table>
B. PACKAGE LEAFLET
This medicine is subject to additional monitoring. This will allow quick identification of new safety information. You can help by reporting any side effects you may get. See the end of section 4 for how to report side effects.

Read all of this leaflet carefully before you start taking this medicine because it contains important information for you.

- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor or pharmacist.
- This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours.
- If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet

1. What Kaftrio is and what it is used for
2. What you need to know before you take Kaftrio
3. How to take Kaftrio
4. Possible side effects
5. How to store Kaftrio
6. Contents of the pack and other information

1. What Kaftrio is and what it is used for

Kaftrio contains three active substances: ivacaftor, tezacaftor and elexacaftor. The medicine helps lung cells to work better in some patients with cystic fibrosis (CF). CF is an inherited condition in which the lungs and the digestive system can become clogged with thick, sticky mucus.

Kaftrio taken with ivacaftor is for patients aged 6 years and over who have CF, with at least one F508del mutation in the CFTR (cystic fibrosis transmembrane conductance regulator) gene. Kaftrio is intended as a long-term treatment.

Kaftrio works on a protein called CFTR. The protein is damaged in some people with CF, if they have a mutation in the CFTR gene.

Kaftrio is normally taken with another medicine, ivacaftor. Ivacaftor causes the protein to work better, while tezacaftor and elexacaftor increase the amount of protein at the cell surface.

Kaftrio (taken with ivacaftor) helps your breathing by improving your lung function. You may also notice that you do not get ill as often, or that it is easier to gain weight.

2. What you need to know before you take Kaftrio

Do not take Kaftrio:

- If you are allergic to ivacaftor, tezacaftor, elexacaftor, or any other ingredients of this medicine (listed in section 6).

Talk to your doctor and do not take the tablets, if this applies to you.
Warnings and precautions

- **Talk to your doctor if you have liver problems**, or have had them previously. Your doctor may need to adjust your dose.

- Your doctor will do some **blood tests to check your liver** before and during treatment with Kaftrio, especially if your blood tests showed high liver enzymes in the past. Liver enzymes in the blood can increase in patients receiving Kaftrio.

Tell your doctor right away if you have any symptoms of liver problems. These are listed in section 4.

- **Talk to your doctor if you have kidney problems**, or you have previously had them.

- **Talk to your doctor** before starting treatment with Kaftrio if you have received an organ transplant.

- **Talk to your doctor** if you are using hormonal contraception – for example, women using the contraceptive pill. This may mean you are more likely to get a rash while taking Kaftrio.

- **Your doctor may do eye examinations** before and during treatment with Kaftrio. Cloudiness of the eye lens (cataract) without any effect on vision has occurred in some children and adolescents receiving this treatment.

Children under 6

Do not give this medicine to children under the age of 6 years because it is not known if Kaftrio is safe and effective in this age group.

Other medicines and Kaftrio

Tell your doctor or pharmacist if you are taking, have recently taken, or might take any other medicines. Some medicines can affect how Kaftrio works or may make side effects more likely. In particular, tell your doctor if you take any of the medicines listed below. Your doctor may change the dose of one of the medicines if you take any of these.

- **Antifungal medicines** (used for the treatment of fungal infections). These include fluconazole, itraconazole, ketoconazole, posaconazole and voriconazole.

- **Antibiotic medicines** (used for the treatment of bacterial infections). These include clarithromycin, erythromycin, rifampicin, rifabutin and telithromycin.

- **Epilepsy medicines** (used for the treatment of epileptic seizures or fits). These include carbamazepine, phenobarbital and phenytoin.

- **Herbal medicines**. These include St. John’s wort (*Hypericum perforatum*).

- **Immunosuppressants** (used after an organ transplantation). These include ciclosporin, everolimus, sirolimus and tacrolimus.

- **Cardiac glycosides** (used for the treatment of some heart conditions). These include digoxin.

- **Anticoagulant medicines** (used to prevent blood clots). These include warfarin.

- **Medicines for diabetes**. These include glimepiride, glipizide, glyburide, nateglinide and repaglinide.

- **Medicines for lowering blood cholesterol**. These include pitavastatin and rosuvastatin.

- **Medicines for lowering blood pressure**. These include verapamil.

