ANNEX I

SUMMARY OF PRODUCT CHARACTERISTICS
1. **NAME OF THE MEDICINAL PRODUCT**

Kalydeco 75 mg film-coated tablets
Kalydeco 150 mg film-coated tablets

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**

Kalydeco 75 mg film-coated tablets

Each film-coated tablet contains 75 mg of ivacaftor.

Excipient with known effect

Each film-coated tablet contains 83.6 mg of lactose monohydrate.

Kalydeco 150 mg film-coated tablets

Each film-coated tablet contains 150 mg of ivacaftor.

Excipient with known effect

Each film-coated tablet contains 167.2 mg of lactose monohydrate.

For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**

Film-coated tablet (tablet)

Kalydeco 75 mg film-coated tablets

Light blue, capsule-shaped film-coated tablets, printed with “V 75” in black ink on one side and plain on the other (12.7 mm × 6.8 mm in modified tablet shape).

Kalydeco 150 mg film-coated tablets

Light blue, capsule-shaped film-coated tablets, printed with “V 150” in black ink on one side and plain on the other (16.5 mm × 8.4 mm in modified tablet shape).

4. **CLINICAL PARTICULARS**

4.1 **Therapeutic indications**

Kalydeco tablets are indicated:

- As monotherapy for the treatment of adults, adolescents, and children aged 6 years and older and weighing 25 kg or more with cystic fibrosis (CF) who have an R117H CFTR mutation or one of the following gating (class III) mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene: G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N or S549R (see sections 4.4 and 5.1).

- In a combination regimen with tezacaftor/ivacaftor tablets for the treatment of adults, adolescents, and children aged 6 years and older with cystic fibrosis (CF) who are homozygous for the F508del mutation or who are heterozygous for the F508del mutation and have one of the following mutations in the CFTR gene: P67L, R117C, L206W, R352Q, A455E, D579G,
In a combination regimen with ivacaftor/tezacaftor/elexacaftor tablets for the treatment of adults, adolescents, and children aged 6 years and older with cystic fibrosis (CF) who have at least one F508del mutation in the CFTR gene (see section 5.1).

4.2 Posology and method of administration

Kalydeco should only be prescribed by physicians with experience in the treatment of cystic fibrosis. If the patient's genotype is unknown, an accurate and validated genotyping method should be performed before starting treatment to confirm the presence of an indicated mutation in the CFTR gene (see section 4.1). The phase of the poly-T variant identified with the R117H mutation should be determined in accordance with local clinical recommendations.

Posology

Adults, adolescents, and children aged 6 years and older should be dosed according to Table 1.

Table 1: Dosing recommendations

<table>
<thead>
<tr>
<th></th>
<th>Morning</th>
<th>Evening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivacaftor as monotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 years and older, ≥ 25 kg</td>
<td>One ivacaftor 150 mg tablet</td>
<td>One ivacaftor 150 mg tablet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivacaftor in combination with tezacaftor/ivacaftor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 years to < 12 years, < 30 kg</td>
<td>One tezacaftor 50 mg/ivacaftor 75 mg tablet</td>
<td>One ivacaftor 75 mg tablet</td>
</tr>
<tr>
<td>6 years to < 12 years, ≥ 30 kg</td>
<td>One tezacaftor 100 mg/ivacaftor 150 mg tablet</td>
<td>One ivacaftor 150 mg tablet</td>
</tr>
<tr>
<td>12 years and older</td>
<td>One tezacaftor 100 mg/ivacaftor 150 mg tablet</td>
<td>One ivacaftor 150 mg tablet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivacaftor in combination with ivacaftor/tezacaftor/elexacaftor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 years to < 12 years, < 30 kg</td>
<td>Two ivacaftor 37.5 mg/tezacaftor 25 mg/ elexacaftor 50 mg tablets</td>
<td>One ivacaftor 75 mg tablet</td>
</tr>
<tr>
<td>6 years to < 12 years, ≥ 30 kg</td>
<td>Two ivacaftor 75 mg/tezacaftor 50 mg/ elexacaftor 100 mg tablets</td>
<td>One ivacaftor 150 mg tablet</td>
</tr>
<tr>
<td>12 years and older</td>
<td>Two ivacaftor 75 mg/tezacaftor 50 mg/ elexacaftor 100 mg tablets</td>
<td>One ivacaftor 150 mg tablet</td>
</tr>
</tbody>
</table>

The morning and evening dose should be taken approximately 12 hours apart with fat-containing food (see Method of administration).

Missed dose

If 6 hours or less have passed since the missed morning or evening dose, the patient should be advised to take it as soon as possible and then take the next dose at the regularly scheduled time. If more than 6 hours have passed since the time the dose is usually taken, the patient should be advised to wait until the next scheduled dose.

Patients receiving Kalydeco in a combination regimen should be advised not to take more than one dose of either medicinal product at the same time.

Concomitant use of CYP3A inhibitors

When co-administered with moderate or strong inhibitors of CYP3A, either as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor, the dose should be...
reduced (see Table 2 for the recommended dose). Dosing intervals should be modified according to clinical response and tolerability (see sections 4.4 and 4.5).

Table 2: Dosing recommendations for concomitant use with moderate or strong CYP3A inhibitors

<table>
<thead>
<tr>
<th></th>
<th>Moderate CYP3A inhibitors</th>
<th>Strong CYP3A inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivacaftor as monotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 years and older, ≥ 25 kg</td>
<td>One morning tablet of ivacaftor 150 mg once daily.</td>
<td>One morning tablet of ivacaftor 150 mg twice a week, approximately 3 to 4 days apart.</td>
</tr>
<tr>
<td></td>
<td>No evening dose.</td>
<td>No evening dose.</td>
</tr>
<tr>
<td>Ivacaftor in a combination regimen with tezacaftor/ivacaftor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 years to < 12 years, < 30 kg</td>
<td>Alternate each morning: – one tablet of tezacaftor 50 mg/ivacaftor 75 mg on the first day – one tablet of ivacaftor 75 mg on the next day Continue alternating tablets each day.</td>
<td>One morning tablet of tezacaftor 50 mg/ivacaftor 75 mg twice a week, approximately 3 to 4 days apart.</td>
</tr>
<tr>
<td></td>
<td>No evening dose.</td>
<td>No evening dose.</td>
</tr>
<tr>
<td>6 years to < 12 years, ≥ 30 kg</td>
<td>Alternate each morning: – one tablet of tezacaftor 100 mg/ivacaftor 150 mg once daily on the first day – one tablet of ivacaftor 150 mg on the next day Continue alternating each day.</td>
<td>One morning tablet of tezacaftor 100 mg/ivacaftor 150 mg twice a week, approximately 3 to 4 days apart.</td>
</tr>
<tr>
<td></td>
<td>No evening dose.</td>
<td>No evening dose.</td>
</tr>
<tr>
<td>12 years and older</td>
<td>Alternate each morning: – one tablet of tezacaftor 100 mg/ivacaftor 150 mg on the first day – one tablet of ivacaftor 150 mg on the next day Continue alternating tablets each day.</td>
<td>One morning tablet of tezacaftor 100 mg/ivacaftor 150 mg twice a week, approximately 3 to 4 days apart.</td>
</tr>
<tr>
<td></td>
<td>No evening dose.</td>
<td>No evening dose.</td>
</tr>
<tr>
<td>Ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 years to < 12 years, < 30 kg</td>
<td>Alternate each morning: – two tablets of ivacaftor 37.5 mg/tezacaftor 25 mg/ elexacaftor 50 mg on the first day – one tablet of ivacaftor 75 mg on the next day Continue alternating tablets each day.</td>
<td>Two morning tablets of ivacaftor 37.5 mg/tezacaftor 25 mg/ elexacaftor 50 mg twice a week, approximately 3 to 4 days apart.</td>
</tr>
<tr>
<td></td>
<td>No evening dose.</td>
<td>No evening dose.</td>
</tr>
</tbody>
</table>
Special populations

Elderly

Very limited data are available for elderly patients treated with ivacaftor (administered as monotherapy or in a combination regimen). No dose adjustment specific to this patient population is required (see section 5.2).

Renal impairment

No dose adjustment is necessary for patients with mild to moderate renal impairment. Caution is recommended in patients with severe renal impairment (creatinine clearance less than or equal to 30 mL/min) or end-stage renal disease (see sections 4.4 and 5.2).

Hepatic impairment

No dose adjustment is necessary for ivacaftor as monotherapy or in a combination regimen in patients with mild hepatic impairment (Child-Pugh Class A).

For patients with moderate hepatic impairment (Child-Pugh Class B) the dose of ivacaftor as monotherapy should be reduced to 150 mg once daily.

For patients with severe hepatic impairment (Child-Pugh Class C), the dose of ivacaftor as monotherapy should be reduced to 150 mg every other day or less frequently.

For use as an evening dose in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor see Table 3 for dosing regimen recommendations.

Table 3: Dosing recommendations for patients with moderate or severe hepatic impairment

<table>
<thead>
<tr>
<th></th>
<th>Moderate (Child-Pugh Class B)</th>
<th>Severe (Child-Pugh Class C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivacaftor as monotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 years to < 12 years, ≥ 30 kg</td>
<td>One morning tablet of ivacaftor 150 mg once daily.</td>
<td>Use is not recommended unless the benefits are expected to outweigh the risks.</td>
</tr>
<tr>
<td></td>
<td>No evening dose.</td>
<td>If used: one morning tablet of ivacaftor 150 mg every other day or less frequently.</td>
</tr>
</tbody>
</table>
Dosing interval should be modified according to clinical response and tolerability.

No evening dose.

| **Ivacaftor in a combination regimen with tezacaftor/ivacaftor** |
|---|---|
| 6 years to < 12 years, < 30 kg | One morning tablet of tezacaftor 50 mg/ivacaftor 75 mg once daily. |
| | No evening dose. |
| | Use is not recommended unless the benefits are expected to outweigh the risks. |
| | If used: one morning tablet of tezacaftor 50 mg/ivacaftor 75 mg once daily or less frequently. |
| | Dosing interval should be modified according to clinical response and tolerability. |
| | No evening dose. |
| 6 years to < 12 years, ≥ 30 kg | One morning tablet of tezacaftor 100 mg/ivacaftor 150 mg once daily. |
| | No evening dose. |
| | Use is not recommended unless the benefits are expected to outweigh the risks. |
| | If used: one morning tablet of tezacaftor 100 mg/ivacaftor 150 mg once daily or less frequently. |
| | Dosing interval should be modified according to clinical response and tolerability. |
| | No evening dose. |
| 12 years and older | One morning tablet of tezacaftor 100 mg/ivacaftor 150 mg once daily. |
| | No evening dose. |
| | Use is not recommended unless the benefits are expected to outweigh the risks. |
| | If used: one morning tablet of tezacaftor 100 mg/ivacaftor 150 mg once daily or less frequently. |
| | Dosing interval should be modified according to clinical response and tolerability. |
| | No evening dose. |

<p>	Ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor
6 years to < 12 years, < 30 kg	Use not recommended. Use should only be considered when there is a clear medical need and the benefits are expected to outweigh the risks.
	If used: alternate each day between two ivacaftor 37.5 mg/tezacaftor 25 mg/ elexacaftor 50 mg tablets and one ivacaftor 37.5 mg/tezacaftor 25 mg/ elexacaftor 50 mg tablet.
	No evening dose.
	Should not be used.
<table>
<thead>
<tr>
<th>Age Group</th>
<th>Description</th>
<th>Contraindication</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 years to < 12 years, ≥ 30 kg</td>
<td>Use not recommended. Use should only be considered when there is a clear medical need and the benefits are expected to outweigh the risks. If used: alternate each day between two ivacaftor 75 mg/tezacaftor 50 mg/ elexacaftor 100 mg tablets and one ivacaftor 75 mg/tezacaftor 50 mg/ elexacaftor 100 mg tablet. No evening dose.</td>
<td>Should not be used.</td>
</tr>
<tr>
<td>12 years and older</td>
<td>Use not recommended. Use should only be considered when there is a clear medical need and the benefits are expected to outweigh the risks.* If used: alternate each day between two ivacaftor 75 mg/tezacaftor 50 mg/ elexacaftor 100 mg tablets and one ivacaftor 75 mg/tezacaftor 50 mg/ elexacaftor 100 mg tablet. No evening dose.</td>
<td>Should not be used.*</td>
</tr>
</tbody>
</table>

* See sections 4.4 and 4.8

Paediatric population

The safety and efficacy of ivacaftor have not been established in children less than 4 months of age as monotherapy, neither in combination with tezacaftor/ivacaftor in children less than 6 years of age or in combination with ivacaftor/tezacaftor/elexacaftor in children less than 6 years of age. No data are available.

Limited data are available in patients less than 6 years of age with an R117H mutation in the CFTR gene. Available data in patients aged 6 years and older are described in sections 4.8, 5.1, and 5.2.

Method of administration

For oral use.

Patients should be instructed to swallow the tablets whole. The tablets should not be chewed, crushed, or broken before swallowing because there are no clinical data currently available to support other methods of administration.

Ivacaftor tablets should be taken with fat-containing food.

Food or drink containing grapefruit should be avoided during treatment (see section 4.5).

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.
4.4 Special warnings and precautions for use

Only patients with CF who had a G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N, S549R gating (class III), G970R or R117H mutation in at least one allele of the CFTR gene were included in studies 1, 2, 5 and 6 (see section 5.1).

In study 5, four patients with the G970R mutation were included. In three of four patients the change in the sweat chloride test was < 5 mmol/L and this group did not demonstrate a clinically relevant improvement in FEV₁ after 8 weeks of treatment. Clinical efficacy in patients with the G970R mutation of the CFTR gene could not be established (see section 5.1).

Efficacy results from a phase 2 study in patients with CF who are homozygous for the F508del mutation in the CFTR gene showed no statistically significant difference in FEV₁ over 16 weeks of ivacaftor treatment compared to placebo (see section 5.1). Therefore, use of ivacaftor as monotherapy in these patients is not recommended.

Less evidence of a positive effect of ivacaftor has been shown for patients with an R117H-7T mutation associated with less severe disease in study 6 (see section 5.1).

Ivacaftor in a combination regimen with tezacaftor/ivacaftor should not be prescribed in patients with CF who are heterozygous for the F508del mutation and have a second CFTR mutation not listed in section 4.1.

Elevated transaminases and hepatic injury

In a patient with cirrhosis and portal hypertension, liver failure leading to transplantation has been reported while receiving ivacaftor in a combination regimen with ivacaftor/tezacaftor/eluxacaftor. Use with caution in patients with pre-existing advanced liver disease (e.g., cirrhosis, portal hypertension) and only if the benefits are expected to outweigh the risks. If used in these patients, they should be closely monitored after the initiation of treatment (see sections 4.2, 4.8 and 5.2).

Moderate transaminase (alanine transaminase [ALT] or aspartate transaminase [AST]) elevations are common in subjects with CF. Transaminase elevations have been observed in some patients treated with ivacaftor as monotherapy and in combination regimens with tezacaftor/ivacaftor or ivacaftor/tezacaftor/eluxacaftor. In patients taking ivacaftor in a combination regimen with ivacaftor/tezacaftor/eluxacaftor, these elevations have sometimes been associated with concomitant elevations in total bilirubin. Therefore, assessments of transaminases (ALT and AST) and total bilirubin are recommended for all patients prior to initiating ivacaftor, every 3 months during the first year of treatment and annually thereafter. For all patients with a history of liver disease or transaminase elevations, more frequent monitoring of liver function tests should be considered. In the event of significant elevations of transaminases (e.g., patients with ALT or AST > 5 × the upper limit of normal (ULN), or ALT or AST > 3 × ULN with bilirubin > 2 × ULN), dosing should be interrupted, and laboratory tests closely followed until the abnormalities resolve. Following resolution of transaminase elevations, the benefits and risks of resuming treatment should be considered (see sections 4.2, 4.8 and 5.2).

Hepatic impairment

Use of ivacaftor, either as monotherapy or in a combination regimen with tezacaftor/ivacaftor, is not recommended in patients with severe hepatic impairment unless the benefits are expected to outweigh the risks. Patients with severe hepatic impairment should not be treated with ivacaftor in a combination regimen with ivacaftor/tezacaftor/eluxacaftor. (see Table 3 and sections 4.2, 4.8 and 5.2).

For patients with moderate hepatic impairment, use of ivacaftor in a combination regimen with ivacaftor/tezacaftor/eluxacaftor is not recommended. Treatment should only be considered when there is a clear medical need and the benefits are expected to outweigh the risks. If used, it should be used with caution at a reduced dose (see Table 3 and sections 4.2, 4.8 and 5.2).
Renal impairment

Caution is recommended while using ivacaftor, either as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor, in patients with severe renal impairment or end-stage renal disease (see sections 4.2 and 5.2).

Patients after organ transplantation

Ivacaftor, either as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor, has not been studied in patients with CF who have undergone organ transplantation. Therefore, use in transplanted patients is not recommended. See section 4.5 for interactions with ciclosporin or tacrolimus.

Rash events

The incidence of rash events with ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor was higher in females than in males, particularly in females taking hormonal contraceptives. A role for hormonal contraceptives in the occurrence of rash cannot be excluded. For patients taking hormonal contraceptives who develop rash, interrupting treatment with ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor and hormonal contraceptives should be considered. Following the resolution of rash, it should be considered if resuming ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor without hormonal contraceptives is appropriate. If rash does not recur, resumption of hormonal contraceptives can be considered (see section 4.8).

Interactions with medicinal products

CYP3A inducers

Exposure to ivacaftor is significantly decreased and exposures to elexacaftor and tezacaftor are expected to decrease by the concomitant use of CYP3A inducers, potentially resulting in the loss of ivacaftor efficacy; therefore, co-administration of ivacaftor (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor) with strong CYP3A inducers is not recommended (see section 4.5).

CYP3A inhibitors

Exposure to ivacaftor, tezacaftor and elexacaftor are increased when co-administered with strong or moderate CYP3A inhibitors. The dose of ivacaftor (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor) must be adjusted when used concomitantly with strong or moderate CYP3A inhibitors (see Table 2 and sections 4.2 and 4.5).

Paediatric population

Cases of non-congenital lens opacities/cataracts without impact on vision have been reported in paediatric patients treated with ivacaftor and ivacaftor-containing regimens. Although other risk factors were present in some cases (such as corticosteroid use and exposure to radiation), a possible risk attributable to treatment with ivacaftor cannot be excluded. Baseline and follow-up ophthalmological examinations are recommended in paediatric patients initiating ivacaftor treatment, either as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor (see section 5.3).
Lactose content

Kalydeco contains lactose. Patients with rare hereditary problems of galactose intolerance, total lactase deficiency or glucose-galactose malabsorption should not take this medicinal product.

Sodium content

This medicinal product contains less than 1 mmol sodium (23 mg) per dose, that is to say essentially ‘sodium-free’.

4.5 Interaction with other medicinal products and other forms of interaction

Ivacaftor is a substrate of CYP3A4 and CYP3A5. It is a weak inhibitor of CYP3A and P-gp and a potential inhibitor of CYP2C9. In vitro studies showed that ivacaftor is not a substrate for P-gp.

Medicinal products affecting the pharmacokinetics of ivacaftor

CYP3A inducers

Co-administration of ivacaftor with rifampicin, a strong CYP3A inducer, decreased ivacaftor exposure (AUC) by 89% and decreased hydroxymethyl ivacaftor (M1) to a lesser extent than ivacaftor. Co-administration of ivacaftor (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elixacaftor) with strong CYP3A inducers, such as rifampicin, rifabutin, phenobarbital, carbamazepine, phenytoin and St. John’s wort (Hypericum perforatum), is not recommended (see section 4.4).

No dose adjustment is recommended when ivacaftor (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elixacaftor) is used with moderate or weak CYP3A inducers.

CYP3A inhibitors

Ivacaftor is a sensitive CYP3A substrate. Co-administration with ketoconazole, a strong CYP3A inhibitor, increased ivacaftor exposure (measured as area under the curve [AUC]) by 8.5-fold and increased M1 to a lesser extent than ivacaftor. A reduction of the ivacaftor dose (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elixacaftor) is recommended for co-administration with strong CYP3A inhibitors, such as ketoconazole, itraconazole, posaconazole, voriconazole, telithromycin and clarithromycin (see Table 2 and sections 4.2 and 4.4).

Co-administration with fluconazole, a moderate inhibitor of CYP3A, increased ivacaftor exposure by 3-fold and increased M1 to a lesser extent than ivacaftor. A reduction of the ivacaftor dose (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elixacaftor) is recommended for patients taking concomitant moderate CYP3A inhibitors, such as fluconazole, erythromycin, and verapamil (see Table 2 and sections 4.2 and 4.4).

Co-administration of ivacaftor with grapefruit juice, which contains one or more components that moderately inhibit CYP3A, may increase exposure to ivacaftor. Food or drink containing grapefruit should be avoided during treatment with ivacaftor (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elixacaftor, see section 4.2).

Potential for ivacaftor to interact with transporters

In vitro studies showed that ivacaftor is not a substrate for OATP1B1 or OATP1B3. Ivacaftor and its metabolites are substrates of BCRP in vitro. Due to its high intrinsic permeability and low likelihood of being excreted intact, co-administration of BCRP inhibitors is not expected to alter exposure of
ivacaftor and M1-IVA, while any potential changes in M6-IVA exposures are not expected to be clinically relevant.

Ciprofloxacin

Co-administration of ciprofloxacin with ivacaftor did not affect the exposure of ivacaftor. No dose adjustment is required when ivacaftor (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/eluxacaftor) is co-administered with ciprofloxacin.

Medicinal products affected by ivacaftor

Administration of ivacaftor may increase systemic exposure of medicinal products that are sensitive substrates of CYP2C9, and/or P-gp, and/or CYP3A which may increase or prolong their therapeutic effect and adverse reactions.

CYP2C9 substrates

Ivacaftor may inhibit CYP2C9. Therefore, monitoring of the international normalised ratio (INR) is recommended during co-administration of warfarin with ivacaftor (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/eluxacaftor). Other medicinal products for which exposure may be increased include glimepiride and glipizide; these medicinal products should be used with caution.

Digoxin and other P-gp substrates

Co-administration with digoxin, a sensitive P-gp substrate, increased digoxin exposure by 1.3-fold, consistent with weak inhibition of P-gp by ivacaftor. Administration of ivacaftor (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/eluxacaftor) may increase systemic exposure of medicinal products that are sensitive substrates of P-gp, which may increase or prolong their therapeutic effect and adverse reactions. When used concomitantly with digoxin or other substrates of P-gp with a narrow therapeutic index, such as ciclosporin, everolimus, sirolimus or tacrolimus, caution and appropriate monitoring should be used.

CYP3A substrates

Co-administration with (oral) midazolam, a sensitive CYP3A substrate, increased midazolam exposure 1.5-fold, consistent with weak inhibition of CYP3A by ivacaftor. No dose adjustment of CYP3A substrates, such as midazolam, alprazolam, diazepam or triazolam, is required when these are co-administered with ivacaftor (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/eluxacaftor).

Hormonal contraceptives

Ivacaftor (as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/eluxacaftor) has been studied with an oestrogen/progesterone oral contraceptive and was found to have no significant effect on the exposures of the oral contraceptive. Therefore, no dose adjustment of oral contraceptives is necessary.

Paediatric population

Interaction studies have only been performed in adults.
4.6 Fertility, pregnancy and lactation

Pregnancy

There are no or limited amount of data (less than 300 pregnancy outcomes) from the use of ivacaftor in pregnant women. Animals studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity (see section 5.3). As a precautionary measure, it is preferable to avoid the use of ivacaftor during pregnancy.

Breast-feeding

It is unknown whether ivacaftor and/or its metabolites are excreted in human milk. Available pharmacokinetic data in animals have shown excretion of ivacaftor in milk of lactating female rats. As such, a risk to the newborns/infants cannot be excluded. A decision must be made whether to discontinue breast-feeding or to discontinue/abstain from ivacaftor therapy taking into account the benefit of breast-feeding for the child and the benefit of therapy for the woman.

Fertility

There are no data available on the effect of ivacaftor on fertility in humans. Ivacaftor had an effect on fertility in rats (see section 5.3).

4.7 Effects on ability to drive and use machines

Ivacaftor has minor influence on the ability to drive and use machines. Ivacaftor may cause dizziness (see section 4.8) and, therefore, patients experiencing dizziness should be advised not to drive or use machines until symptoms abate.

4.8 Undesirable effects

Summary of the safety profile

The most common adverse reactions experienced by patients aged 6 years and older who received ivacaftor are headache (23.9%), oropharyngeal pain (22.0%), upper respiratory tract infection (22.0%), nasal congestion (20.2%), abdominal pain (15.6%), nasopharyngitis (14.7%), diarrhoea (12.8%), dizziness (9.2%), rash (12.8%) and bacteria in sputum (12.8%). Transaminase elevations occurred in 12.8% of ivacaftor-treated patients versus 11.5% of placebo-treated patients.

In patients aged 2 to less than 6 years the most common adverse reactions were nasal congestion (26.5%), upper respiratory tract infection (23.5%), transaminase elevations (14.7%), rash (11.8%), and bacteria in sputum (11.8%).

Serious adverse reactions in patients who received ivacaftor included abdominal pain and transaminase elevations (see section 4.4).

Tabulated list of adverse reactions

Table 4 reflects the adverse reactions observed with ivacaftor monotherapy in clinical trials (placebo-controlled and uncontrolled studies) in which the length of exposure to ivacaftor ranged from 16 weeks to 144 weeks. Additional adverse reactions observed with ivacaftor in a combination regimen with tezacaftor/ivacaftor and/or in a combination regimen with ivacaftor/tezacaftor/elexacaftor are also provided in Table 4. The frequency of adverse reactions is defined as follows: very common (≥ 1/10); common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1,000); very
rare (< 1/10,000); not known (cannot be estimated from the available data). Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.

Table 4: Adverse reactions

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Adverse reactions</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Upper respiratory tract infection</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Nasopharyngitis</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Influenza†</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Rhinitis</td>
<td>common</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Hypoglycaemia†</td>
<td>common</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Headache</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Dizziness</td>
<td>very common</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Ear pain</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Ear discomfort</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Tinnitus</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Tympanic membrane hyperaemia</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Vestibular disorder</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Ear congestion</td>
<td>uncommon</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Oropharyngeal pain</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Nasal congestion</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Abnormal breathing†</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Rhinorrhoea†</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Sinus congestion</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Pharyngeal erythema</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Wheezing†</td>
<td>uncommon</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Abdominal pain</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Diarrhoea</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Abdominal pain upper†</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Flatulence†</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Nausea†</td>
<td>common</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>Transaminase elevations</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Alanine aminotransferase increased†</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Aspartate aminotransferase increased†</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Liver injury‡</td>
<td>not known</td>
</tr>
<tr>
<td></td>
<td>Total bilirubin elevations‡</td>
<td>not known</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Rash</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Acne†</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Pruritus†</td>
<td>common</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td>Breast mass</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Breast inflammation</td>
<td>uncommon</td>
</tr>
<tr>
<td></td>
<td>Gynaecomastia</td>
<td>uncommon</td>
</tr>
<tr>
<td></td>
<td>Nipple disorder</td>
<td>uncommon</td>
</tr>
<tr>
<td></td>
<td>Nipple pain</td>
<td>uncommon</td>
</tr>
<tr>
<td>Investigations</td>
<td>Bacteria in sputum</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Blood creatine phosphokinase increased†</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Blood pressure increased†</td>
<td>uncommon</td>
</tr>
</tbody>
</table>
* Adverse reaction and frequency reported from clinical studies with ivacaftor in combination with tezacaftor/ivacaftor.
† Adverse reaction and frequency reported from clinical studies with ivacaftor in combination with ivacaftor/tezacaftor/elexacaftor.
^ Liver injury (ALT and AST and total bilirubin elevations) reported from post-marketing data with ivacaftor in combination with ivacaftor/tezacaftor/elexacaftor. This also included liver failure leading to transplantation in a patient with pre-existing cirrhosis and portal hypertension. Frequency cannot be estimated from the available data.

Description of selected adverse reactions

Transaminase elevations

During the 48-week placebo-controlled studies 1 and 2 of ivacaftor as monotherapy in patients aged 6 years and older, the incidence of maximum transaminase (ALT or AST) > 8, > 5 or > 3 × ULN was 3.7%, 3.7% and 8.3% in ivacaftor-treated patients and 1.0%, 1.9% and 8.7% in placebo-treated patients, respectively. Two patients, one on placebo and one on ivacaftor permanently discontinued treatment for elevated transaminases, each > 8 × ULN. No ivacaftor-treated patients experienced a transaminase elevation > 3 × ULN associated with elevated total bilirubin > 1.5 × ULN. In ivacaftor-treated patients, most transaminase elevations up to 5 × ULN resolved without treatment interruption. Ivacaftor dosing was interrupted in most patients with transaminase elevations > 5 × ULN. In all instances where dosing was interrupted for elevated transaminases and subsequently resumed, ivacaftor dosing was able to be resumed successfully (see section 4.4).

During the placebo-controlled phase 3 studies (up to 24 weeks) of tezacaftor/ivacaftor, the incidence of maximum transaminase (ALT or AST) > 8, > 5, or > 3 × ULN were 0.2%, 1.0%, and 3.4% in tezacaftor/ivacaftor treated patients, and 0.4%, 1.0%, and 3.4% in placebo-treated patients. One patient (0.2%) on therapy and 2 patients (0.4%) on placebo permanently discontinued treatment for elevated transaminases. No patients treated with tezacaftor/ivacaftor experienced a transaminase elevation > 3 × ULN associated with elevated total bilirubin > 2 × ULN.

During the 24-week, placebo-controlled, phase 3 study of ivacaftor/tezacaftor/elexacaftor, these figures were 1.5%, 2.5%, and 7.9% in ivacaftor/tezacaftor/elexacaftor-treated patients and 1.0%, 1.5%, and 5.5% in placebo-treated patients. The incidence of adverse reactions of transaminase elevations was 10.9% in ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor treated patients and 4.0% in placebo-treated patients. Post-marketing cases of treatment discontinuation due to elevated transaminases have been reported (see section 4.4).

Rash events

Rash events, generally mild to moderate in severity, have been observed with the use of ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor and occurred more frequently in female-treated patients (16.3%) and in those taking hormonal contraceptives (20.5%). See section 4.4.

Increased creatine phosphokinase

Generally transient and asymptomatic increases in creatine phosphokinase were observed in patients treated with ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor, which did not lead to treatment discontinuation.

Increased blood pressure

An increase from baseline in mean systolic and diastolic blood pressure of 3.5 mmHg and 1.9 mmHg, respectively was observed in patients treated with ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor.
Paediatric population

The safety data of ivacaftor as monotherapy were evaluated in 6 patients between 4 months to less than 6 months of age, 11 patients between 6 months to less than 12 months of age, 19 patients between 12 months to less than 24 months of age, 34 patients between 2 to less than 6 years of age, 61 patients between 6 to less than 12 years of age and 94 patients between 12 to less than 18 years of age.

The safety profile of ivacaftor (as monotherapy or in a combination regimen) is generally consistent among paediatric patients and is also consistent with adult patients.

The incidence of transaminase elevations (ALT or AST) observed in studies 2, 5 and 6 (patients aged 6 to less than 12 years), study 7 (patients aged 2 to less than 6 years), and study 8 (patients aged 6 to less than 24 months) are described in Table 5. In the placebo-controlled studies, the incidence of transaminase elevations were similar between treatment with ivacaftor (15.0%) and placebo (14.6%). Peak LFT elevations were generally higher in paediatric patients than in older patients. Across all populations, peak LFT elevations returned to baseline levels following interruption, and in almost all instances where dosing was interrupted for elevated transaminases and subsequently resumed, ivacaftor dosing was able to be resumed successfully (see section 4.4). Cases suggestive of positive rechallenge were observed. In study 7 ivacaftor was permanently discontinued in one patient. In study 8 no patients had elevations in total bilirubin or discontinued ivacaftor treatment due to transaminase elevations in either age cohort (see section 4.4 for management of elevated transaminases).

Table 5: Transaminase elevations in patients 4 months to < 12 years treated with ivacaftor as monotherapy

<table>
<thead>
<tr>
<th>Age Group</th>
<th>n</th>
<th>% of Patients > 3 × ULN</th>
<th>% of Patients > 5 × ULN</th>
<th>% of Patients > 8 × ULN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 to < 12 years</td>
<td>40</td>
<td>15.0% (6)</td>
<td>2.5% (1)</td>
<td>2.5% (1)</td>
</tr>
<tr>
<td>2 to < 6 years</td>
<td>34</td>
<td>14.7% (5)</td>
<td>14.7% (5)</td>
<td>14.7% (5)</td>
</tr>
<tr>
<td>12 to < 24 months</td>
<td>18</td>
<td>27.8% (5)</td>
<td>11.1% (2)</td>
<td>11.1% (2)</td>
</tr>
<tr>
<td>6 to < 12 months</td>
<td>11</td>
<td>9.1% (1)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
<tr>
<td>4 to < 6 months</td>
<td>6</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
</tbody>
</table>

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

No specific antidote is available for overdose with ivacaftor. Treatment of overdose consists of general supportive measures including monitoring of vital signs, liver function tests and observation of the clinical status of the patient.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Other respiratory system products, ATC code: R07AX02
Mechanism of action

Ivacaftor is a potentiator of the CFTR protein, i.e., in vitro ivacaftor increases CFTR channel gating to enhance chloride transport in specified gating mutations (as listed in section 4.1) with reduced channel-open probability compared to normal CFTR. Ivacaftor also potentiated the channel-open probability of R117H-CFTR, which has both low channel-open probability (gating) and reduced channel current amplitude (conductance). The G970R mutation causes a splicing defect resulting in little-to-no CFTR protein at the cell surface which may explain the results observed in subjects with this mutation in study 5 (see Pharmacodynamic effects and Clinical efficacy and safety).

In vitro responses seen in single channel patch clamp experiments using membrane patches from rodent cells expressing mutant CFTR forms do not necessarily correspond to in vivo pharmacodynamic response (e.g., sweat chloride) or clinical benefit. The exact mechanism leading ivacaftor to potentiate the gating activity of normal and some mutant CFTR forms in this system has not been completely elucidated.

Pharmacodynamic effects

Ivacaftor as monotherapy

In studies 1 and 2 in patients with the G551D mutation in one allele of the CFTR gene, ivacaftor led to rapid (15 days), substantial (the mean change in sweat chloride from baseline through week 24 was -48 mmol/L [95% CI -51, -45] and -54 mmol/L [95% CI -62, -47], respectively) and sustained (through 48 weeks) reductions in sweat chloride concentration.

In study 5, part 1 in patients who had a non-G551D gating mutation in the CFTR gene, treatment with ivacaftor led to a rapid (15 days) and substantial mean change from baseline in sweat chloride of -49 mmol/L (95% CI -57, -41) through 8 weeks of treatment. However, in patients with the G970R-CFTR mutation, the mean (SD) absolute change in sweat chloride at week 8 was -6.25 (6.55) mmol/L. Similar results to part 1 were seen in part 2 of the study. At the 4-week follow-up visit (4 weeks after dosing with ivacaftor ended), mean sweat chloride values for each group were trending to pre-treatment levels.

In study 6 in patients aged 6 years or older with CF who had an R117H mutation in the CFTR gene, the treatment difference in mean change in sweat chloride from baseline through 24 weeks of treatment was -24 mmol/L (95% CI -28, -20). In subgroup analyses by age, the treatment difference was -21.87 mmol/L (95% CI: -26.46, -17.28) in patients aged 18 years or older, and -27.63 mmol/L (95% CI: -37.16, -18.10) in patients aged 6-11 years. Two patients 12 to 17 years of age were enrolled in this study.

Ivacaftor in a combination regimen with tezacaftor/ivacaftor

In patients homozygous for the F508del mutation, the treatment difference between ivacaftor in combination with tezacaftor/ivacaftor and placebo in mean absolute change from baseline in sweat chloride through week 24, was -10.1 mmol/L (95% CI: -11.4, -8.8).

In patients heterozygous for the F508del mutation and a second mutation associated with residual CFTR activity, the treatment difference in mean absolute change from baseline in sweat chloride through week 8 was -9.5 mmol/L (95% CI: -11.7, -7.3) between tezacaftor/ivacaftor and placebo, and -4.5 mmol/L (95% CI: -6.7, -2.3) between ivacaftor and placebo.

In patients aged 6 to less than 12 years who were homozygous or heterozygous for the F508del mutation and a second mutation associated with residual CFTR activity, mean within-group absolute change in sweat chloride from baseline at week 8 was -12.3 mmol/L (95% CI: -15.3, -9.3) in the tezacaftor/ivacaftor group.
Ivacaftor in a combination regimen with ivacaftor/tezacaftor/elixacaftor

In patients with an F508del mutation on one allele and a mutation on the second allele that predicts either no production of a CFTR protein or a CFTR protein that does not transport chloride and is not responsive to ivacaftor and tezacaftor/ivacaftor (minimal function mutation) in vitro, the treatment difference of ivacaftor/tezacaftor/elixacaftor compared to placebo for mean absolute change in sweat chloride from baseline through week 24 was -41.8 mmol/L (95% CI: -44.4, -39.3).

In patients homozygous for the F508del mutation, the treatment difference of ivacaftor/tezacaftor/elixacaftor compared to ivacaftor/tezacaftor for mean absolute change in sweat chloride from baseline at week 4 was -45.1 mmol/L (95% CI: -50.1, -40.1).

In patients heterozygous for the F508del mutation and a mutation on the second allele with a gating defect or residual CFTR activity, the treatment difference of ivacaftor/tezacaftor/elixacaftor compared to the control group (ivacaftor monotherapy group plus tezacaftor/ivacaftor group) for mean absolute change in sweat chloride from baseline through week 8 was -23.1 mmol/L (95% CI: -26.1, -20.1).

In patients aged 6 to less than 12 years, homozygous for the F508del mutation or heterozygous for the F508del mutation and a minimal function mutation, the mean absolute change in sweat chloride from baseline (n=62) through week 24 (n=60) was -60.9 mmol/L (95% CI: -63.7, -58.2)*. The mean absolute change in sweat chloride from baseline through week 12 (n=59) was -58.6 mmol/L (95% CI: -61.1, -56.1).

* Not all participants included in the analyses had data available for all follow-up visits, especially from week 16 onwards. The ability to collect data at week 24 was hampered by the COVID-19 pandemic. Week 12 data were less impacted by the pandemic.

Clinical efficacy and safety

Ivacaftor as monotherapy

Studies 1 and 2: studies in patients with CF with G551D gating mutations

The efficacy of ivacaftor has been evaluated in two phase 3 randomised, double-blind, placebo-controlled, multi-centre studies of clinically stable patients with CF who had the G551D mutation in the CFTR gene on at least 1 allele and had FEV1 ≥ 40% predicted.

Patients in both studies were randomised 1:1 to receive either 150 mg of ivacaftor or placebo every 12 hours with food containing fat for 48 weeks in addition to their prescribed CF therapies (e.g., tobramycin, dornase alfa). The use of inhaled hypertonic sodium chloride was not permitted.

Study 1 evaluated 161 patients who were 12 years of age or older; 122 (75.8%) patients had the F508del mutation in the second allele. At the start of the study, patients in the placebo group used some medicinal products at a higher frequency than the ivacaftor group. These medicinal products included dornase alfa (73.1% versus 65.1%), salbutamol (53.8% versus 42.2%), tobramycin (44.9% versus 33.7%) and salmeterol/fluticasone (41.0% versus 27.7%). At baseline, mean predicted FEV1 was 63.6% (range: 31.6% to 98.2%) and mean age was 26 years (range: 12 to 53 years).

Study 2 evaluated 52 patients who were 6 to 11 years of age at screening; mean (SD) body weight was 30.9 (8.63) kg; 42 (80.8%) patients had the F508del mutation in the second allele. At baseline, mean predicted FEV1 was 84.2% (range: 44.0% to 133.8%) and mean age was 9 years (range: 6 to 12 years); 8 (30.8%) patients in the placebo group and 4 (15.4%) patients in the ivacaftor group had an FEV1 less than 70% predicted at baseline.

The primary efficacy endpoint in both studies was the mean absolute change from baseline in percent predicted FEV1 through 24 weeks of treatment.
The treatment difference between ivacaftor and placebo for the mean absolute change (95% CI) in percent predicted FEV₁ from baseline through week 24 was 10.6 percentage points (8.6, 12.6) in study 1 and 12.5 percentage points (6.6, 18.3) in study 2. The treatment difference between ivacaftor and placebo for the mean relative change (95% CI) in percent predicted FEV₁ from baseline through week 24 was 17.1% (13.9, 20.2) in study 1 and 15.8% (8.4, 23.2) in study 2. The mean change from baseline through week 24 in FEV₁ (L) was 0.37 L in the ivacaftor group and 0.01 L in the placebo group in study 1 and 0.30 L in the ivacaftor group and 0.07 L in the placebo group in study 2. In both studies, improvements in FEV₁ were rapid in onset (day 15) and durable through 48 weeks.

The treatment difference between ivacaftor and placebo for the mean absolute change (95% CI) in percent predicted FEV₁ from baseline through week 24 in patients 12 to 17 years of age in study 1 was 11.9 percentage points (5.9, 17.9). The treatment difference between ivacaftor and placebo for the mean absolute change (95% CI) in percent predicted FEV₁ from baseline through week 24 in patients with baseline predicted FEV₁ greater than 90% in study 2 was 6.9 percentage points (-3.8, 17.6).