Kaftrio with food and drink

Avoid food or drinks containing grapefruit during treatment as these may increase the side effects of Kaftrio by increasing the amount of Kaftrio in your body.
Pregnancy and breast-feeding

- **Ask your doctor for advice** before taking this medicine if you are pregnant or breast-feeding, think you may be pregnant or are planning to have a baby.
- **Pregnancy:** It may be better to avoid using this medicine during pregnancy. Your doctor will help you decide what is best for you and your child.
- **Breast-feeding:** It is not known if ivacaftor, tezacaftor or elexacaftor passes into breast milk. Your doctor will consider the benefit of breast-feeding for your baby and the benefit of treatment for you to help you decide whether to stop breast-feeding or to stop treatment.

Driving and using machines

Kaftrio can make you dizzy. If you feel dizzy, do not drive, cycle, or use machines unless you are not affected.

Kaftrio contains sodium

This medicine contains less than 1 mmol sodium (23 mg) per dose, that is to say essentially “sodium-free”.

3. **How to take Kaftrio**

Always take this medicine exactly as your doctor or pharmacist has told you. Check with your doctor or pharmacist if you are not sure.

Your doctor will determine the correct dose for you.

Kaftrio is usually taken with ivacaftor.

Recommended dose for patients aged 6 years and over

<table>
<thead>
<tr>
<th>Age</th>
<th>Morning dose</th>
<th>Evening dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 to <12 years</td>
<td>2 tablets of ivacaftor 37.5 mg/tezacaftor 25 mg/elexacaftor 50 mg</td>
<td>1 tablet of ivacaftor 75 mg</td>
</tr>
<tr>
<td>weighing <30 kg</td>
<td>2 tablets of ivacaftor 50 mg/tezacaftor 100 mg</td>
<td>1 tablet of ivacaftor 150 mg</td>
</tr>
<tr>
<td>6 to <12 years</td>
<td>2 tablets of ivacaftor 75 mg/tezacaftor 25 mg</td>
<td>1 tablet of ivacaftor 75 mg</td>
</tr>
<tr>
<td>weighing ≥30 kg</td>
<td>2 tablets of ivacaftor 50 mg/tezacaftor 100 mg</td>
<td>1 tablet of ivacaftor 150 mg</td>
</tr>
<tr>
<td>≥12 years</td>
<td>2 tablets of ivacaftor 75 mg/tezacaftor 25 mg</td>
<td>1 tablet of ivacaftor 75 mg</td>
</tr>
</tbody>
</table>

Take the morning and evening tablets about 12 hours apart.

The tablets are for oral use.

Take both Kaftrio and ivacaftor tablets with food that contains fat. Meals or snacks that contain fat include those prepared with butter or oils or those containing eggs. Other fat-containing foods are:

- Cheese, whole milk, whole milk dairy products, yogurt, chocolate
- Meats, oily fish
- Avocados, hummus, soy-based products (tofu)
- Nuts, fat-containing nutritional bars or drinks

Avoid food and drink containing grapefruit while you are taking Kaftrio. See **Kaftrio with food and drink** in section 2 for more details.

Swallow the tablets whole. Do not chew, crush or break the tablets before swallowing.

You must keep using all your other medicines, unless your doctor tells you to stop.

If you have liver problems, either moderate or severe, your doctor may reduce the dose of your tablets or decide to stop treatment with Kaftrio. See also **Warnings and precautions** in section 2.
If you take more Kaftrio than you should
Contact your doctor or pharmacist for advice. If possible, take your medicine and this leaflet with you. You may get side effects, including those mentioned in section 4 below.

If you forget to take Kaftrio
If you forget a dose, work out how long it is since the dose you missed.

- **If less than 6 hours** have passed since you missed a dose, either morning or evening, take the forgotten tablet(s) as soon as possible. Then go back to your usual schedule.
- **If more than 6 hours** have passed:
 - **If you missed a morning dose** of Kaftrio, take it as soon as you remember. Do not take the evening dose of ivacaftor. Take the next morning dose at the usual time.
 - **If you missed an evening** dose of ivacaftor, do not take the missed dose. Wait for the next day and take the morning dose of Kaftrio tablets as usual.

Do not take a double dose to make up for any missed tablets.

If you stop taking Kaftrio
Your doctor will tell you how long you need to keep taking Kaftrio. It is important to take this medicine regularly. Do not make changes unless your doctor tells you.