The results for clinically relevant secondary endpoints are shown in Table 6.

Table 6: Effect of ivacaftor on other efficacy endpoints in studies 1 and 2

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Study 1</th>
<th>Study 2</th>
</tr>
</thead>
</table>
| Mean absolute change from baseline in CFQ-R^b respiratory domain score (points)
 Through week 24 | Treatment difference^a (95% CI) 8.1 (4.7, 11.4) < 0.0001 | Treatment difference^a (95% CI) 6.1 (-1.4, 13.5) 0.1092 |
| Mean absolute change from baseline in body weight (kg)
 At week 24 | Treatment difference^a (95% CI) 2.8 (1.8, 3.7) < 0.0001 | Treatment difference^a (95% CI) 1.9 (0.9, 2.9) 0.0004 |
| Mean absolute change from baseline in BMI (kg/m²)
 At week 24 | Treatment difference^a (95% CI) 0.94 (0.62, 1.26) < 0.0001 | Treatment difference^a (95% CI) 0.81 (0.34, 1.28) 0.0008 |
| Mean change from baseline in z-scores
 Weight-for-age z-score at week 48^e | Treatment difference^a (95% CI) 0.33 (0.04, 0.62) 0.0260 | Treatment difference^a (95% CI) 0.39 (0.24, 0.53) < 0.0001 |
| Mean change from baseline in z-scores
 BMI-for-age z-score at week 48^e | Treatment difference^a (95% CI) 0.33 (0.002, 0.65) 0.0490 | Treatment difference^a (95% CI) 0.45 (0.26, 0.65) < 0.0001 |

CI: confidence interval; NA: not analysed due to low incidence of events

^a Treatment difference = effect of ivacaftor – effect of placebo
^b CFQ-R: Cystic Fibrosis Questionnaire-Revised is a disease-specific, health-related quality-of-life measure for CF.
^c Study 1 data were pooled from CFQ-R for adults/adolescents and CFQ-R for children 12 to 13 years of age; Study 2 data were obtained from CFQ-R for children 6 to 11 years of age.
^d Hazard ratio for time to first pulmonary exacerbation
^e In subjects under 20 years of age (CDC growth charts)
Study 5: study in patients with CF with non-G551D gating mutations

Study 5 was a phase 3, two-part, randomised, double-blind, placebo-controlled, crossover study (part 1) followed by a 16-week open-label extension period (part 2) to evaluate the efficacy and safety of ivacaftor in patients with CF aged 6 years and older who have a G970R or non-G551D gating mutation in the CFTR gene (G178R, S549N, S549R, G551S, G1244E, S1251N, S1255P or G1349D).

In part 1, patients were randomised 1:1 to receive either 150 mg of ivacaftor or placebo every 12 hours with fat-containing food for 8 weeks in addition to their prescribed CF therapies and crossed over to the other treatment for the second 8 weeks after a 4- to 8-week washout period. The use of inhaled hypertonic saline was not permitted. In part 2, all patients received ivacaftor as indicated in part 1 for 16 additional weeks. The duration of continuous ivacaftor treatment was 24 weeks for patients randomised to part 1 placebo/ivacaftor treatment sequence and 16 weeks for patients randomised to part 1 ivacaftor/placebo treatment sequence.

Thirty-nine patients (mean age 23 years) with baseline FEV1 ≥ 40% predicted (mean FEV1 78% predicted [range: 43% to 119%]) were enrolled. Sixty-two percent (24/39) of them carried the F508del-CFTR mutation in the second allele. A total of 36 patients continued into part 2 (18 per treatment sequence).

In part 1 of study 5, the mean FEV1 percent predicted at baseline in placebo-treated patients was 79.3% while in ivacaftor-treated patients this value was 76.4%. The mean overall post-baseline value was 76.0% and 83.7%, respectively. The mean absolute change from baseline through week 8 in percent predicted FEV1 (primary efficacy endpoint) was 7.5% in the ivacaftor period and -3.2% in the placebo period. The observed treatment difference (95% CI) between ivacaftor and placebo was 10.7% (7.3, 14.1) (P < 0.0001).

The effect of ivacaftor in the overall population of study 5 (including the secondary endpoints absolute change in BMI at 8 weeks of treatment and absolute change in the respiratory domain score of the CFQ-R through 8 weeks of treatment) and by individual mutation (absolute change in sweat chloride and in percent predicted FEV1 at week 8) is shown in Table 7. Based on clinical (percent predicted FEV1) and pharmacodynamic (sweat chloride) responses to ivacaftor, efficacy in patients with the G970R mutation could not be established.

Table 7: Effect of ivacaftor for efficacy variables in the overall population and for specific CFTR mutations

<table>
<thead>
<tr>
<th>Absolute change in percent predicted FEV1</th>
<th>BMI (kg/m²)</th>
<th>CFQ-R respiratory domain score (points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through week 8</td>
<td>At week 8</td>
<td>Through week 8</td>
</tr>
<tr>
<td>All patients (N = 39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results shown as mean (95% CI) change from baseline ivacaftor vs placebo-treated patients:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.7 (7.3, 14.1)</td>
<td>0.66 (0.34, 0.99)</td>
<td>9.6 (4.5, 14.7)</td>
</tr>
<tr>
<td>Patients grouped under mutation types (n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results shown as mean (minimum, maximum) change from baseline for ivacaftor-treated patients at week 8*:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutation (n)</td>
<td>Absolute change in sweat chloride (mmol/L)</td>
<td>Absolute change in percent predicted FEV1 (percentage points)</td>
</tr>
<tr>
<td></td>
<td>At week 8</td>
<td>At week 8</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>G1244E (5)</td>
<td>-55 (-75, -34)</td>
<td>8 (-1, 18)</td>
</tr>
<tr>
<td>G1349D (2)</td>
<td>-80 (-82, -79)</td>
<td>20 (3, 36)</td>
</tr>
<tr>
<td>G178R (5)</td>
<td>-53 (-65, -35)</td>
<td>8 (-1, 18)</td>
</tr>
<tr>
<td>G551S (2)</td>
<td>-68 †</td>
<td>3 †</td>
</tr>
<tr>
<td>G970R (4)*</td>
<td>-6 (-16, -2)</td>
<td>3 (-1, 5)</td>
</tr>
<tr>
<td>S1251N (8)</td>
<td>-54 (-84, -7)</td>
<td>9 (-20, 21)</td>
</tr>
<tr>
<td>S1255P (2)</td>
<td>-78 (-82, -74)</td>
<td>3 (-1, 8)</td>
</tr>
<tr>
<td>S549N (6)</td>
<td>-74 (-93, -53)</td>
<td>11 (-2, 20)</td>
</tr>
<tr>
<td>S549R (4)</td>
<td>-61 †† (-71, -54)</td>
<td>5 (-3, 13)</td>
</tr>
</tbody>
</table>

* Statistical testing was not performed due to small numbers for individual mutations.
† Reflects results from the one patient with the G551S mutation with data at the 8-week time point.
†† n = 3 for the analysis of absolute change in sweat chloride.
Causes a splicing defect resulting in little-to-no CFTR protein at the cell surface.

In part 2 of study 5, the mean (SD) absolute change in percent predicted FEV₁ following 16 weeks (patients randomised to the ivacaftor/placebo treatment sequence in part 1) of continuous ivacaftor treatment was 10.4% (13.2%). At the follow-up visit, 4 weeks after ivacaftor dosing had ended, the mean (SD) absolute change in percent predicted FEV₁ from part 2 week 16 was -5.9% (9.4%). For patients randomised to the placebo/ivacaftor treatment sequence in part 1 there was a further mean (SD) change of 3.3% (9.3%) in percent predicted FEV₁ after the additional 16 weeks of treatment with ivacaftor. At the follow up visit, 4 weeks after ivacaftor dosing had ended, the mean (SD) absolute change in percent predicted FEV₁ from part 2 week 16 was -7.4% (5.5%).

Study 3: study in patients with CF with the F508del mutation in the CFTR gene

Study 3 (part A) was a 16-week, 4:1 randomised, double-blind, placebo-controlled, parallel-group phase 2 study of ivacaftor (150 mg every 12 hours) in 140 patients with CF age 12 years and older who were homozygous for the F508del mutation in the CFTR gene and who had FEV₁ ≥ 40% predicted.

The mean absolute change from baseline through week 16 in percent predicted FEV₁ (primary efficacy endpoint) was 1.5 percentage points in the ivacaftor group and -0.2 percentage points in the placebo group. The estimated treatment difference for ivacaftor versus placebo was 1.7 percentage points (95% CI -0.6, 4.1); this difference was not statistically significant (P = 0.15).

Study 4: open-label extension study

In study 4 patients who completed treatment in studies 1 and 2 with placebo were switched to ivacaftor while patients on ivacaftor continued to receive it for a minimum of 96 weeks, i.e., the length of treatment with ivacaftor was at least 96 weeks for patients in the placebo/ivacaftor group and at least 144 weeks for patients in the ivacaftor/ivacaftor group.

One hundred and forty-four (144) patients from study 1 were rolled over in study 4, 67 in the placebo/ivacaftor group and 77 in the ivacaftor/ivacaftor group. Forty-eight (48) patients from study 2 were rolled over in study 4, 22 in the placebo/ivacaftor group and 26 in the ivacaftor/ivacaftor group.

Table 8 shows the results of the mean (SD) absolute change in percent predicted FEV₁ for both groups of patients. For patients in the placebo/ivacaftor group baseline percent predicted FEV₁ is that of study 4 while for patients in the ivacaftor/ivacaftor group the baseline value is that of studies 1 and 2.

Table 8: Effect of ivacaftor on percent predicted FEV₁ in study 4

<table>
<thead>
<tr>
<th>Original study and treatment group</th>
<th>Duration of ivacaftor treatment (weeks)</th>
<th>Absolute change from baseline in percent predicted FEV₁ (percentage points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ivacaftor</td>
<td>48 †</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.4 (8.3)</td>
</tr>
</tbody>
</table>
When the mean (SD) absolute change in percent predicted FEV1 is compared from study 4 baseline for patients in the ivacaftor/ivacaftor group (n = 72) who rolled over from study 1, the mean (SD) absolute change in percent predicted FEV1 was 0.0% (9.05), while for patients in the ivacaftor/ivacaftor group (n = 25) who rolled over from study 2 this figure was 0.6% (9.1). This shows that patients in the ivacaftor/ivacaftor group maintained the improvement seen at week 48 of the initial study (day 0 through week 48) in percent predicted FEV1 through week 144. There were no additional improvements in study 4 (week 48 through week 144).

For patients in the placebo/ivacaftor group from study 1, the annualised rate of pulmonary exacerbations was higher in the initial study when patients were on placebo (1.34 events/year) than during the subsequent study 4 when patients rolled over to ivacaftor (0.48 events/year across day 1 to week 48, and 0.67 events/year across weeks 48 to 96). For patients in the ivacaftor/ivacaftor group from study 1, the annualised rate of pulmonary exacerbations was 0.57 events/year across day 1 to week 48 when patients were on ivacaftor. When they rolled over into study 4, the rate of annualised pulmonary exacerbations was 0.91 events/year across day 1 to week 48 and 0.77 events/year across weeks 48 to 96.

For patients who rolled over from study 2 the number of events was, overall, low.

Study 6: study in patients with CF with an R117H mutation in the CFTR gene

Study 6 evaluated 69 patients who were 6 years of age or older; 53 (76.8%) patients had the F508del mutation in the second allele. The confirmed R117H poly-T variant was 5T in 38 patients and 7T in 16 patients. At baseline, mean predicted FEV1 was 73% (range: 32.5% to 105.5%) and mean age was 31 years (range: 6 to 68 years). The mean absolute change from baseline through week 24 in percent predicted FEV1 (primary efficacy endpoint) was 2.57 percentage points in the ivacaftor group and 0.46 percentage points in the placebo group. The estimated treatment difference for ivacaftor versus placebo was 2.1 percentage points (95% CI -1.1, 5.4).

A pre-planned subgroup analysis was conducted in patients 18 years and older (26 patients on placebo and 24 on ivacaftor). Treatment with ivacaftor resulted in a mean absolute change in percent predicted FEV1 through week 24 of 4.5 percentage points in the ivacaftor group versus -0.46 percentage points in the placebo group. The estimated treatment difference for ivacaftor versus placebo was 5.0 percentage points (95% CI 1.1, 8.8).

In a subgroup analysis in patients with a confirmed R117H-5T genetic variant, the difference in the mean absolute change from baseline through week 24 in percent predicted FEV1 between ivacaftor and placebo was 5.3% (95% CI 1.3, 9.3). In patients with a confirmed R117H-7T genetic variant, the treatment difference between ivacaftor and placebo was 0.2% (95% CI -1.1, 0.1).

For secondary efficacy variables, no treatment differences were observed for ivacaftor versus placebo in absolute change from baseline in BMI at week 24 or time to first pulmonary exacerbation. Treatment differences were observed in absolute change in CFQ-R respiratory domain score through week 24 (treatment difference of ivacaftor versus placebo was 8.4 [95% CI 2.2, 14.6] points) and for the mean change from baseline in sweat chloride (see Pharmacodynamic effects).
Ivacaftor in a combination regimen with tezacaftor/ivacaftor or with ivacaftor/tezacaftor/elexacaftor

The efficacy and safety of ivacaftor in a combination regimen with tezacaftor/ivacaftor in patients with CF aged 12 years and older was assessed in two clinical studies; a 24 week, randomised, double-blind, placebo-controlled study with 504 patients who were homozygous for the F508del mutation; and a randomised, double-blind, placebo-controlled and ivacaftor-controlled, 2 period, 3 treatment, 8-week crossover study with 244 patients who were heterozygous for the F508del mutation and a second mutation associated with residual CFTR activity. The long-term safety and efficacy of the combination regimen was also assessed in both patient populations in a 96-week open-label, rollover, long-term extension study. Refer to the Summary of Product Characteristics of tezacaftor/ivacaftor for additional data.

The efficacy and safety of ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor in patients aged 12 years and older was demonstrated in three, phase 3, randomised, double blind, placebo-controlled (patients were heterozygous for the F508del mutation and a mutation with minimal function on the second allele, n = 403) and active-controlled (patients were homozygous for the F508del mutation, n = 107, or heterozygous for the F508del mutation and a gating or residual CFTR activity mutation on the second allele, n = 258) studies of 24, 4, and 8 weeks of duration respectively. Patients from all studies were eligible to enter open-label, rollover, 96-week studies. Refer to the Summary of Product Characteristics of ivacaftor/tezacaftor/elexacaftor for additional data.

Paediatric population

Ivacaftor in a combination regimen with tezacaftor/ivacaftor

The efficacy and safety in patients aged 6 to less than 12 years (mean age 8.6 years) were assessed in an 8-week, double-blind, phase 3 trial with 67 patients who were randomised 4:1 to either ivacaftor in a combination regimen with tezacaftor/ivacaftor or a blinding group. Forty-two patients were homozygous for the F508del mutation (F/F) and 12 were heterozygous for the F508del mutation and a second mutation associated with residual CFTR activity mutation on the second allele. Patients from all studies were eligible to enter open-label, rollover, 96-week study. Refer to the Summary of Product Characteristics of tezacaftor/ivacaftor for additional data.

Ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor

The pharmacokinetics, efficacy, and safety in patients aged 6 to less than 12 years (mean age at baseline 9.3 years) who are homozygous for the F508del mutation or heterozygous for the F508del mutation and a minimal function mutation were assessed in a 24-week open label study with 66 patients. Refer to the Summary of Product Characteristics of ivacaftor/tezacaftor/elexacaftor for additional data.

The European Medicines Agency has deferred the obligation to submit the results of studies with Kalydeco in one or more subsets of the paediatric population in cystic fibrosis (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

The pharmacokinetics of ivacaftor are similar between healthy adult volunteers and patients with CF.

After oral administration of a single 150 mg dose to healthy volunteers in a fed state, the mean (± SD) for AUC and C\text{max} were 10600 (5260) ng*hr/mL and 768 (233) ng/mL, respectively. After every 12-hour dosing, steady-state plasma concentrations of ivacaftor were reached by days 3 to 5, with an accumulation ratio ranging from 2.2 to 2.9.
Absorption

Following multiple oral dose administrations of ivacaftor, the exposure of ivacaftor generally increased with dose from 25 mg every 12 hours to 450 mg every 12 hours. When given with fat-containing food, the exposure of ivacaftor increased approximately 2.5- to 4-fold. When co-administered with tezacaftor and elexacaftor, the increase in AUC was similar (approximately 3-fold and 2.5-to 4-fold respectively). Therefore, ivacaftor, administered as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor, should be administered with fat-containing food. The median (range) t\textsubscript{max} is approximately 4.0 (3.0; 6.0) hours in the fed state.

Ivacaftor granules (2 × 75 mg sachets) had similar bioavailability as the 150 mg tablet when given with fat-containing food to healthy adult subjects. The geometric least squares mean ratio (90% CI) for the granules relative to tablets was 0.951 (0.839, 1.08) for AUC\textsubscript{0-\infty} and 0.918 (0.750, 1.12) for C\textsubscript{max}. The effect of food on ivacaftor absorption is similar for both formulations, i.e., tablets and granules.

Distribution

Ivacaftor is approximately 99% bound to plasma proteins, primarily to alpha 1-acid glycoprotein and albumin. Ivacaftor does not bind to human red blood cells. After oral administration of ivacaftor 150 mg every 12 hours for 7 days in healthy volunteers in a fed state, the mean (± SD) apparent volume of distribution was 353 L (122).

Biotransformation

Ivacaftor is extensively metabolised in humans. In vitro and in vivo data indicate that ivacaftor is primarily metabolised by CYP3A. M1 and M6 are the two major metabolites of ivacaftor in humans. M1 has approximately one-sixth the potency of ivacaftor and is considered pharmacologically active. M6 has less than one-fiftieth the potency of ivacaftor and is not considered pharmacologically active.

The effect of the CYP3A4*22 heterozygous genotype on ivacaftor, tezacaftor, and elexacaftor exposure is consistent with the effect of co-administration of a weak CYP3A4 inhibitor, which is not clinically relevant. No dose-adjustment of ivacaftor, tezacaftor, or elexacaftor is considered necessary. The effect in CYP3A4*22 homozygous genotype patients is expected to be stronger. However, no data are available for such patients.

Elimination

Following oral administration in healthy volunteers, the majority of ivacaftor (87.8%) was eliminated in the faeces after metabolic conversion. The major metabolites M1 and M6 accounted for approximately 65% of the total dose eliminated with 22% as M1 and 43% as M6. There was negligible urinary excretion of ivacaftor as unchanged parent. The apparent terminal half-life was approximately 12 hours following a single dose in the fed state. The apparent clearance (CL/F) of ivacaftor was similar for healthy subjects and patients with CF. The mean (± SD) CL/F for a single 150 mg dose was 17.3 (8.4) L/hr in healthy subjects.

Linearity/non-linearity

The pharmacokinetics of ivacaftor are generally linear with respect to time or dose ranging from 25 mg to 250 mg.

Special populations

Hepatic impairment

Following a single dose of 150 mg of ivacaftor, adult subjects with moderately impaired hepatic function (Child-Pugh Class B, score 7 to 9) had similar ivacaftor C\textsubscript{max} (mean ± SD) of 735 [331] ng/mL but an approximately two-fold increase in ivacaftor AUC\textsubscript{0-\infty} (mean ± SD) of 16800
[6140] ng*hr/mL) compared with healthy subjects matched for demographics. Simulations for predicting the steady-state exposure of ivacaftor showed that by reducing the dosage from 150 mg q12h to 150 mg once daily, adults with moderate hepatic impairment would have comparable steady-state C_{min} values as those obtained with a dose of 150 mg q12h in adults without hepatic impairment.

In subjects with moderately impaired hepatic function (Child Pugh Class B, score 7 to 9), ivacaftor AUC increased approximately by 50% following multiple doses for 10 days of either tezacaftor and ivacaftor or of ivacaftor, tezacaftor and elexacaftor.

The impact of severe hepatic impairment (Child Pugh Class C, score 10 to 15) on the pharmacokinetics of ivacaftor as monotherapy or in a combination regimen with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor has not been studied. The magnitude of increase in exposure in these patients is unknown but is expected to be higher than that observed in patients with moderate hepatic impairment.

For guidance on appropriate use and dose modification see Table 3 in section 4.2.

Renal impairment

Pharmacokinetic studies have not been performed with ivacaftor in patients with renal impairment, either as monotherapy or in a combination regimen with tezacaftor/ivacaftor or with ivacaftor/tezacaftor/elexacaftor. In a human pharmacokinetic study with ivacaftor monotherapy, there was minimal elimination of ivacaftor and its metabolites in urine (only 6.6% of total radioactivity was recovered in the urine). There was negligible urinary excretion of ivacaftor as unchanged parent (less than 0.01% following a single oral dose of 500 mg).

No dose adjustments are recommended for mild and moderate renal impairment. Caution is recommended when administering ivacaftor, either as monotherapy or in a combination with tezacaftor/ivacaftor or with ivacaftor/tezacaftor/elexacaftor, to patients with severe renal impairment (creatinine clearance less than or equal to 30 mL/min) or end-stage renal disease (see sections 4.2 and 4.4).

Race

Race had no clinically meaningful effect on the PK of ivacaftor in white (n = 379) and non-white (n = 29) patients based on a population PK analysis.

Gender

The pharmacokinetic parameters of ivacaftor, either as monotherapy or in combination with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor, are similar in males and females.

Elderly

Clinical studies of ivacaftor as monotherapy, or in a combination regimen with ivacaftor/tezacaftor/elexacaftor did not include sufficient numbers of patients aged 65 years and older to determine whether pharmacokinetic parameters are similar or not to those in younger adults.

The pharmacokinetic parameters of ivacaftor in combination with tezacaftor in the elderly patients (65-72 years) are comparable to those in younger adults.
Paediatric population

Predicted ivacaftor exposure based on observed ivacaftor concentrations in phase 2 and 3 studies as determined using population PK analysis is presented by age group in Table 9.

Table 9: Mean (SD) ivacaftor exposure by age group

<table>
<thead>
<tr>
<th>Age group</th>
<th>Dose</th>
<th>$C_{\text{min}, \text{ss}}$ (ng/mL)</th>
<th>$AUC_{\tau, \text{ss}}$ (ng*h/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 months to less than 12 months (5 kg to < 7 kg)*</td>
<td>25 mg q12h</td>
<td>336</td>
<td>5410</td>
</tr>
<tr>
<td>6 months to less than 12 months (7 kg to < 14 kg)</td>
<td>50 mg q12h</td>
<td>508 (252)</td>
<td>9140 (4200)</td>
</tr>
<tr>
<td>12 months to less than 24 months (7 kg to < 14 kg)</td>
<td>50 mg q12h</td>
<td>440 (212)</td>
<td>9050 (3050)</td>
</tr>
<tr>
<td>12 months to less than 24 months (≥ 14 kg to < 25 kg)</td>
<td>75 mg q12h</td>
<td>451 (125)</td>
<td>9600 (1800)</td>
</tr>
<tr>
<td>2- to 5-year-olds (< 14 kg)</td>
<td>50 mg q12h</td>
<td>577 (317)</td>
<td>10500 (4260)</td>
</tr>
<tr>
<td>2- to 5-year-olds (≥ 14 kg to < 25 kg)</td>
<td>75 mg q12h</td>
<td>629 (296)</td>
<td>11300 (3820)</td>
</tr>
<tr>
<td>6- to 11-year-olds† (≥ 14 kg to < 25 kg)</td>
<td>75 mg q12h</td>
<td>641 (329)</td>
<td>10760 (4470)</td>
</tr>
<tr>
<td>6- to 11-year-olds† (≥ 25 kg)</td>
<td>150 mg q12h</td>
<td>958 (546)</td>
<td>15300 (7340)</td>
</tr>
<tr>
<td>12- to 17-year-olds</td>
<td>150 mg q12h</td>
<td>564 (242)</td>
<td>9240 (3420)</td>
</tr>
<tr>
<td>Adults (≥ 18 years old)</td>
<td>150 mg q12h</td>
<td>701 (317)</td>
<td>10700 (4100)</td>
</tr>
</tbody>
</table>

* Values based on data from a single patient; standard deviation not reported.
† Exposures in 6- to 11-year-olds are predictions based on simulations from the population PK model using data obtained for this age group.

Ivacaftor exposure in combination with tezacaftor and with tezacaftor/elexacaftor is presented in Table 10.

Table 10: Mean (SD) ivacaftor exposure when used in combination, by age group

<table>
<thead>
<tr>
<th>Age group</th>
<th>Dose</th>
<th>Ivacaftor Mean (SD) $AUC_{0-12h, \text{ss}}$ (ng*h/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children (6 years to less than 12 years; < 30 kg) n = 71</td>
<td>tezacaftor 50 mg qd/ivacaftor 75 mg q12h</td>
<td>7100 (1950)</td>
</tr>
<tr>
<td>Children (6 years to less than 12 years; ≥ 30 kg) n = 51</td>
<td>tezacaftor 100 mg qd/ivacaftor 150 mg q12h</td>
<td>11800 (3890)</td>
</tr>
<tr>
<td>Adolescent patients (12 years to less than 18 years) n = 97</td>
<td>tezacaftor 100 mg qd/ivacaftor 150 mg q12h</td>
<td>11400 (5500)</td>
</tr>
<tr>
<td>Adult patients (18 years and older) n = 389</td>
<td>elexacaftor 100 mg qd/tezacaftor 50 mg qd/ivacaftor 75 mg q12h</td>
<td>11400 (4140)</td>
</tr>
<tr>
<td>Children (6 years to less than 12 years; < 30 kg) n = 36</td>
<td>elexacaftor 100 mg qd/tezacaftor 50 mg qd/ivacaftor 75 mg q12h</td>
<td>9780 (4500)</td>
</tr>
<tr>
<td>Children (6 years to less than 12 years; ≥ 30 kg) n = 30</td>
<td>elexacaftor 200 mg qd/tezacaftor 100 mg qd/ivacaftor 150 mg q12h</td>
<td>17500 (4970)</td>
</tr>
<tr>
<td>Adolescent patients (12 years to less than 18 years) n = 69</td>
<td>elexacaftor 200 mg qd/tezacaftor 100 mg qd/ivacaftor 150 mg q12h</td>
<td>10600 (3350)</td>
</tr>
<tr>
<td>Adult patients (18 years and older) n = 186</td>
<td></td>
<td>12100 (4170)</td>
</tr>
</tbody>
</table>

† Exposures in ≥ 30 kg to < 40 kg weight range are predictions derived from the population PK model.
5.3 Preclinical safety data

Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, and carcinogenic potential.

Pregnancy and fertility

Ivacaftor was associated with slight decreases of the seminal vesicle weights, a decrease of overall fertility index and number of pregnancies in females mated with treated males and significant reductions in number of corpora lutea and implantation sites with subsequent reductions in the average litter size and average number of viable embryos per litter in treated females. The No-Observed-Adverse-Effect-Level (NOAEL) for fertility findings provides an exposure level of approximately 4 times the systemic exposure of ivacaftor and its metabolites when administered as ivacaftor monotherapy in adult humans at the maximum recommended human dose (MRHD). Placental transfer of ivacaftor was observed in pregnant rats and rabbits.

Peri- and post-natal development

Ivacaftor decreased survival and lactation indices and caused a reduction in pup body weights. The NOAEL for viability and growth in the offspring provides an exposure level of approximately 3 times the systemic exposure of ivacaftor and its metabolites when administered as ivacaftor monotherapy in adult humans at the MRHD.

Juvenile animals studies

Findings of cataracts were observed in juvenile rats dosed from postnatal day 7 through 35 at ivacaftor exposure levels of 0.22 times the MRHD based on systemic exposure of ivacaftor and its metabolites when administered as ivacaftor monotherapy. This finding has not been observed in foetuses derived from rat dams treated with ivacaftor on gestation days 7 to 17, in rat pups exposed to ivacaftor through milk ingestion up to postnatal day 20, in 7-week old rats, nor in 3.5 to 5-month old dogs treated with ivacaftor. The potential relevance of these findings in humans is unknown.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Tablet core

Cellulose, microcrystalline
Lactose monohydrate
Hypromellose acetate succinate
Croscarmellose sodium
Sodium laurilsulfate (E487)
Silica, colloidal anhydrous
Magnesium stearate

Tablet film coat

Polyvinyl alcohol
Titanium dioxide (E171)
Macrogol (PEG 3350)
Talc
Indigo carmine aluminium lake (E132)
Carnauba wax
Printing ink

Shellac
Iron oxide black (E172)
Propylene glycol (E1520)
Ammonia solution, concentrated

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

4 years.

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

6.5 Nature and contents of container

Thermoform (PolyChloroTriFluoroEthylene [PCTFE]/foil) blister or a High-Density PolyEthylene (HDPE) bottle with a polypropylene child-resistant closure, foil-lined induction seal and molecular sieve desiccant.

Kalydeco 75 mg film-coated tablets

The following pack sizes are available:
• Blister card pack containing 28 film-coated tablets

Kalydeco 150 mg film-coated tablets

The following pack sizes are available:
• Blister card pack containing 28 film-coated tablets
• Blister pack containing 56 film-coated tablets
• Bottle containing 56 film-coated tablets

Not all pack sizes may be marketed

6.6 Special precautions for disposal and other handling

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland
8. MARKETING AUTHORISATION NUMBER(S)

EU/1/12/782/001
EU/1/12/782/002
EU/1/12/782/005
EU/1/12/782/007

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 23 July 2012
Date of latest renewal: 29 April 2022

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
1. NAME OF THE MEDICINAL PRODUCT

Kalydeco 25 mg granules in sachet
Kalydeco 50 mg granules in sachet
Kalydeco 75 mg granules in sachet

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Kalydeco 25 mg granules in sachet

Each sachet contains 25 mg of ivacaftor.

Excipient with known effect

Each sachet contains 36.6 mg of lactose monohydrate.

Kalydeco 50 mg granules in sachet

Each sachet contains 50 mg of ivacaftor.

Excipient with known effect

Each sachet contains 73.2 mg of lactose monohydrate.

Kalydeco 75 mg granules in sachet

Each sachet contains 75 mg of ivacaftor.

Excipient with known effect

Each sachet contains 109.8 mg of lactose monohydrate.

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Granules in sachet

White to off-white granules approximately 2 mm in diameter.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Kalydeco granules are indicated for the treatment of infants aged at least 4 months, toddlers and children weighing 5 kg to less than 25 kg with cystic fibrosis (CF) who have an *R117H CFTR* mutation or one of the following gating (class III) mutations in the *CFTR* gene: *G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N* or *S549R* (see sections 4.4 and 5.1).

4.2 Posology and method of administration

Kalydeco should only be prescribed by physicians with experience in the treatment of cystic fibrosis. If the patient's genotype is unknown, an accurate and validated genotyping method should be
performed before starting treatment to confirm the presence of an indicated mutation in at least one allele of the \textit{CFTR} gene (see section 4.1). The phase of the poly-T variant identified with the \textit{R117H} mutation should be determined in accordance with local clinical recommendation.

Posology

Infants aged at least 4 months, toddlers, children, adolescents and adults should be dosed according to Table 1.

Table 1: Dosing recommendations for patients aged 4 months and older

<table>
<thead>
<tr>
<th>Age</th>
<th>Weight</th>
<th>Dose</th>
<th>Total daily dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 months to less than 6 months</td>
<td>\geq 5 kg</td>
<td>25 mg granules taken orally every 12 hours with fat-containing food</td>
<td>50 mg</td>
</tr>
<tr>
<td></td>
<td>\geq 5 kg to < 7 kg</td>
<td>25 mg granules taken orally every 12 hours with fat-containing food</td>
<td>50 mg</td>
</tr>
<tr>
<td></td>
<td>\geq 7 kg to < 14 kg</td>
<td>50 mg granules taken orally every 12 hours with fat-containing food</td>
<td>100 mg</td>
</tr>
<tr>
<td></td>
<td>\geq 14 kg to < 25 kg</td>
<td>75 mg granules taken orally every 12 hours with fat-containing food</td>
<td>150 mg</td>
</tr>
<tr>
<td></td>
<td>\geq 25 kg</td>
<td>See Kalydeco tablets SmPC for further details.</td>
<td></td>
</tr>
</tbody>
</table>

Missed dose

If 6 hours or less have passed since the missed morning or evening dose, the patient should be advised to take it as soon as possible and then take the next dose at the regularly scheduled time. If more than 6 hours have passed since the time the dose is usually taken, the patient should be advised to wait until the next scheduled dose.

Concomitant use of CYP3A inhibitors

When co-administered with strong inhibitors of CYP3A in patients aged 6 months and older, the ivacaftor dose should be reduced to one sachet (ivacaftor 25 mg for patients 5 kg to < 7 kg; ivacaftor 50 mg for patients 7 kg to < 14 kg; ivacaftor 75 mg for patients 14 kg to < 25 kg) twice a week (see sections 4.4 and 4.5).

When co-administered with moderate inhibitors of CYP3A in patients aged 6 months and older, the ivacaftor dose is as above recommended but administered once daily (see sections 4.4 and 4.5).

Due to the variability in maturation of the cytochrome (CYP) enzymes involved in ivacaftor metabolism, treatment with ivacaftor is not recommended when co-administered with moderate or strong inhibitors of CYP3A in patients aged 4 months to less than 6 months, unless the benefits outweigh the risks. In such cases, the recommended dose is one packet of 25 mg granules twice weekly or less frequently (see sections 4.4 and 4.5). Dosing intervals should be modified according to clinical response and tolerability (see sections 4.4 and 5.2).

Special populations

Renal impairment

No dose adjustment is necessary for patients with mild to moderate renal impairment. Caution is recommended in patients with severe renal impairment (creatinine clearance less than or equal to 30 mL/min) or end-stage renal disease (see sections 4.4 and 5.2).

Hepatic impairment

No dose adjustment is necessary for patients aged 6 months and older with mild hepatic impairment (Child-Pugh Class A). For patients aged 6 months and older with moderate hepatic impairment
(Child-Pugh Class B), a reduced dose of one sachet (ivacaftor 25 mg for patients 5 kg to < 7 kg; ivacaftor 50 mg for patients 7 kg to < 14 kg; ivacaftor 75 mg for patients 14 kg to < 25 kg) once daily is recommended. There is no experience of the use of ivacaftor in patients aged 6 months and older with severe hepatic impairment (Child-Pugh Class C); therefore, its use is not recommended unless the benefits outweigh the risks. In such cases, the starting dose should be as above recommended, administered every other day. Dosing intervals should be modified according to clinical response and tolerability (see sections 4.4 and 5.2).

Due to variability in maturation of cytochrome (CYP) enzymes involved in ivacaftor metabolism, treatment with ivacaftor is not recommended in patients aged 4 months to less than 6 months with hepatic impairment, unless the benefits outweigh the risks. In such cases, the recommended dose is one sachet (ivacaftor 25 mg) once daily or less frequently. Dosing intervals should be modified according to clinical response and tolerability (see sections 4.4 and 5.2).

Paediatric population

The safety and efficacy of ivacaftor in children aged less than 4 months have not been established. No data are available.

Limited data are available in patients less than 6 years of age with an R117H mutation in the CFTR gene. Available data in patients aged 6 years and older are described in sections 4.8, 5.1 and 5.2.

Method of administration

For oral use.

Each sachet is for single use only.

Each sachet of granules should be mixed with 5 mL of age-appropriate soft food or liquid and completely and immediately consumed. Food or liquid should be at room temperature or below. If not immediately consumed, the mixture has been shown to be stable for one hour and therefore should be ingested during this period. A fat-containing meal or snack should be consumed just before or just after dosing.

Food or drink containing grapefruit should be avoided during treatment (see section 4.5).

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

4.4 Special warnings and precautions for use

Only patients with CF who had a G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N or S549R gating (class III) or G970R mutation in at least one allele of the CFTR gene were included in studies 1, 2, 5 and 7 (see section 5.1).

Less evidence of a positive effect of ivacaftor has been shown for patients with an R117H-7T mutation associated with less severe disease in study 6 (see section 5.1).

In study 5, four patients with the G970R mutation were included. In three of four patients the change in the sweat chloride test was < 5 mmol/L and this group did not demonstrate a clinically relevant improvement in FEV1 after 8 weeks of treatment. Clinical efficacy in patients with the G970R mutation of the CFTR gene could not be established (see section 5.1).

Efficacy results from a phase 2 study in patients with CF who are homozygous for the F508del mutation in the CFTR gene showed no statistically significant difference in FEV1 over 16 weeks of
ivacaftor treatment compared to placebo (see section 5.1). Therefore, use of ivacaftor as monotherapy in these patients is not recommended.

Effect on liver function tests

Moderate transaminase (alanine transaminase [ALT] or aspartate transaminase [AST]) elevations are common in subjects with CF. Transaminase elevations have been observed in some patients treated with ivacaftor as monotherapy. Therefore, liver function tests are recommended for all patients prior to initiating ivacaftor, every 3 months during the first year of treatment and annually thereafter. For all patients with a history of transaminase elevations, more frequent monitoring of liver function tests should be considered. In the event of significant elevations of transaminases (e.g., patients with ALT or AST > 5 × the upper limit of normal (ULN), or ALT or AST > 3 × ULN with bilirubin > 2 × ULN), dosing should be interrupted, and laboratory tests closely followed until the abnormalities resolve. Following resolution of transaminase elevations, the benefits and risks of resuming treatment should be considered (see section 4.8).

Hepatic impairment

Use of ivacaftor is not recommended in patients with severe hepatic impairment unless the benefits are expected to outweigh the risks (see sections 4.2 and 5.2). No safety data are available in infants aged 4 to less than 12 months of age with moderate or severe hepatic impairment treated with ivacaftor.

Renal impairment

Caution is recommended while using ivacaftor in patients with severe renal impairment or end-stage renal disease (see sections 4.2 and 5.2).

Patients after organ transplantation

Ivacaftor has not been studied in patients with CF who have undergone organ transplantation. Therefore, use in transplanted patients is not recommended. See section 4.5 for interactions with ciclosporin or tacrolimus.

Interactions with medicinal products

CYP3A inducers

Exposure to ivacaftor is significantly decreased by the concomitant use of CYP3A inducers, potentially resulting in the loss of ivacaftor efficacy; therefore, co-administration of ivacaftor with strong CYP3A inducers is not recommended (see section 4.5).

CYP3A inhibitors

Exposure to ivacaftor is increased when co-administered with strong or moderate CYP3A inhibitors. The dose of ivacaftor must be adjusted when used concomitantly with strong or moderate CYP3A inhibitors (see sections 4.2 and 4.5). No safety data are available in infants aged 4 to less than 12 months of age who are treated with ivacaftor and moderate or strong CYP3A inhibitors (see sections 4.2 and 4.5).

Paediatric population

Cases of non-congenital lens opacities/cataracts without impact on vision have been reported in paediatric patients treated with ivacaftor. Although other risk factors were present in some cases (such as corticosteroid use and exposure to radiation), a possible risk attributable to treatment with ivacaftor cannot be excluded. Baseline and follow-up ophthalmological examinations are recommended in paediatric patients initiating ivacaftor treatment.
Lactose content

Kalydeco contains lactose. Patients with rare hereditary problems of galactose intolerance, total lactase deficiency or glucose-galactose malabsorption should not take this medicinal product.

Sodium content

This medicinal product contains less than 1 mmol sodium (23 mg) per dose, that is to say essentially ‘sodium-free’.

4.5 Interaction with other medicinal products and other forms of interaction

Ivacaftor is a substrate of CYP3A4 and CYP3A5. It is a weak inhibitor of CYP3A and P-gp and a potential inhibitor of CYP2C9. *In vitro* studies showed that ivacaftor is not a substrate for P-gp.

Medicinal products affecting the pharmacokinetics of ivacaftor

CYP3A inducers

Co-administration of ivacaftor with rifampicin, a strong CYP3A inducer, decreased ivacaftor exposure (AUC) by 89% and decreased hydroxymethyl ivacaftor (M1) to a lesser extent than ivacaftor. Co-administration of ivacaftor with strong CYP3A inducers, such as rifampicin, rifabutin, phenobarbital, carbamazepine, phenytoin and St. John’s wort (*Hypericum perforatum*), is not recommended (see section 4.4).

No dose adjustment is recommended when ivacaftor is used with moderate or weak CYP3A inducers.

CYP3A inhibitors

Ivacaftor is a sensitive CYP3A substrate. Co-administration with ketoconazole, a strong CYP3A inhibitor, increased ivacaftor exposure (measured as area under the curve [AUC]) by 8.5-fold and increased M1 to a lesser extent than ivacaftor. A reduction of the ivacaftor dose is recommended for co-administration with strong CYP3A inhibitors, such as ketoconazole, itraconazole, posaconazole, voriconazole, telithromycin and clarithromycin (see sections 4.2 and 4.4).

Co-administration of ivacaftor with fluconazole, a moderate inhibitor of CYP3A, increased ivacaftor exposure by 3-fold and increased M1 to a lesser extent than ivacaftor. A reduction of the ivacaftor dose is recommended for patients taking concomitant moderate CYP3A inhibitors, such as fluconazole, erythromycin, and verapamil (see sections 4.2 and 4.4).