If you have any further questions on the use of this medicine, ask your doctor or pharmacist.

4. Possible side effects

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Serious side effects

Possible signs of liver problems

Liver damage and worsening of liver function in people with severe liver disease. The worsening of liver function can be serious and may require transplantation.

Increased liver enzymes in the blood are common in patients with CF. These may be signs of liver problems:

- Pain or discomfort in the upper right area of the stomach (abdominal) area
- Yellowing of the skin or the white part of the eyes
- Loss of appetite
- Nausea or vomiting
- Dark urine

Tell your doctor straight away if you have any of these symptoms.

Very common side effects (may affect more than 1 in 10 people)

- Rash (more common in women than in men)

Tell your doctor straight away if you notice a rash.

Other side effects seen with Kaftrio:

Very common (may affect more than 1 in 10 people)

- Headache
- Dizziness
- Upper respiratory tract infection (common cold)
- Oropharyngeal pain (sore throat)
- Nasal congestion
- Stomach or abdominal pain
- Diarrhoea
- Increased liver enzymes (signs of stress on the liver)
- Changes in the type of bacteria in mucus
Common (may affect up to 1 in 10 people)
- Flu
- Abnormal breathing (Shortness of breath or difficulty breathing)
- Low blood sugar (hypoglycaemia)
- Runny nose
- Sinus problems (sinus congestion)
- Redness or soreness in the throat
- Ear problems: ear pain or discomfort, ringing in the ears, inflamed eardrum
- Spinning sensation (inner ear disorder)
- Wind (flatulence)
- Spots (acne)
- Itchy skin
- Breast mass
- Feeling nauseous
- Increased creatine phosphokinase (sign of muscle breakdown) seen in blood tests

Uncommon (may affect up to 1 in 100 people)
- Breast and nipple problems: inflammation, pain
- Enlargement of the breast in men
- Increases in blood pressure
- Wheezing
- Blocked ears (ear congestion)

Additional side effects in adolescents
Side effects in adolescents are similar to those observed in adults.

Reporting of side effects
If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. **How to store Kaftrio**

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the outer carton and on the blister after EXP. The expiry date refers to the last day of that month.

This medicine does not require any special storage conditions.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help to protect the environment.

6. **Contents of the pack and other information**

What Kaftrio contains
- The active substances are ivacaftor, tezacaftor and elexacaftor.

Kaftrio 37.5 mg/25 mg/50 mg film-coated tablets
Each film-coated tablet contains 37.5 mg of ivacaftor, 25 mg of tezacaftor and 50 mg elexacaftor.

Kaftrio 75 mg/50 mg/100 mg film-coated tablets
Each film-coated tablet contains 75 mg of ivacaftor, 50 mg of tezacaftor and 100 mg elexacaftor.
• The other ingredients are:
 − Tablet core: Hypromellose (E464), hypromellose acetate succinate, sodium laurilsulfate (E487), croscarmellose sodium (E468), microcrystalline cellulose (E460(i)), and magnesium stearate (E470b).
 − Tablet film coating: Hypromellose (E464), hydroxypropyl cellulose (E463), titanium dioxide (E171), talc (E553b), iron oxide yellow (E172), and iron oxide red (E172).

See the end of section 2 for important information about the contents of Kaftrio.

What Kaftrio looks like and contents of the pack
Kaftrio 37.5 mg/25 mg/50 mg film-coated tablets are light orange, capsule-shaped tablets stamped with “T50” on one side and plain on the other.

Kaftrio 75 mg/50 mg/100 mg film-coated tablets are orange, capsule-shaped tablets stamped with “T100” on one side and plain on the other.

Kaftrio is available in pack size of 56 tablets (4 blister cards, each with 14 tablets).

Marketing Authorisation Holder
Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry, Dublin 9, D09 T665,
Ireland
Tel: +353 (0)1 761 7299

Manufacturer
Almac Pharma Services (Ireland) Limited
Finnabair Industrial Estate
Dundalk
Co. Louth
A91 P9KD
Ireland

Almac Pharma Services Limited
Seagoe Industrial Estate
Craigavon
County Armagh
BT63 5UA
United Kingdom (Northern Ireland)

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder:
This leaflet was last revised in

Other sources of information
Detailed information on this medicine is available on the European Medicines Agency website: http://www.ema.europa.eu. There are also links to other websites about rare diseases and treatments.