Co-administration of ivacaftor with grapefruit juice, which contains one or more components that moderately inhibit CYP3A, may increase exposure to ivacaftor. Food or drink containing grapefruit should be avoided during treatment with ivacaftor (see section 4.2).

Potential for ivacaftor to interact with transporters

In vitro studies showed that ivacaftor is not a substrate for OATP1B1 or OATP1B3. Ivacaftor and its metabolites are substrates of BCRP *in vitro*. Due to its high intrinsic permeability and low likelihood of being excreted intact, co-administration of BCRP inhibitors is not expected to alter exposure of ivacaftor and M1-IVA, while any potential changes in M6-IVA exposures are not expected to be clinically relevant.

Ciprofloxacin

Co-administration of ciprofloxacin with ivacaftor did not affect the exposure of ivacaftor. No dose adjustment is required when ivacaftor is co-administered with ciprofloxacin.
Medicinal products affected by ivacaftor

Administration of ivacaftor may increase systemic exposure of medicinal products that are sensitive substrates of CYP2C9, and/or P-gp, and/or CYP3A which may increase or prolong their therapeutic effect and adverse reactions.

CYP2C9 substrates

Ivacaftor may inhibit CYP2C9. Therefore, monitoring of the international normalised ratio (INR) is recommended during co-administration of warfarin with ivacaftor. Other medicinal products for which exposure may be increased include glimepiride and glipizide; these medicinal products should be used with caution.

Digoxin and other P-gp substrates

Co-administration with digoxin, a sensitive P-gp substrate, increased digoxin exposure by 1.3-fold, consistent with weak inhibition of P-gp by ivacaftor. Administration of ivacaftor may increase systemic exposure of medicinal products that are sensitive substrates of P-gp, which may increase or prolong their therapeutic effect and adverse reactions. When used concomitantly with digoxin or other substrates of P-gp with a narrow therapeutic index, such as ciclosporin, everolimus, sirolimus or tacrolimus, caution and appropriate monitoring should be used.

CYP3A substrates

Co-administration with (oral) midazolam, a sensitive CYP3A substrate, increased midazolam exposure 1.5-fold, consistent with weak inhibition of CYP3A by ivacaftor. No dose adjustment of CYP3A substrates, such as midazolam, alprazolam, diazepam or triazolam, is required when these are co-administered with ivacaftor.

Hormonal contraceptives

Ivacaftor has been studied with an oestrogen/progesterone oral contraceptive and was found to have no significant effect on the exposures of the oral contraceptive. Therefore, no dose adjustment of oral contraceptives is necessary.

Paediatric population

Interaction studies have only been performed in adults.

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no or limited amount of data (less than 300 pregnancy outcomes) from the use of ivacaftor in pregnant women. Animals studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity (see section 5.3). As a precautionary measure, it is preferable avoid the use of ivacaftor during pregnancy.

Breast-feeding

It is unknown whether ivacaftor and/or its metabolites are excreted in human milk. Available pharmacokinetic data in animals have shown excretion of ivacaftor in milk of lactating female rats. As such, a risk to the newborns/infants cannot be excluded. A decision must be made whether to discontinue breast-feeding or to discontinue/abstain from ivacaftor therapy taking into account the benefit of breast-feeding for the child and the benefit of therapy for the woman.
Fertility

There are no data available on the effect of ivacaftor on fertility in humans. Ivacaftor had an effect on fertility in rats (see section 5.3).

4.7 Effects on ability to drive and use machines

Ivacaftor has minor influence on the ability to drive and use machines. Ivacaftor may cause dizziness (see section 4.8) and, therefore, patients experiencing dizziness should be advised not to drive or use machines until symptoms abate.

4.8 Undesirable effects

Summary of the safety profile

The most common adverse reactions experienced by patients aged 6 years and older are headache (23.9%), oropharyngeal pain (22.0%), upper respiratory tract infection (22.0%), nasal congestion (20.2%), abdominal pain (15.6%), nasopharyngitis (14.7%), diarrhoea (12.8%), dizziness (9.2%), rash (12.8%) and bacteria in sputum (12.8%). Transaminase elevations occurred in 12.8% of ivacaftor-treated patients versus 11.5% of placebo-treated patients.

In patients aged 2 to less than 6 years the most common adverse reactions were nasal congestion (26.5%), upper respiratory tract infection (23.5%), transaminase elevations (14.7%), rash (11.8%), and bacteria in sputum (11.8%).

Serious adverse reactions in patients who received ivacaftor included abdominal pain and transaminase elevations (see section 4.4).

Tabulated list of adverse reactions

Table 2 reflects the adverse reactions observed with ivacaftor in clinical trials (placebo-controlled and uncontrolled studies) in which the length of exposure to ivacaftor ranged from 16 weeks to 144 weeks. The frequency of adverse reactions is defined as follows: very common (≥ 1/10); common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1,000); very rare (< 1/10,000); not known (cannot be estimated from the available data). Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.

Table 2: Adverse reactions

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Adverse reactions</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Upper respiratory tract infection</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Nasopharyngitis</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Rhinitis</td>
<td>common</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Headache</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Dizziness</td>
<td>very common</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Ear pain</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Ear discomfort</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Tinnitus</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Tympanic membrane hyperaemia</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Vestibular disorder</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Ear congestion</td>
<td>uncommon</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Oropharyngeal pain</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Nasal congestion</td>
<td>very common</td>
</tr>
<tr>
<td></td>
<td>Sinus congestion</td>
<td>common</td>
</tr>
<tr>
<td></td>
<td>Pharyngeal erythema</td>
<td>common</td>
</tr>
</tbody>
</table>
System organ class

<table>
<thead>
<tr>
<th>Adverse reactions</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>very common</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>very common</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td></td>
</tr>
<tr>
<td>Transaminase elevations</td>
<td>very common</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>very common</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td></td>
</tr>
<tr>
<td>Breast mass</td>
<td>common</td>
</tr>
<tr>
<td>Breast inflammation</td>
<td>uncommon</td>
</tr>
<tr>
<td>Gynaecomastia</td>
<td>uncommon</td>
</tr>
<tr>
<td>Nipple disorder</td>
<td>uncommon</td>
</tr>
<tr>
<td>Nipple pain</td>
<td>uncommon</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
</tr>
<tr>
<td>Bacteria in sputum</td>
<td>very common</td>
</tr>
</tbody>
</table>

Description of selected adverse reactions

Transaminase elevations

During the 48-week placebo-controlled studies 1 and 2 in patients aged 6 years and older, the incidence of maximum transaminase (ALT or AST) > 8, > 5 or > 3 × ULN was 3.7%, 3.7% and 8.3% in ivacaftor-treated patients and 1.0%, 1.9% and 8.7% in placebo-treated patients, respectively. Two patients, one on placebo and one on ivacaftor, permanently discontinued treatment for elevated transaminases, each > 8 × ULN. No ivacaftor-treated patients experienced a transaminase elevation > 3 × ULN associated with elevated total bilirubin > 1.5 × ULN. In ivacaftor-treated patients, most transaminase elevations up to 5 × ULN resolved without treatment interruption. Ivacaftor dosing was interrupted in most patients with transaminase elevations > 5 × ULN. In all instances where dosing was interrupted for elevated transaminases and subsequently resumed, ivacaftor dosing was able to be resumed successfully (see section 4.4).

During the placebo-controlled phase 3 studies (up to 24 weeks) of tezacaftor/ivacaftor, the incidence of maximum transaminase (ALT or AST) > 8, > 5, or > 3 × ULN were 0.2%, 1.0%, and 3.4% in tezacaftor/ivacaftor treated patients, and 0.4%, 1.0%, and 3.4% in placebo-treated patients. One patient (0.2%) on therapy and 2 patients (0.4%) on placebo permanently discontinued treatment for elevated transaminases. No patients treated with tezacaftor/ivacaftor experienced a transaminase elevation > 3 × ULN associated with elevated total bilirubin > 2 × ULN.

During the 24-week, placebo-controlled, phase 3 study of ivacaftor/tezacaftor/elexacaftor, these figures were 1.5%, 2.5%, and 7.9% in ivacaftor/tezacaftor/elexacaftor treated patients and 1.0%, 1.5%, and 5.5% in placebo-treated patients. The incidence of adverse reactions of transaminase elevations was 10.9% in ivacaftor in a combination regimen with ivacaftor/tezacaftor/elexacaftor treated patients and 4.0% in placebo-treated patients.

Paediatric population

The safety data of ivacaftor were evaluated in 6 patients between 4 months to less than 6 months of age, 11 patients between 6 months to less than 12 months of age, 19 patients between 12 months to less than 24 months of age, 34 patients between 2 to less than 6 years of age, 61 patients between 6 to less than 12 years of age and 94 patients between 12 to less than 18 years of age.

The safety profile is generally consistent among paediatric patients aged 4 months and older and is also consistent with adult patients.

The incidence of transaminase elevations (ALT or AST) observed in studies 2, 5 and 6 (patients aged 6 to less than 12 years), study 7 (patients aged 2 to less than 6 years), and study 8 (patients aged 6 to less than 24 months) are described in Table 3. In the placebo controlled studies, the incidence of
transaminase elevations were similar between treatment with ivacaftor (15.0%) and placebo (14.6%). Peak LFT elevations were generally higher in paediatric patients than in older patients. Across all populations, peak LFT elevations returned to baseline levels following interruption, and in almost all instances where dosing was interrupted for elevated transaminases and subsequently resumed, ivacaftor dosing was able to be resumed successfully (see section 4.4). Cases suggestive of positive rechallenge were observed. In study 7 ivacaftor was permanently discontinued in one patient. In study 8 no patients had elevations in total bilirubin or discontinued ivacaftor treatment due to transaminase elevations in either age cohort (see section 4.4 for management of elevated transaminases).

Table 3: Transaminase elevations in patients 4 months to < 12 years treated with ivacaftor as monotherapy

<table>
<thead>
<tr>
<th>Age Group</th>
<th>n</th>
<th>% of Patients > 3 × ULN</th>
<th>% of Patients > 5 × ULN</th>
<th>% of Patients > 8 × ULN</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 to < 12 years</td>
<td>40</td>
<td>15.0% (6)</td>
<td>2.5% (1)</td>
<td>2.5% (1)</td>
</tr>
<tr>
<td>2 to < 6 years</td>
<td>34</td>
<td>14.7% (5)</td>
<td>14.7% (5)</td>
<td>14.7% (5)</td>
</tr>
<tr>
<td>12 to < 24 months</td>
<td>18</td>
<td>27.8% (5)</td>
<td>11.1% (2)</td>
<td>11.1% (2)</td>
</tr>
<tr>
<td>6 to < 12 months</td>
<td>11</td>
<td>9.1% (1)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
<tr>
<td>4 to < 6 months</td>
<td>6</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
<td>0.0% (0)</td>
</tr>
</tbody>
</table>

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

No specific antidote is available for overdose with ivacaftor. Treatment of overdose consists of general supportive measures including monitoring of vital signs, liver function tests and observation of the clinical status of the patient.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Other respiratory system products, ATC code: R07AX02

Mechanism of action

Ivacaftor is a potentiator of the CFTR protein, i.e., in vitro ivacaftor increases CFTR channel gating to enhance chloride transport in specified gating mutations (as listed in section 4.1) with reduced channel-open probability compared to normal CFTR. Ivacaftor also potentiated the channel-open probability of R117H-CFTR, which has both low channel-open probability (gating) and reduced channel current amplitude (conductance). The G970R mutation causes a splicing defect resulting in little-to-no CFTR protein at the cell surface which may explain the results observed in subjects with this mutation in study 5 (see Pharmacodynamic effects and Clinical efficacy and safety).

In vitro responses seen in single channel patch clamp experiments using membrane patches from rodent cells expressing mutant CFTR forms do not necessarily correspond to in vivo pharmacodynamic response (e.g., sweat chloride) or clinical benefit. The exact mechanism leading ivacaftor to potentiate the gating activity of normal and some mutant CFTR forms in this system has not been completely elucidated.
Pharmacodynamic effects

In studies 1 and 2 in patients with the G551D mutation in one allele of the CFTR gene, ivacaftor led to rapid (15 days), substantial (the mean change in sweat chloride from baseline through week 24 was -48 mmol/L [95% CI -51, -45] and -54 mmol/L [95% CI -62, -47], respectively) and sustained (through 48 weeks) reductions in sweat chloride concentration.

In study 5, part 1 in patients who had a non-G551D gating mutation in the CFTR gene, treatment with ivacaftor led to a rapid (15 days) and substantial mean change from baseline in sweat chloride of -49 mmol/L (95% CI -57, -41) through 8 weeks of treatment. However, in patients with the G970R-CFTR mutation, the mean (SD) absolute change in sweat chloride at week 8 was -6.25 (6.55) mmol/L. Similar results to part 1 were seen in part 2 of the study. At the 4-week follow-up visit (4 weeks after dosing with ivacaftor ended), mean sweat chloride values for each group were trending to pre-treatment levels.

In study 6 in patients aged 6 years or older with CF who had an R117H mutation in the CFTR gene, the treatment difference in mean change in sweat chloride from baseline through 24 weeks of treatment was -24 mmol/L (95% CI -28, -20). In subgroup analyses by age, the treatment difference was -21.87 mmol/L (95% CI: -26.46, -17.28) in patients aged 18 years or older, and -27.63 mmol/L (95% CI: -37.16, -18.10) in patients aged 6-11 years. Two patients 12 to 17 years of age were enrolled in this study.

In study 7 in patients aged 2 to less than 6 years with a gating mutation on at least 1 allele of the CFTR gene administered either 50 mg or 75 mg of ivacaftor twice daily, the mean absolute change from baseline in sweat chloride was -47 mmol/L (95% CI -58, -36) at week 24.

In study 8 in patients with CF aged less than 24 months, the mean absolute change from baseline in sweat chloride was -65.1 mmol/L (95% CI -74.1, -56.0) at week 24. Results were consistent in the 12 months to less than 24 months, 6 months to less than 12 months, and 4 months to less than 6 months age cohorts.

Clinical efficacy and safety

Studies 1 and 2: studies in patients with CF with G551D gating mutations

The efficacy of ivacaftor has been evaluated in two phase 3 randomised, double-blind, placebo-controlled, multi-centre studies of clinically stable patients with CF who had the G551D mutation in the CFTR gene on at least 1 allele and had FEV1 ≥ 40% predicted.

Patients in both studies were randomised 1:1 to receive either 150 mg of ivacaftor or placebo every 12 hours with food containing fat for 48 weeks in addition to their prescribed CF therapies (e.g., tobramycin, dornase alfa). The use of inhaled hypertonic sodium chloride was not permitted.

Study 1 evaluated 161 patients who were 12 years of age or older; 122 (75.8%) patients had the F508del mutation in the second allele. At the start of the study, patients in the placebo group used some medicinal products at a higher frequency than the ivacaftor group. These medicinal products included dornase alfa (73.1% versus 65.1%), salbutamol (53.8% versus 42.2%), tobramycin (44.9% versus 33.7%) and salmeterol/fluticasone (41.0% versus 27.7%). At baseline, mean predicted FEV1 was 63.6% (range: 31.6% to 98.2%) and mean age was 26 years (range: 12 to 53 years).

Study 2 evaluated 52 patients who were 6 to 11 years of age at screening; mean (SD) body weight was 30.9 (8.63) kg; 42 (80.8%) patients had the F508del mutation in the second allele. At baseline, mean predicted FEV1 was 84.2% (range: 44.0% to 133.8%) and mean age was 9 years (range: 6 to 12 years); 8 (30.8%) patients in the placebo group and 4 (15.4%) patients in the ivacaftor group had an FEV1 less than 70% predicted at baseline.
The primary efficacy endpoint in both studies was the mean absolute change from baseline in percent predicted FEV₁ through 24 weeks of treatment.

The treatment difference between ivacaftor and placebo for the mean absolute change (95% CI) in percent predicted FEV₁ from baseline through week 24 was 10.6 percentage points (8.6, 12.6) in study 1 and 12.5 percentage points (6.6, 18.3) in study 2. The treatment difference between ivacaftor and placebo for the mean relative change (95% CI) in percent predicted FEV₁ from baseline through week 24 was 17.1% (13.9, 20.2) in study 1 and 15.8% (8.4, 23.2) in study 2. The mean change from baseline through week 24 in FEV₁ (L) was 0.37 L in the ivacaftor group and 0.01 L in the placebo group in study 1 and 0.30 L in the ivacaftor group and 0.07 L in the placebo group in study 2. In both studies, improvements in FEV₁ were rapid in onset (day 15) and durable through 48 weeks.

The treatment difference between ivacaftor and placebo for the mean absolute change (95% CI) in percent predicted FEV₁ from baseline through week 24 in patients 12 to 17 years of age in study 1 was 11.9 percentage points (5.9, 17.9). The treatment difference between ivacaftor and placebo for the mean absolute change (95% CI) in percent predicted FEV₁ from baseline through week 24 in patients with baseline predicted FEV₁ greater than 90% in study 2 was 6.9 percentage points (-3.8, 17.6).

The results for clinically relevant secondary endpoints are shown in Table 4.

Table 4: Effect of ivacaftor on other efficacy endpoints in studies 1 and 2

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Study 1</th>
<th></th>
<th></th>
<th>Study 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment difference (95% CI)</td>
<td>P value</td>
<td>Treatment difference (95% CI)</td>
<td>P value</td>
<td></td>
</tr>
<tr>
<td>Mean absolute change from baseline in CFQ-R³ respiratory domain score (points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Through week 24</td>
<td>8.1 (4.7, 11.4)</td>
<td>< 0.0001</td>
<td>6.1 (-1.4, 13.5)</td>
<td>0.1092</td>
<td></td>
</tr>
<tr>
<td>Through week 48</td>
<td>8.6 (5.3, 11.9)</td>
<td>< 0.0001</td>
<td>5.1 (-1.6, 11.8)</td>
<td>0.1354</td>
<td></td>
</tr>
<tr>
<td>Relative risk of pulmonary exacerbation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Through week 24</td>
<td>0.40³</td>
<td>0.0016</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Through week 48</td>
<td>0.46³</td>
<td>0.0012</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Mean absolute change from baseline in body weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At week 24</td>
<td>2.8 (1.8, 3.7)</td>
<td>< 0.0001</td>
<td>1.9 (0.9, 2.9)</td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td>At week 48</td>
<td>2.7 (1.3, 4.1)</td>
<td>0.0001</td>
<td>2.8 (1.3, 4.2)</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>Mean absolute change from baseline in BMI (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At week 24</td>
<td>0.94 (0.62, 1.26)</td>
<td>< 0.0001</td>
<td>0.81 (0.34, 1.28)</td>
<td>0.0008</td>
<td></td>
</tr>
<tr>
<td>At week 48</td>
<td>0.93 (0.48, 1.38)</td>
<td>< 0.0001</td>
<td>1.09 (0.51, 1.67)</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>Mean change from baseline in z-scores</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight-for-age z-score at week 48⁸</td>
<td>0.33 (0.04, 0.62)</td>
<td>0.0260</td>
<td>0.39 (0.24, 0.53)</td>
<td>< 0.0001</td>
<td></td>
</tr>
<tr>
<td>BMI-for-age z-score at week 48⁸</td>
<td>0.33 (0.002, 0.65)</td>
<td>0.0490</td>
<td>0.45 (0.26, 0.65)</td>
<td>< 0.0001</td>
<td></td>
</tr>
</tbody>
</table>
CI: confidence interval; NA: not analysed due to low incidence of events

a Treatment difference = effect of ivacaftor – effect of placebo

b CFQ-R: Cystic Fibrosis Questionnaire-Revised is a disease-specific, health-related quality-of-life measure for CF.

c Study 1 data were pooled from CFQ-R for adults/adolescents and CFQ-R for children 12 to 13 years of age; Study 2 data were obtained from CFQ-R for children 6 to 11 years of age.

d Hazard ratio for time to first pulmonary exacerbation

e In subjects under 20 years of age (CDC growth charts)

Study 5: study in patients with CF with non-G551D gating mutations

Study 5 was a phase 3, two-part, randomised, double-blind, placebo-controlled, crossover study (part 1) followed by a 16-week open-label extension period (part 2) to evaluate the efficacy and safety of ivacaftor in patients with CF aged 6 years and older who have a G970R or non-G551D gating mutation in the CFTR gene (G178R, S549N, S549R, G551S, G1244E, S1251N, S1255P or G1349D).

In part 1, patients were randomised 1:1 to receive either 150 mg of ivacaftor or placebo every 12 hours with fat-containing food for 8 weeks in addition to their prescribed CF therapies and crossed over to the other treatment for the second 8 weeks after a 4- to 8-week washout period. The use of inhaled hypertonic saline was not permitted. In part 2, all patients received ivacaftor as indicated in part 1 for 16 additional weeks. The duration of continuous ivacaftor treatment was 24 weeks for patients randomised to the part 1 placebo/ivacaftor treatment sequence and 16 weeks for patients randomised to part 1 ivacaftor/placebo treatment sequence.

Thirty-nine patients (mean age 23 years) with baseline FEV1 ≥ 40% predicted (mean FEV1 78% predicted [range: 43% to 119%]) were enrolled. Sixty-two percent (24/39) of them carried the F508del-CFTR mutation in the second allele. A total of 36 patients continued into part 2 (18 per treatment sequence).

In part 1 of study 5, the mean FEV1 percent predicted at baseline in placebo-treated patients was 79.3% while in ivacaftor-treated patients this value was 76.4%. The mean overall post-baseline value was 76.0% and 83.7%, respectively. The mean absolute change from baseline through week 8 in percent predicted FEV1 (primary efficacy endpoint) was 7.5% in the ivacaftor period and -3.2% in the placebo period. The observed treatment difference (95% CI) between ivacaftor and placebo was 10.7% (7.3, 14.1) (P < 0.0001).

The effect of ivacaftor in the overall population of study 5 (including the secondary endpoints absolute change in BMI at 8 weeks of treatment and absolute change in the respiratory domain score of the CFQ-R through 8 weeks of treatment) and by individual mutation (absolute change in sweat chloride and in percent predicted FEV1 at week 8) is shown in Table 5. Based on clinical (percent predicted FEV1) and pharmacodynamic (sweat chloride) responses to ivacaftor, efficacy in patients with the G970R mutation could not be established.

Table 5: Effect of ivacaftor for efficacy variables in the overall population and for specific CFTR mutations

<table>
<thead>
<tr>
<th>Absolute change in percent predicted FEV1</th>
<th>BMI (kg/m²)</th>
<th>CFQ-R respiratory domain score (points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through week 8</td>
<td>At week 8</td>
<td>Through week 8</td>
</tr>
<tr>
<td>All patients (N = 39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results shown as mean (95% CI) change from baseline ivacaftor vs. placebo-treated patients:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.7 (7.3, 14.1)</td>
<td>0.66 (0.34, 0.99)</td>
<td>9.6 (4.5, 14.7)</td>
</tr>
</tbody>
</table>

Patients grouped under mutation types (n)

Results shown as mean (minimum, maximum) change from baseline for ivacaftor-treated patients at week 8:

<table>
<thead>
<tr>
<th>Mutation (n)</th>
<th>Absolute change in sweat chloride (mmol/L)</th>
<th>Absolute change in percent predicted FEV1 (percentage points)</th>
</tr>
</thead>
</table>
In part 2 of study 5, the mean (SD) absolute change in percent predicted FEV₁ following 16 weeks (patients randomised to the ivacaftor/placebo treatment sequence in part 1) of continuous ivacaftor treatment was 10.4% (13.2%). At the follow-up visit 4 weeks after ivacaftor dosing had ended, the mean (SD) absolute change in percent predicted FEV₁ from part 2 week 16 was -5.9% (9.4%). For patients randomised to the placebo/ivacaftor treatment sequence in part 1 there was a further mean (SD) change of 3.3% (9.3%) in percent predicted FEV₁ after the additional 16 weeks of treatment with ivacaftor. At the follow up visit 4 weeks after ivacaftor dosing had ended, the mean (SD) absolute change in percent predicted FEV₁ from part 2, week 16 was -7.4% (5.5%).

Study 3: study in patients with CF with the F508del mutation in the CFTR gene

Study 3 (part A) was a 16-week, 4:1 randomised, double-blind, placebo-controlled, parallel-group phase 2 study of ivacaftor (150 mg every 12 hours) in 140 patients with CF age 12 years and older who were homozygous for the F508del mutation in the CFTR gene and who had FEV₁ ≥ 40% predicted.

The mean absolute change from baseline through week 16 in percent predicted FEV₁ (primary efficacy endpoint) was 1.5 percentage points in the ivacaftor group and -0.2 percentage points in the placebo group. The estimated treatment difference for ivacaftor versus placebo was 1.7 percentage points (95% CI -0.6, 4.1); this difference was not statistically significant (P = 0.15).

Study 4: open-label extension study

In study 4, patients who completed treatment in studies 1 and 2 with placebo were switched to ivacaftor while patients on ivacaftor continued to receive it for a minimum of 96 weeks, i.e., the length of treatment with ivacaftor was at least 96 weeks for patients in the placebo/ivacaftor group and at least 144 weeks for patients in the ivacaftor/ivacaftor group.

One hundred and forty-four (144) patients from study 1 were rolled over in study 4, 67 in the placebo/ivacaftor group and 77 in the ivacaftor/ivacaftor group. Forty-eight (48) patients from study 2 were rolled over in study 4, 22 in the placebo/ivacaftor group and 26 in the ivacaftor/ivacaftor group.

Table 6 shows the results of the mean (SD) absolute change in percent predicted FEV₁ for both groups of patients. For patients in the placebo/ivacaftor group baseline percent predicted FEV₁ is that of study 4 while for patients in the ivacaftor/ivacaftor group the baseline value is that of studies 1 and 2.

Table 6: Effect of ivacaftor on percent predicted FEV₁ in study 4

<table>
<thead>
<tr>
<th>Original study and treatment group</th>
<th>Duration of ivacaftor treatment (weeks)</th>
<th>Absolute change from baseline in percent predicted FEV₁ (percentage points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Statistical testing was not performed due to small numbers for individual mutations.
† Reflects results from the one patient with the G551S mutation with data at the 8-week time point.
‡‡ n = 3 for the analysis of absolute change in sweat chloride.
Causes a splicing defect resulting in little-to-no CFTR protein at the cell surface.
When the mean (SD) absolute change in percent predicted FEV1 is compared from study 4 baseline for patients in the ivacaftor/ivacaftor group (n = 72) who rolled over from study 1, the mean (SD) absolute change in percent predicted FEV1 was 0.0% (9.05), while for patients in the ivacaftor/ivacaftor group (n = 25) who rolled over from study 2 this figure was 0.6% (9.1). This shows that patients in the ivacaftor/ivacaftor group maintained the improvement seen at week 48 of the initial study (day 0 through week 48) in percent predicted FEV1 through week 144. There were no additional improvements in study 4 (week 48 through week 144).

For patients in the placebo/ivacaftor group from study 1, the annualised rate of pulmonary exacerbations was higher in the initial study when patients were on placebo (1.34 events/year) than during the subsequent study 4 when patients rolled over to ivacaftor (0.48 events/year across day 1 to week 48, and 0.67 events/year across weeks 48 to 96). For patients in the ivacaftor/ivacaftor group from study 1, the annualised rate of pulmonary exacerbations was 0.57 events/year across day 1 to week 48 when patients were on ivacaftor. When they rolled over into study 4, the rate of annualised pulmonary exacerbations was 0.91 events/year across day 1 to week 48 and 0.77 events/year across weeks 48 to 96.

For patients who rolled over from study 2 the number of events was, overall, low.

Study 6: study in patients with CF with an R117H mutation in the CFTR gene

Study 6 evaluated 69 patients who were 6 years of age or older; 53 (76.8%) patients had the F508del mutation in the second allele. The confirmed R117H poly-T variant was 5T in 38 patients and 7T in 16 patients. At baseline, mean predicted FEV1 was 73% (range: 32.5% to 105.5%) and mean age was 31 years (range: 6 to 68 years). The mean absolute change from baseline through week 24 in percent predicted FEV1 (primary efficacy endpoint) was 2.57 percentage points in the ivacaftor group and 0.46 percentage points in the placebo group. The estimated treatment difference for ivacaftor versus placebo was 2.1 percentage points (95% CI -1.1, 5.4).

A pre-planned subgroup analysis was conducted in patients 18 years and older (26 patients on placebo and 24 on ivacaftor). Treatment with ivacaftor resulted in a mean absolute change in percent predicted FEV1 through week 24 of 4.5 percentage points in the ivacaftor group versus -0.46 percentage points in the placebo group. The estimated treatment difference for ivacaftor versus placebo was 5.0 percentage points (95% CI 1.1, 8.8).

In a subgroup analysis in patients with a confirmed R117H-5T genetic variant, the difference in the mean absolute change from baseline through week 24 in percent predicted FEV1 between ivacaftor and placebo was 5.3% (95% CI 1.3, 9.3). In patients with a confirmed R117H-7T genetic variant, the treatment difference between ivacaftor and placebo was 0.2% (95% CI -8.1, 8.5).

For secondary efficacy variables, no treatment differences were observed for ivacaftor versus placebo in absolute change from baseline in BMI at week 24 or time to first pulmonary exacerbation. Treatment differences were observed in absolute change in CFQ-R respiratory domain score through

<table>
<thead>
<tr>
<th></th>
<th>Ivacaftor</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48*</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>144</td>
<td>72</td>
</tr>
<tr>
<td>Placebo</td>
<td>0*</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>9.1 (12.3)</td>
</tr>
</tbody>
</table>

* Treatment occurred during blinded, controlled, 48-week phase 3 study.
† Change from prior study baseline after 48 weeks of placebo treatment.
week 24 (treatment difference of ivacaftor versus placebo was 8.4 [95% CI 2.2, 14.6] points) and for the mean change from baseline in sweat chloride (see Pharmacodynamic effects).

Study 7: study in paediatric patients with CF aged 2 to less than 6 years with G551D or another gating mutation

The pharmacokinetic profile, safety and efficacy of ivacaftor in 34 patients aged 2 to less than 6 years with CF who had a G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N or S549R mutation in the CFTR gene were assessed in a 24-week uncontrolled study with ivacaftor (patients weighing less than 14 kg received ivacaftor 50 mg and patients weighing 14 kg or more received ivacaftor 75 mg). Ivacaftor was administered orally every 12 hours with fat-containing food in addition to their prescribed CF therapies.

Patients in study 7 were aged 2 to less than 6 years (mean age 3 years). Twenty-six patients out of the 34 enrolled (76.5%) had a CFTR genotype G551D/F508del with only 2 patients with a non-G551D mutation (S549N). The mean (SD) sweat chloride at baseline (n = 25) was 97.88 mmol/L (14.00). The mean (SD) faecal elastase-1 value at baseline (n = 27) was 28 µg/g (95).

The primary endpoint of safety was evaluated through week 24 (see section 4.8). Secondary and exploratory efficacy endpoints evaluated were absolute change from baseline in sweat chloride through 24 weeks of treatment, absolute change from baseline in weight, body mass index (BMI) and stature (supported by weight, BMI and stature z-scores) at 24 weeks of treatment, and measures of pancreatic function such as faecal elastase-1. Data on percent predicted FEV1 (exploratory endpoint) were available for 3 patients in the ivacaftor 50 mg group and 17 patients in the 75 mg dosing group.

The mean (SD) overall (both ivacaftor dosing groups combined) absolute change from baseline in BMI at week 24 was 0.32 kg/m² (0.54) and the mean (SD) overall change in BMI-for-age z-score was 0.37 (0.42). The mean (SD) overall change in stature-for-age z-score was -0.01 (0.33). The mean (SD) overall change from baseline in faecal elastase-1 (n = 27) was 99.8 µg/g (138.4). Six patients with initial levels below 200 µg/g achieved, at week 24, a level of ≥ 200 µg/g. The mean (SD) overall change in percent predicted FEV1 from baseline at week 24 (exploratory endpoint) was 1.8 (17.81).

Study 8: study in paediatric patients with CF aged less than 24 months

The pharmacokinetic profile, safety, and efficacy of ivacaftor in patients with CF aged 4 months to less than 24 months were assessed in a completed cohort of patients in an on-going 24-week, open-label, phase 3 clinical study in patients aged less than 24 months (study 8).

Part B of study 8 enrolled 19 patients aged 12 months to less than 24 months (mean age 15.2 months at baseline), with 18 patients completing the 24-week treatment period, 11 patients aged 6 months to less than 12 months (mean age 9.0 months at baseline) with all 11 patients completing the 24-week treatment period, and 6 patients aged 4 months to less than 6 months (mean age 4.5 months at baseline) with all 6 patients completing the 24-week treatment period. Patients received ivacaftor 25 mg, 50 mg or 75 mg according to their age and weight at each study visit (see section 4.2). Ivacaftor was administered orally every 12 hours with fat-containing food. Patients continued on their prescribed standard-of-care CF therapies.

In part B of study 8 the primary endpoint of safety was evaluated through 24 weeks (see section 4.8). Secondary endpoints were evaluation of pharmacokinetics and the absolute change from baseline in sweat chloride through 24 weeks of treatment (see Pharmacodynamic effects). Tertiary endpoints included efficacy measures such as faecal elastase-1 and growth parameters.
For patients aged 4 months to less than 24 months, with both baseline and week 24 values available, mean (SD) weight-for-age, length-for-age, and weight-for-length z-scores are provided in Table 7.

Table 7: Effect of ivacaftor on growth parameters in patients aged 4 months to less than 24 months with baseline and week 24 values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Number of patients</th>
<th>Baseline</th>
<th>Absolute change at week 24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (SD)</td>
<td>Median (min, max)</td>
</tr>
<tr>
<td>Weight–for-age z-score</td>
<td>35</td>
<td>0.17 (0.85)</td>
<td>0.20 [-1.92, 1.79]</td>
</tr>
<tr>
<td>Length-for-age z-score</td>
<td>34</td>
<td>0.06 (1.03)</td>
<td>0.12 [-1.99, 2.79]</td>
</tr>
<tr>
<td>Weight-for-length z-score</td>
<td>34</td>
<td>0.24 (1.01)</td>
<td>0.26 [-1.72, 2.16]</td>
</tr>
</tbody>
</table>

In patients aged 4 months to less than 24 months, with both baseline and week 24 values available, 18 patients were pancreatic insufficient at baseline (defined as faecal elastase-1 < 200 µg/g) with mean (SD) faecal elastase-1 values at baseline and week 24 of 25.5 µg/g (27.6) and 253.6 µg/g (128.3), respectively (mean [SD] absolute change 228.41 µg/g [128.3]). Results were consistent in the 12 months to less than 24 months, 6 months to less than 12 months, and 4 months to less than 6 months age cohorts.

Paediatric population

The European Medicines Agency has deferred the obligation to submit the results of studies with Kalydeco in one or more subsets of the paediatric population in cystic fibrosis (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

The pharmacokinetics of ivacaftor are similar between healthy adult volunteers and patients with CF.

After oral administration of a single 150 mg dose to healthy volunteers in a fed state, the mean (± SD) for AUC and Cmax were 10600 (5260) ng*hr/mL and 768 (233) ng/mL, respectively. After every 12-hour dosing, steady-state plasma concentrations of ivacaftor were reached by days 3 to 5, with an accumulation ratio ranging from 2.2 to 2.9.

Absorption

Following multiple oral dose administrations of ivacaftor, the exposure of ivacaftor generally increased with dose from 25 mg every 12 hours to 450 mg every 12 hours. When given with fat-containing food the exposure of ivacaftor increased approximately 2.5- to 4-fold. Therefore, ivacaftor should be administered with fat-containing food. The median (range) tmax is approximately 4.0 (3.0; 6.0) hours in the fed state.

Ivacaftor granules (2 × 75 mg sachets) had similar bioavailability as the 150 mg tablet when given with fat-containing food to healthy adult subjects. The geometric least squares mean ratio (90% CI) for the granules relative to tablets was 0.951 (0.839, 1.08) for AUC0-∞ and 0.918 (0.750, 1.12) for Cmax. The effect of food on ivacaftor absorption is similar for both formulations, i.e., tablets and granules.

Distribution

Ivacaftor is approximately 99% bound to plasma proteins, primarily to alpha 1-acid glycoprotein and albumin. Ivacaftor does not bind to human red blood cells. After oral administration of ivacaftor
150 mg every 12 hours for 7 days in healthy volunteers in a fed state, the mean (± SD) apparent volume of distribution was 353 L (122).

Biotransformation

Ivacaftor is extensively metabolised in humans. *In vitro* and *in vivo* data indicate that ivacaftor is primarily metabolised by CYP3A. M1 and M6 are the two major metabolites of ivacaftor in humans. M1 has approximately one-sixth the potency of ivacaftor and is considered pharmacologically active. M6 has less than one-fiftieth the potency of ivacaftor and is not considered pharmacologically active.

The effect of the CYP3A4*22 heterozygous genotype on ivacaftor exposure is consistent with the effect of co-administration of a weak CYP3A4 inhibitor, which is not clinically relevant. No dose adjustment of ivacaftor is considered necessary. The effect in CYP3A4*22 homozygous genotype patients is expected to be stronger. However, no data are available for such patients.

Elimination

Following oral administration in healthy volunteers, the majority of ivacaftor (87.8%) was eliminated in the faeces after metabolic conversion. The major metabolites M1 and M6 accounted for approximately 65% of the total dose eliminated with 22% as M1 and 43% as M6. There was negligible urinary excretion of ivacaftor as unchanged parent. The apparent terminal half-life was approximately 12 hours following a single dose in the fed state. The apparent clearance (CL/F) of ivacaftor was similar for healthy subjects and patients with CF. The mean (±SD) CL/F for a single 150 mg dose was 17.3 (8.4) L/hr in healthy subjects.

Linearity/non-linearity

The pharmacokinetics of ivacaftor are generally linear with respect to time or dose ranging from 25 mg to 250 mg.

Special populations

Hepatic impairment

Following a single dose of 150 mg of ivacaftor, adult subjects with moderately impaired hepatic function (Child-Pugh Class B, score 7 to 9) had similar ivacaftor C\textsubscript{max} (mean [± SD] of 735 [331] ng/mL) but an approximately two-fold increase in ivacaftor AUC\textsubscript{0-∞} (mean [± SD] of 16800 [6140] ng*hr/mL) compared with healthy subjects matched for demographics. Simulations for predicting the steady-state exposure of ivacaftor showed that by reducing the dosage from 150 mg q12h to 150 mg once daily, adults with moderate hepatic impairment would have comparable steady-state C\textsubscript{min} values as those obtained with a dose of 150 mg q12h in adults without hepatic impairment. Based on these results, a modified regimen of Kalydeco as monotherapy is recommended for patients with moderate hepatic impairment (see section 4.2).

The impact of severe hepatic impairment (Child Pugh Class C, score 10 to 15) on the pharmacokinetics of ivacaftor have not been studied. The magnitude of increase in exposure in these patients is unknown but is expected to be higher than that observed in patients with moderate hepatic impairment. The use of Kalydeco in patients with severe hepatic impairment is therefore not recommended unless the benefits outweigh the risks (see section 4.2 and section 4.4).

No dose adjustment is considered necessary for patients with mild hepatic impairment.

Renal impairment

Pharmacokinetic studies have not been performed with ivacaftor in patients with renal impairment. In a human pharmacokinetic study, there was minimal elimination of ivacaftor and its metabolites in...
urine (only 6.6% of total radioactivity was recovered in the urine). There was negligible urinary excretion of ivacaftor as unchanged parent (less than 0.01% following a single oral dose of 500 mg).

No dose adjustments are recommended for mild and moderate renal impairment. However, caution is recommended when administering ivacaftor to patients with severe renal impairment (creatinine clearance less than or equal to 30 mL/min) or end-stage renal disease (see sections 4.2 and 4.4).

Race

Race had no clinically meaningful effect on the PK of ivacaftor in white (n = 379) and non-white (n = 29) patients based on a population PK analysis.

Gender

The pharmacokinetic parameters of ivacaftor are similar in males and females.

Elderly

Clinical studies of ivacaftor as monotherapy did not include sufficient numbers of patients aged 65 years and older to determine whether pharmacokinetic parameters are similar or not to those in younger adults.

Paediatric population

Predicted ivacaftor exposure based on observed ivacaftor concentrations in phase 2 and 3 studies as determined using population PK analysis is presented by age group in Table 8.

Table 8: Mean (SD) ivacaftor exposure by age group

<table>
<thead>
<tr>
<th>Age group</th>
<th>Dose</th>
<th>(C_{\text{min,ss}}) (ng/mL)</th>
<th>(\text{AUC}_{\tau,\text{ss}}) (ng·h/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 months to less than 6 months (≥ 5 kg)</td>
<td>25 mg q12h</td>
<td>371 (183)</td>
<td>6480 (2520)</td>
</tr>
<tr>
<td>6 months to less than 12 months (5 kg to < 7 kg)</td>
<td>25 mg q12h</td>
<td>336</td>
<td>5410</td>
</tr>
<tr>
<td>6 months to less than 12 months (7 kg to < 14 kg)</td>
<td>50 mg q12h</td>
<td>508 (252)</td>
<td>9140 (4200)</td>
</tr>
<tr>
<td>12 months to less than 24 months (7 kg to < 14 kg)</td>
<td>50 mg q12h</td>
<td>440 (212)</td>
<td>9050 (3050)</td>
</tr>
<tr>
<td>12 months to less than 24 months (≥ 14 kg to < 25 kg)</td>
<td>75 mg q12h</td>
<td>451 (125)</td>
<td>9600 (1800)</td>
</tr>
<tr>
<td>2- to 5-year-olds (< 14 kg)</td>
<td>50 mg q12h</td>
<td>577 (317)</td>
<td>10500 (4260)</td>
</tr>
<tr>
<td>2- to 5-year-olds (≥ 14 kg to < 25 kg)</td>
<td>75 mg q12h</td>
<td>629 (296)</td>
<td>11300 (3820)</td>
</tr>
<tr>
<td>6- to 11-year-olds (≥ 14 kg to < 25 kg)</td>
<td>75 mg q12h</td>
<td>641 (329)</td>
<td>10760 (4470)</td>
</tr>
<tr>
<td>6- to 11-year-olds (≥ 25 kg)</td>
<td>150 mg q12h</td>
<td>958 (546)</td>
<td>15300 (7340)</td>
</tr>
<tr>
<td>12- to 17-year-olds</td>
<td>150 mg q12h</td>
<td>564 (242)</td>
<td>9240 (3420)</td>
</tr>
<tr>
<td>Adults (≥ 18 years old)</td>
<td>150 mg q12h</td>
<td>701 (317)</td>
<td>10700 (4100)</td>
</tr>
</tbody>
</table>

* Values based on data from a single patient; standard deviation not reported.
† Exposures in 6- to 11-year-olds are predictions based on simulations from the population PK model using data obtained for this age group.
5.3 Preclinical safety data

Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, and carcinogenic potential.

Pregnancy and fertility

Ivacaftor was associated with slight decreases of the seminal vesicle weights, a decrease of overall fertility index and number of pregnancies in females mated with treated males and significant reductions in number of corpora lutea and implantation sites with subsequent reductions in the average litter size and average number of viable embryos per litter in treated females. The No-Observed-Adverse-Effect-Level (NOAEL) for fertility findings provides an exposure level of approximately 4 times the systemic exposure of ivacaftor and its metabolites when administered as ivacaftor monotherapy in adult humans at the maximum recommended human dose (MRHD). Placental transfer of ivacaftor was observed in pregnant rats and rabbits.

Peri- and post-natal development

Ivacaftor decreased survival and lactation indices and caused a reduction in pup body weights. The NOAEL for viability and growth in the offspring provides an exposure level approximately 3 times the systemic exposure of ivacaftor and its metabolites when administered as ivacaftor monotherapy in adult humans at the MRHD.

Juvenile animals studies

Findings of cataracts were observed in juvenile rats dosed from postnatal day 7 through 35 at ivacaftor exposure levels of 0.22 times the MRHD based on systemic exposure of ivacaftor and its metabolites when administered as ivacaftor monotherapy. This finding has not been observed in foetuses derived from rat dams treated with ivacaftor on gestation days 7 to 17, in rat pups exposed to ivacaftor through milk ingestion up to postnatal day 20, in 7-week old rats, nor in 3.5 to 5-month old dogs treated with ivacaftor. The potential relevance of these findings in humans is unknown.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Silica, colloidal anhydrous
Croscarmellose sodium
Hypermellose acetate succinate
Lactose monohydrate
Magnesium stearate
Mannitol
Sucralose
Sodium laurilsulfate (E487)

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

4 years.

Once mixed, the mixture has been shown to be stable for one hour.
6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

6.5 Nature and contents of container

Biaxially Oriented Polyethylene Terephthalate/Polyethylene/Foil/Polyethylene (BOPET/PE/Foil/PE) sachet.

Kalydeco 25 mg granules in sachet, Kalydeco 50 mg granules in sachet, and Kalydeco 75 mg granules in sachet

Pack size of 56 sachets (contains 4 individual wallets with 14 sachets per wallet).

Kalydeco 75 mg granules in sachet

Pack size of 28 sachets (contains 4 individual wallets with 7 sachets per wallet).

6.6 Special precautions for disposal and other handling

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/12/782/003
EU/1/12/782/004
EU/1/12/782/006
EU/1/12/782/009

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 23 July 2012
Date of latest renewal: 29 April 2022

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
ANNEX II

A. MANUFACTURER(S) RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER(S) RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer(s) responsible for batch release

Almac Pharma Services (Ireland) Limited
Finnabair Industrial Estate
Dundalk
Co. Louth
A91 P9KD
Ireland

Almac Pharma Services Limited
Seagoe Industrial Estate
Craigavon
Northern Ireland
BT63 5UA
United Kingdom

Millmount Healthcare Limited
Block-7, City North Business Campus
Stamullen
Co. Meath
K32 YD60
Ireland

The printed package leaflet of the medicinal product must state the name and address of the manufacturer responsible for the release of the concerned batch.

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to restricted medical prescription (see Annex I: Summary of Product Characteristics, section 4.2).

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

• Periodic safety update reports (PSURs)

The requirements for submission of PSURs for this medicinal product are set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and any subsequent updates published on the European medicines web-portal.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

• Risk management plan (RMP)

The marketing authorisation holder (MAH) shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2 of the marketing authorisation and any agreed subsequent updates of the RMP.

An updated RMP should be submitted:
• At the request of the European Medicines Agency;
Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.

Obligation to conduct post-authorisation measures

The MAH shall complete, within the stated timeframe, the below measures:

<table>
<thead>
<tr>
<th>Description</th>
<th>Due date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term effectiveness study to compare disease progression among children with CF who have a specified CFTR gating mutation and are aged 2 through 5 years at the time of Kalydeco treatment initiation versus disease progression among concurrent matched cohort of children with CF who have never received Kalydeco treatment.</td>
<td>Interim analysis 1: December 2017</td>
</tr>
<tr>
<td></td>
<td>Interim analysis 2: December 2019</td>
</tr>
<tr>
<td></td>
<td>Interim analysis 3: December 2021</td>
</tr>
<tr>
<td></td>
<td>Final report: December 2023</td>
</tr>
</tbody>
</table>
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

OUTER CARTON FOR BLISTER – 56-TABLET PACK

1. **NAME OF THE MEDICINAL PRODUCT**

Kalydeco 150 mg film-coated tablets
ivacaftor

2. **STATEMENT OF ACTIVE SUBSTANCE(S)**

Each tablet contains 150 mg of ivacaftor.

3. **LIST OF EXCIPIENTS**

Contains lactose.

See leaflet for further information.

4. **PHARMACEUTICAL FORM AND CONTENTS**

56 tablets

5. **METHOD AND ROUTE(S) OF ADMINISTRATION**

Read the package leaflet before use.

Oral use

Instructions for use

Take with fat-containing food.

Do not break, chew or dissolve the tablets.

6. **SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN**

Keep out of the sight and reach of children.

7. **OTHER SPECIAL WARNING(S), IF NECESSARY**

8. **EXPIRY DATE**

EXP
9. SPECIAL STORAGE CONDITIONS

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. MARKETING AUTHORIZAION NUMBER(S)

EU/1/12/782/002

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Kalydeco 150 mg tablets

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER – HUMAN READABLE DATA

PC
SN
NN
BLISTERS – 56-TABLET PACK

<table>
<thead>
<tr>
<th>Minimum Particulars to Appear on Blisters or Strips</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalydeco 150 mg tablets</td>
</tr>
<tr>
<td>ivacaftor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. NAME OF THE MARKETING AUTHORISATION HOLDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Pharmaceuticals (Ireland) Limited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. OTHER</th>
</tr>
</thead>
</table>
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

OUTER CARTON FOR BLISTER CARD – 28-TABLET PACK

1. **NAME OF THE MEDICINAL PRODUCT**

Kalydeco 150 mg film-coated tablets
ivacaftor

2. **STATEMENT OF ACTIVE SUBSTANCE(S)**

Each tablet contains 150 mg of ivacaftor.

3. **LIST OF EXCIPIENTS**

Contains lactose.

See leaflet for further information.

4. **PHARMACEUTICAL FORM AND CONTENTS**

28 tablets

5. **METHOD AND ROUTE(S) OF ADMINISTRATION**

Read the package leaflet before use.

Oral use

Instructions for use

Always take this medicine exactly as your doctor has told you to.

Take with fat-containing food.

Do not break, chew or dissolve the tablets.

Insert tab below to close

Open

6. **SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN**

Keep out of the sight and reach of children.

7. **OTHER SPECIAL WARNING(S), IF NECESSARY**
8. **EXPIRY DATE**

EXP

9. **SPECIAL STORAGE CONDITIONS**

10. **SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE**

11. **NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER**

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. **MARKETING AUTHORISATION NUMBER(S)**

EU/1/12/782/005

13. **BATCH NUMBER**

Lot

14. **GENERAL CLASSIFICATION FOR SUPPLY**

15. **INSTRUCTIONS ON USE**

16. **INFORMATION IN BRAILLE**

Kalydeco 150 mg tablets

17. **UNIQUE IDENTIFIER – 2D BARCODE**

2D barcode carrying the unique identifier included.

18. **UNIQUE IDENTIFIER – HUMAN READABLE DATA**

PC
SN
NN
PARTICULARS TO APPEAR ON THE IMMEDIATE PACKAGING
BLISTER CARD – 28-TABLET PACK

1. NAME OF THE MEDICINAL PRODUCT

Kalydeco 150 mg film-coated tablets
ivacaftor

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each tablet contains 150 mg of ivacaftor.

3. LIST OF EXCIPIENTS

Contains lactose.
See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

7 tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.
Oral use
Instructions for use
Always take this medicine exactly as your doctor has told you to.
Take with fat-containing food.
Do not break, chew or dissolve the tablets.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY
8. **EXPIRY DATE**

EXP

9. **SPECIAL STORAGE CONDITIONS**

10. **SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE**

11. **NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER**

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665, Ireland

12. **MARKETING AUTHORISATION NUMBER(S)**

EU/1/12/782/005

13. **BATCH NUMBER**

Lot

14. **GENERAL CLASSIFICATION FOR SUPPLY**

15. **INSTRUCTIONS ON USE**

16. **INFORMATION IN BRAILLE**

17. **UNIQUE IDENTIFIER – 2D BARCODE**

18. **UNIQUE IDENTIFIER – HUMAN READABLE DATA**
MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS

BLISTERS – 28-TABLET PACK

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalydeco 150 mg tablets</td>
</tr>
<tr>
<td>ivacaftor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. NAME OF THE MARKETING AUTHORISATION HOLDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. OTHER</th>
</tr>
</thead>
</table>
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

OUTER CARTON FOR BLISTER CARD – 28-TABLET PACK

1. NAME OF THE MEDICINAL PRODUCT

Kalydeco 75 mg film-coated tablets
ivacaftor

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each tablet contains 75 mg of ivacaftor.

3. LIST OF EXCIPIENTS

Contains lactose.

See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

28 tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Oral use

Instructions for use

Always take this medicine exactly as your doctor has told you to.

Take with fat-containing food.

Do not break, chew or dissolve the tablets.

Insert tab below to close

Open

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY
8. **EXPIRY DATE**

EXP

9. **SPECIAL STORAGE CONDITIONS**

10. **SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE**

11. **NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER**

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. **MARKETING AUTHORISATION NUMBER(S)**

EU/1/12/782/007

13. **BATCH NUMBER**

Lot

14. **GENERAL CLASSIFICATION FOR SUPPLY**

15. **INSTRUCTIONS ON USE**

16. **INFORMATION IN BRAILLE**

Kalydeco 75 mg tablets

17. **UNIQUE IDENTIFIER – 2D BARCODE**

2D barcode carrying the unique identifier included.

18. **UNIQUE IDENTIFIER – HUMAN READABLE DATA**

PC
SN
NN
PARTICULARS TO APPEAR ON THE IMMEDIATE PACKAGING
BLISTER CARD – 28-TABLET PACK

1. NAME OF THE MEDICINAL PRODUCT

Kalydeco 75 mg film-coated tablets
ivacaftor

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each tablet contains 75 mg of ivacaftor.

3. LIST OF EXCIPIENTS

Contains lactose.

See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

7 tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Oral use

Instructions for use

Always take this medicine exactly as your doctor has told you to.

Take with fat-containing food.

Do not break, chew or dissolve the tablets.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY
8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/12/782/007

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

17. UNIQUE IDENTIFIER – 2D BARCODE

18. UNIQUE IDENTIFIER – HUMAN READABLE DATA
MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS

BLISTERS – 28-TABLET PACK

1. **NAME OF THE MEDICINAL PRODUCT**

 Kalydeco 75 mg tablets
 ivacaftor

2. **NAME OF THE MARKETING AUTHORISATION HOLDER**

 Vertex

3. **EXPIRY DATE**

 EXP

4. **BATCH NUMBER**

 Lot

5. **OTHER**
PARTICULARS TO APPEAR ON THE OUTER PACKAGING
OUTER CARTON FOR BOTTLE

1. NAME OF THE MEDICINAL PRODUCT

Kalydeco 150 mg film-coated tablets
ivacaftor

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each tablet contains 150 mg of ivacaftor.

3. LIST OF EXCIPIENTS

Contains lactose.
See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

56 tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Oral use

Instructions for use

Take with fat-containing food.

Do not break, chew or dissolve the tablets.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP
9. SPECIAL STORAGE CONDITIONS

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/12/782/001

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Kalydeco 150 mg tablets

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER – HUMAN READABLE DATA

PC
SN
NN
<p>| PARTICULARS TO APPEAR ON THE IMMEDIATE PACKAGING |</p>
<table>
<thead>
<tr>
<th>BOTTLE LABEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NAME OF THE MEDICINAL PRODUCT</td>
</tr>
</tbody>
</table>
| Kalydeco 150 mg film-coated tablets
ivacaftor |
| **2. STATEMENT OF ACTIVE SUBSTANCE(S)** |
| Each tablet contains 150 mg of ivacaftor. |
| **3. LIST OF EXCIPIENTS** |
| Contains lactose.
See leaflet for further information. |
| **4. PHARMACEUTICAL FORM AND CONTENTS** |
| 56 tablets |
| **5. METHOD AND ROUTE(S) OF ADMINISTRATION** |
| Read the package leaflet before use.
Oral use |
<p>| 6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN |
| Keep out of the sight and reach of children. |
| 7. OTHER SPECIAL WARNING(S), IF NECESSARY |
| |
| 8. EXPIRY DATE |
| EXP |
| 9. SPECIAL STORAGE CONDITIONS |
| |</p>
<table>
<thead>
<tr>
<th></th>
<th>SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER</td>
</tr>
<tr>
<td></td>
<td>Vertex Pharmaceuticals (Ireland) Limited Unit 49, Block F2, Northwood Court, Santry, Dublin 9, D09 T665, Ireland</td>
</tr>
<tr>
<td></td>
<td>MARKETING AUTHORISATION NUMBER(S)</td>
</tr>
<tr>
<td></td>
<td>EU/1/12/782/001</td>
</tr>
<tr>
<td></td>
<td>BATCH NUMBER</td>
</tr>
<tr>
<td></td>
<td>Lot</td>
</tr>
<tr>
<td></td>
<td>GENERAL CLASSIFICATION FOR SUPPLY</td>
</tr>
<tr>
<td></td>
<td>INSTRUCTIONS ON USE</td>
</tr>
<tr>
<td></td>
<td>INFORMATION IN BRAILLE</td>
</tr>
<tr>
<td></td>
<td>UNIQUE IDENTIFIER – 2D BARCODE</td>
</tr>
<tr>
<td></td>
<td>UNIQUE IDENTIFIER – HUMAN READABLE DATA</td>
</tr>
<tr>
<td>PARTICULARS TO APPEAR ON THE OUTER PACKAGING OUTER CARTON FOR SACHET</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>1. NAME OF THE MEDICINAL PRODUCT</td>
<td></td>
</tr>
<tr>
<td>Kalydeco 25 mg granules in sachet ivacaftor</td>
<td></td>
</tr>
<tr>
<td>2. STATEMENT OF ACTIVE SUBSTANCE</td>
<td></td>
</tr>
<tr>
<td>Each sachet of granules contains 25 mg of ivacaftor.</td>
<td></td>
</tr>
<tr>
<td>3. LIST OF EXCIPIENTS</td>
<td></td>
</tr>
<tr>
<td>Contains lactose.</td>
<td></td>
</tr>
<tr>
<td>See leaflet for further information.</td>
<td></td>
</tr>
<tr>
<td>4. PHARMACEUTICAL FORM AND CONTENTS</td>
<td></td>
</tr>
<tr>
<td>Granules in sachet</td>
<td></td>
</tr>
<tr>
<td>56 sachets</td>
<td></td>
</tr>
<tr>
<td>4 individual wallets with 14 sachets per wallet</td>
<td></td>
</tr>
<tr>
<td>5. METHOD AND ROUTE(S) OF ADMINISTRATION</td>
<td></td>
</tr>
<tr>
<td>Read the package leaflet before use.</td>
<td></td>
</tr>
<tr>
<td>Oral use</td>
<td></td>
</tr>
<tr>
<td>Instructions for use</td>
<td></td>
</tr>
<tr>
<td>Mix the entire content of a sachet with 5 mL of age-appropriate soft food or liquid that is at or below room temperature and consume it completely.</td>
<td></td>
</tr>
<tr>
<td>Use within one hour after mixing, just before or after a fat-containing meal or snack.</td>
<td></td>
</tr>
<tr>
<td>Lift here to open</td>
<td></td>
</tr>
<tr>
<td>6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN</td>
<td></td>
</tr>
<tr>
<td>Keep out of the sight and reach of children.</td>
<td></td>
</tr>
<tr>
<td>7. OTHER SPECIAL WARNING(S), IF NECESSARY</td>
<td></td>
</tr>
</tbody>
</table>
8. **EXPIRY DATE**

EXP

9. **SPECIAL STORAGE CONDITIONS**

10. **SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE**

11. **NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER**

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. **MARKETING AUTHORISATION NUMBER(S)**

EU/1/12/782/006

13. **BATCH NUMBER**

Lot

14. **GENERAL CLASSIFICATION FOR SUPPLY**

15. **INSTRUCTIONS ON USE**

16. **INFORMATION IN BRAILLE**

Kalydeco 25 mg granules

17. **UNIQUE IDENTIFIER – 2D BARCODE**

2D barcode carrying the unique identifier included.

18. **UNIQUE IDENTIFIER – HUMAN READABLE DATA**

PC
SN
NN
PARTICULARS TO APPEAR ON THE INTERMEDIATE PACKAGING WALLET FOR SACHET

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalydeco 25 mg granules in sachet ivacaftor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. STATEMENT OF ACTIVE SUBSTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each sachet of granules contains 25 mg of ivacaftor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. LIST OF EXCIPIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains lactose. See leaflet for further information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. PHARMACEUTICAL FORM AND CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granules in sachet 14 sachets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. METHOD AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read the package leaflet before use. Oral use Instructions for use Mix the entire content of a sachet with 5 mL of age-appropriate soft food or liquid that is at or below room temperature and consume it completely. Use within one hour after mixing, just before or after a fat-containing meal or snack. Use all 7 days’ doses before starting a new wallet. Morning Evening Mon. Tue. Wed. Thu. Fri. Sat. Sun.</td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN</td>
</tr>
<tr>
<td>7. OTHER SPECIAL WARNING(S), IF NECESSARY</td>
</tr>
<tr>
<td>8. EXPIRY DATE</td>
</tr>
<tr>
<td>9. SPECIAL STORAGE CONDITIONS</td>
</tr>
<tr>
<td>10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE</td>
</tr>
<tr>
<td>11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>12. MARKETING AUTHORISATION NUMBER(S)</td>
</tr>
<tr>
<td>13. BATCH NUMBER</td>
</tr>
<tr>
<td>14. GENERAL CLASSIFICATION FOR SUPPLY</td>
</tr>
<tr>
<td>15. INSTRUCTIONS ON USE</td>
</tr>
<tr>
<td>16. INFORMATION IN BRAILLE</td>
</tr>
<tr>
<td>17. UNIQUE IDENTIFIER – 2D BARCODE</td>
</tr>
<tr>
<td>18. UNIQUE IDENTIFIER – HUMAN READABLE DATA</td>
</tr>
</tbody>
</table>
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS

SACHETS

1. **NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION**

 Kalydeco 25 mg granules
 ivacaftor
 Oral use

2. **METHOD OF ADMINISTRATION**

3. **EXPIRY DATE**

 EXP

4. **BATCH NUMBER**

 Lot

5. **CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT**

6. **OTHER**

 Vertex Pharmaceuticals (Ireland) Limited
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

OUTER CARTON FOR SACHET

1. NAME OF THE MEDICINAL PRODUCT

Kalydeco 50 mg granules in sachet
ivacaftor

2. STATEMENT OF ACTIVE SUBSTANCE

Each sachet of granules contains 50 mg of ivacaftor.

3. LIST OF EXCIPIENTS

Contains lactose.

See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

Granules in sachet

56 sachets

4 individual wallets with 14 sachets per wallet

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Oral use

Instructions for use

Mix the entire content of a sachet with 5 mL of age-appropriate soft food or liquid that is at or below room temperature and consume it completely.

Use within one hour after mixing, just before or after a fat-containing meal or snack.

Lift here to open

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY
8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/12/782/003

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Kalydeco 50 mg granules

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER – HUMAN READABLE DATA

PC
SN
NN
PARTICULARS TO APPEAR ON THE INTERMEDIATE PACKAGING WALLET FOR SACHET

1. NAME OF THE MEDICINAL PRODUCT

Kalydeco 50 mg granules in sachet
ivacaftor

2. STATEMENT OF ACTIVE SUBSTANCE

Each sachet of granules contains 50 mg of ivacaftor.

3. LIST OF EXCIPIENTS

Contains lactose.

See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

Granules in sachet
14 sachets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Oral use

Instructions for use

Mix the entire content of a sachet with 5 mL of age-appropriate soft food or liquid that is at or below room temperature and consume it completely.

Use within one hour after mixing, just before or after a fat-containing meal or snack.

Use all 7 days’ doses before starting a new wallet.

Morning

Evening

| **6.** SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN |
| Keep out of the sight and reach of children. |
| **7.** OTHER SPECIAL WARNING(S), IF NECESSARY |
| **8.** EXPIRY DATE |
| **9.** SPECIAL STORAGE CONDITIONS |
| **10.** SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE |
| **11.** NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER |
| Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry, Dublin 9, D09 T665, Ireland |
| **12.** MARKETING AUTHORISATION NUMBER(S) |
| EU/1/12/782/003 |
| **13.** BATCH NUMBER |
| **14.** GENERAL CLASSIFICATION FOR SUPPLY |
| **15.** INSTRUCTIONS ON USE |
| **16.** INFORMATION IN BRAILLE |
| **17.** UNIQUE IDENTIFIER – 2D BARCODE |
| **18.** UNIQUE IDENTIFIER – HUMAN READABLE DATA |
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS

SACHETS

1. NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION

Kalydeco 50 mg granules
ivacaftor
Oral use

2. METHOD OF ADMINISTRATION

3. EXPIRY DATE

EXP

4. BATCH NUMBER

Lot

5. CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT

6. OTHER

Vertex Pharmaceuticals (Ireland) Limited
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

OUTER CARTON FOR SACHET

1. NAME OF THE MEDICINAL PRODUCT

Kalydeco 75 mg granules in sachet
ivacaftor

2. STATEMENT OF ACTIVE SUBSTANCE

Each sachet of granules contains 75 mg of ivacaftor.

3. LIST OF EXCIPIENTS

Contains lactose.

See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

Granules in sachet

56 sachets

4 individual wallets with 14 sachets per wallet

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Oral use

Instructions for use

Mix the entire content of a sachet with 5 mL of age-appropriate soft food or liquid that is at or below room temperature and consume it completely.

Use within one hour after mixing, just before or after a fat-containing meal or snack.

Lift here to open

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY
8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/12/782/004

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Kalydeco 75 mg granules

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER – HUMAN READABLE DATA

PC
SN
NN
PARTICULARS TO APPEAR ON THE INTERMEDIATE PACKAGING WALLET FOR SACHET

1. NAME OF THE MEDICINAL PRODUCT

Kalydeco 75 mg granules in sachet
ivacaftor

2. STATEMENT OF ACTIVE SUBSTANCE

Each sachet of granules contains 75 mg of ivacaftor.

3. LIST OF EXCIPIENTS

Contains lactose.

See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

Granules in sachet

14 sachets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Oral use

Instructions for use

Mix the entire content of a sachet with 5 mL of age-appropriate soft food or liquid that is at or below room temperature and consume it completely.

Use within one hour after mixing, just before or after a fat-containing meal or snack.

Use all 7 days’ doses before starting a new wallet.

Morning

Evening

| 6. | SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN |
| Keep out of the sight and reach of children. |
7.	OTHER SPECIAL WARNING(S), IF NECESSARY
8.	EXPIRY DATE
9.	SPECIAL STORAGE CONDITIONS
10.	SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE
11.	NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER
Vertex Pharmaceuticals (Ireland) Limited	
Unit 49, Block F2, Northwood Court, Santry, Dublin 9, D09 T665, Ireland	
12.	MARKETING AUTHORIZATON NUMBER(S)
EU/1/12/782/004	
13.	BATCH NUMBER
14.	GENERAL CLASSIFICATION FOR SUPPLY
15.	INSTRUCTIONS ON USE
16.	INFORMATION IN BRAILLE
17.	UNIQUE IDENTIFIER – 2D BARCODE
18.	UNIQUE IDENTIFIER – HUMAN READABLE DATA
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS SACHETS

1. **NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION**

 Kalydeco 75 mg granules
 ivacaftor
 Oral use

2. **METHOD OF ADMINISTRATION**

3. **EXPIRY DATE**

 EXP

4. **BATCH NUMBER**

 Lot

5. **CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT**

6. **OTHER**

 Vertex Pharmaceuticals (Ireland) Limited
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

OUTER CARTON FOR SACHET – 28-COUNT

1. NAME OF THE MEDICINAL PRODUCT

Kalydeco 75 mg granules in sachet
ivacaftor

2. STATEMENT OF ACTIVE SUBSTANCE

Each sachet of granules contains 75 mg of ivacaftor.

3. LIST OF EXCIPIENTS

Contains lactose.

See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

Granules in sachet

28 sachets

4 individual wallets with 7 sachets per wallet

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Oral use

Instructions for use

Mix the entire content of a sachet with 5 mL of age-appropriate soft food or liquid that is at or below room temperature and consume it completely.

Use within one hour after mixing, just before or after a fat-containing meal or snack.

Lift here to open

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY
8. EXPIRY DATE

EXP

9. SPECIAL STORAGE CONDITIONS

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/12/782/009

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Kalydeco 75 mg granules

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER – HUMAN READABLE DATA

PC
SN
NN
PARTICULARS TO APPEAR ON THE INTERMEDIATE PACKAGING

WALLET FOR SACHET – 7-COUNT

1. NAME OF THE MEDICINAL PRODUCT

Kalydeco 75 mg granules in sachet
ivacaftor

2. STATEMENT OF ACTIVE SUBSTANCE

Each sachet of granules contains 75 mg of ivacaftor.

3. LIST OF EXCIPIENTS

Contains lactose.

See leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

Granules in sachet

7 sachets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.

Oral use

Instructions for use

Mix the entire content of a sachet with 5 mL of age-appropriate soft food or liquid that is at or below room temperature and consume it completely.

Use within one hour after mixing, just before or after a fat-containing meal or snack.

Use all 7 days’ doses before starting a new wallet.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY
<p>| 8. | EXPIRY DATE |
| 9. | SPECIAL STORAGE CONDITIONS |
| 10. | SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE |
| 11. | NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER |
| | Vertex Pharmaceuticals (Ireland) Limited |
| | Unit 49, Block F2, Northwood Court, Santry, Dublin 9, D09 T665, Ireland |
| 12. | MARKETING AUTHORISATION NUMBER(S) |
| | EU/1/12/782/009 |
| 13. | BATCH NUMBER |
| 14. | GENERAL CLASSIFICATION FOR SUPPLY |
| 15. | INSTRUCTIONS ON USE |
| 16. | INFORMATION IN BRAILLES |
| | Kalydeco 75 mg granules |
| 17. | UNIQUE IDENTIFIER – 2D BARCODE |
| 18. | UNIQUE IDENTIFIER – HUMAN READABLE DATA |</p>
<table>
<thead>
<tr>
<th>MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SACHETS – 28-COUNT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalydeo 75 mg granules</td>
</tr>
<tr>
<td>ivacaftor</td>
</tr>
<tr>
<td>Oral use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. METHOD OF ADMINISTRATION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6. OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Pharmaceuticals (Ireland) Limited</td>
</tr>
</tbody>
</table>
B. PACKAGE LEAFLET
Read all of this leaflet carefully before you start taking this medicine because it contains important information for you.

- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor or pharmacist.
- This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours.
- If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet

1. What Kalydeco is and what it is used for
2. What you need to know before you take Kalydeco
3. How to take Kalydeco
4. Possible side effects
5. How to store Kalydeco
6. Contents of the pack and other information

1. What Kalydeco is and what it is used for

Kalydeco contains the active substance ivacaftor. Ivacaftor acts at the level of the cystic fibrosis transmembrane conductance regulator (CFTR), a protein that forms a channel at the cell surface that allows the movement of particles such as chloride in and out of the cell. Due to mutations in the CFTR gene (see below), chloride movement is reduced in those with cystic fibrosis (CF). Ivacaftor helps certain abnormal CFTR proteins open more often to improve chloride movement in and out of the cell.

Kalydeco tablets are indicated:

- As monotherapy for patients aged 6 years and older and weighing 25 kg or more with cystic fibrosis (CF) who have an R117H CFTR mutation or one of the following gating mutations in the CFTR gene: G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N or S549R.

- In combination with tezacaftor/ivacaftor tablets for patients aged 6 years and older with CF who have two F508del mutations in the CFTR gene (homozygous for the F508del mutation) or who have an F508del mutation and certain other second mutations that result in reduced amount and/or function of the CFTR protein (heterozygous for the F508del mutation with a residual function (RF) mutation). If you have been prescribed Kalydeco to be taken with tezacaftor/ivacaftor, read the package leaflet of the latter. It contains important information about how to take these two medicines.

- In combination with ivacaftor/tezacaftor/elexacaftor tablets for patients aged 6 years and over who have CF, with at least one F508del mutation in the CFTR gene. If you have been prescribed Kalydeco to be taken with ivacaftor/tezacaftor/elexacaftor, read the package leaflet of the latter. It contains important information about how to take these two medicines.
2. What you need to know before you take Kalydeco

Do not take Kalydeco

- if you are allergic to ivacaftor or any of the other ingredients of this medicine (listed in section 6).

Warnings and precautions

Talk to your doctor or pharmacist before taking Kalydeco.

- Talk to your doctor if you have liver problems or have previously had them. Your doctor may need to adjust your dose.
- Increased liver enzymes in the blood have been seen in some people receiving Kalydeco (alone or in combination with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor). Tell your doctor right away if you have any of these symptoms, which may be a sign of liver problems:
 - Pain or discomfort in the upper right stomach (abdominal) area
 - Yellowing of the skin or the white part of the eyes
 - Loss of appetite
 - Nausea or vomiting
 - Dark urine

 Your doctor will do some blood tests to check your liver before and during treatment, particularly during the first year and especially if your blood tests showed high liver enzymes in the past.

- Talk to your doctor if you have kidney problems or have previously had them.

- Kalydeco (alone or in combination with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor) is not recommended if you have undergone an organ transplant.

- Talk to your doctor if you are using hormonal contraception – for example, women using the contraceptive pill. This may mean you are more likely to get a rash while taking Kalydeco in combination with ivacaftor/tezacaftor/elexacaftor.

- Abnormality of the eye lens (cataract) without any effect on vision has been noted in some children and adolescents treated with Kalydeco (alone or in combination with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor). Your doctor may perform some eye examinations prior to and during treatment.

- Kalydeco (alone or in combination with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elexacaftor) should only be used if you have one of the mutations in the CFTR gene indicated in section 1 (What Kalydeco is and what it is used for).

Children and adolescents

Do not give this medicine to children under 4 months of age as it is not known if ivacaftor is safe and effective in these children.

Do not give this medicine in combination with tezacaftor/ivacaftor to children under 6 years of age or in combination with ivacaftor/tezacaftor/elexacaftor to children under 6 years of age as it is not known if they are safe and effective for them.
Other medicines and Kalydeco

Tell your doctor or pharmacist if you are using, have recently used or might use any other medicines. Some medicines can affect how Kalydeco works or make side effects more likely. In particular, tell your doctor if you are taking any of the medicines listed below. Your doctor may decide to adjust your dose or that you need extra check-ups.

- **Antifungal medicines** (used for the treatment of fungal infections). These include fluconazole, itraconazole, ketoconazole, posaconazole, and voriconazole.
- **Antibiotic medicines** (used for the treatment of bacterial infections). These include clarithromycin, erythromycin, rifabutin, rifampicin, and telithromycin.
- **Epilepsy medicines** (used for the treatment of epileptic seizures or fits). These include carbamazepine, phenobarbital, and phenytoin.
- **Herbal medicines.** These include St. John’s wort (*Hypericum perforatum*).
- **Immunosuppressants** (used after an organ transplantation). These include ciclosporin, everolimus, sirolimus, and tacrolimus.
- **Cardiac glycosides** (used for the treatment of some heart conditions). These include digoxin.
- **Anticoagulant medicines** (used to prevent blood clots). These include warfarin.
- **Medicines for diabetes.** These include glimepiride and glipizide.
- **Medicines for lowering blood pressure.** These include verapamil.

Kalydeco with food and drink

Avoid food or drink containing grapefruit during treatment with Kalydeco as they may increase the side effects of Kalydeco by increasing the amount of ivacaftor in your body.

Pregnancy and breast-feeding

If you are pregnant or breast-feeding, think you may be pregnant or are planning to have a baby, ask your doctor for advice before taking this medicine. It may be better to avoid using Kalydeco during pregnancy, if possible, and your doctor will help you decide what is best for you and your child.

It is unknown whether ivacaftor is excreted in human milk. If you plan to breast-feed, ask your doctor for advice before taking Kalydeco. Your doctor will decide whether to recommend that you stop breast-feeding or for you to stop ivacaftor therapy. Your doctor will take into account the benefit of breast-feeding for the child and the benefit of therapy for you.

Driving and using machines

Kalydeco can make you dizzy. If you feel dizzy, do not drive, cycle or use machines.

Kalydeco contains lactose and sodium.

If you have been told by your doctor that you have an intolerance to some sugars, contact your doctor before taking this medicine.

Kalydeco contains less than 1 mmol sodium (23 mg) per dose, that is to say essentially ‘sodium-free’.

3. **How to take Kalydeco**

Always take this medicine exactly as your doctor has told you to. Check with your doctor if you are not sure.

Your doctor will determine which medicine and dose is right for you.
Kalydeco dosing recommendations are provided in Table 1.

Table 1: Dosing recommendations

<table>
<thead>
<tr>
<th></th>
<th>Morning</th>
<th>Evening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalydeco as monotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 years and older, ≥ 25 kg</td>
<td>One Kalydeco 150 mg tablet</td>
<td>One Kalydeco 150 mg tablet</td>
</tr>
<tr>
<td>6 years to less than 12 years, < 30 kg</td>
<td>One tezacaftor 50 mg/ivacaftor 75 mg tablet</td>
<td>One Kalydeco 75 mg tablet</td>
</tr>
<tr>
<td>6 years to less than 12 years, ≥ 30 kg</td>
<td>One tezacaftor 100 mg/ivacaftor 150 mg tablet</td>
<td>One Kalydeco 150 mg tablet</td>
</tr>
<tr>
<td>12 years and older</td>
<td>One tezacaftor 100 mg/ivacaftor 150 mg tablet</td>
<td>One Kalydeco 150 mg tablet</td>
</tr>
<tr>
<td>Kalydeco in combination with tezacaftor/ivacaftor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 years to less than 12 years, < 30 kg</td>
<td>Two ivacaftor 37.5 mg/tezacaftor 25 mg/elexacaftor 50 mg tablets</td>
<td>One Kalydeco 75 mg tablet</td>
</tr>
<tr>
<td>6 years to less than 12 years, ≥ 30 kg</td>
<td>Two ivacaftor 75 mg/tezacaftor 50 mg/elexacaftor 100 mg tablets</td>
<td>One Kalydeco 150 mg tablet</td>
</tr>
<tr>
<td>12 years and older</td>
<td>Two ivacaftor 75 mg/tezacaftor 50 mg/elexacaftor 100 mg tablets</td>
<td>One Kalydeco 150 mg tablet</td>
</tr>
</tbody>
</table>

Take the morning and evening doses approximately 12 hours apart with food that contains fat.

You must keep using all other medicines you use, unless your doctor tells you to stop using any.

If you have liver problems, either moderate or severe, your doctor may need to reduce the dose of your tablets, because your liver will not clear the medicine as fast as in people who have normal liver function.

This medicine is for oral use.

Swallow the tablet whole. Do not break, chew or dissolve the tablets. Take Kalydeco tablets with food that contains fat.

Meals or snacks that contain fat include those prepared with butter or oils or those containing eggs. Other fat-containing foods are:

- Cheese, whole milk, whole-milk dairy products, yogurt, chocolate
- Meats, oily fish
- Avocados, hummus, soy-based products (tofu)
- Nuts, fat-containing nutritional bars or drinks

If you take more Kalydeco than you should

You may experience side effects, including those mentioned in section 4 below. If so, contact your doctor or pharmacist to ask for advice. If possible, have your medicine and this leaflet with you.

If you forget to take Kalydeco

Take the missed dose if less than 6 hours have passed since the time you missed the dose. Otherwise, wait until your next scheduled dose as you normally would. Do not take a double dose to make up for a forgotten dose.
If you stop taking Kalydeco

Take Kalydeco for as long as your doctor recommends. Do not stop unless your doctor advises you to.

If you have any further questions on the use of this medicine, ask your doctor or pharmacist.

4 Possible side effects

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Serious side effects

Stomach (abdominal) ache and increased liver enzymes in the blood.

Possible signs of liver problems

Increased liver enzymes in the blood are common in patients with CF and have also been reported in patients taking Kalydeco alone or in combination with tezacaftor/ivacaftor or ivacaftor/tezacaftor/elecaftor.

In patients taking Kalydeco in combination with ivacaftor/tezacaftor/elecaftor, liver damage and worsening of liver function in people with severe liver disease has been reported. The worsening of liver function can be serious and may require transplantation.

These may be signs of liver problems:
• Pain or discomfort in the upper right area of the stomach (abdominal) area
• Yellowing of the skin or white part of the eyes
• Loss of appetite
• Nausea or vomiting
• Dark urine

Tell your doctor straight away if you have any of these symptoms.

Very common side effects (may affect more than 1 in 10 people)
• Upper respiratory tract infection (the common cold), including sore throat and nasal congestion
• Headache
• Dizziness
• Diarrhoea
• Stomach or abdominal pain
• Changes in the type of bacteria in mucus
• Increased liver enzymes (signs of stress on the liver)
• Rash

Common side effects (may affect up to 1 in 10 people)
• Runny nose
• Ear pain, ear discomfort
• Ringing in the ears
• Redness inside the ear
• Inner ear disorder (feeling dizzy or spinning)
• Sinus problems (sinus congestion)
• Redness in the throat
• Breast mass
• Feeling sick (nausea)
• Flu
• Low blood sugar (hypoglycaemia)
• Abnormal breathing (shortness of breath or difficulty breathing)
- Wind (flatulence)
- Spots (acne)
- Itchy skin
- Increased creatine phosphokinase (sign of muscle breakdown) seen in blood tests

Uncommon side effects (may affect up to 1 in 100 people)
- Ear congestion
- Breast inflammation
- Enlargement of the breast in males
- Nipple changes or pain
- Wheezing
- Increased blood pressure

Additional side effects in children and adolescents

Side effects seen in children and adolescents are similar to those observed in adults. However, increased liver enzymes in the blood are more frequently seen in young children.

Reporting of side effects

If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. **How to store Kalydeco**

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the carton, blister and bottle label after EXP. The expiry date refers to the last day of that month.

This medicine does not require any special storage conditions.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.

6. **Contents of the pack and other information**

What Kalydeco contains

The active substance is ivacaftor.

Kalydeco 75 mg film-coated tablets

Each 75 mg film-coated tablet contains 75 mg of ivacaftor.

Kalydeco 150 mg film-coated tablets

Each 150 mg film-coated tablet contains 150 mg of ivacaftor.

The other ingredients are:

- Tablet core: cellulose microcrystalline, lactose monohydrate, hypromellose acetate succinate, croscarmellose sodium, sodium laurilsulfate (E487), silica, colloidal anhydrous, and magnesium stearate.
Coating: polyvinyl alcohol, titanium dioxide (E171), macrogol (PEG 3350), talc, indigo carmine aluminium lake (E132) and carnauba wax.
Printed ink: shellac, iron oxide black (E172), propylene glycol (E1520) and ammonia solution, concentrated.

See the end of section 2 – Kalydeco contains lactose and sodium.

What Kalydeco looks like and contents of the pack

Kalydeco 75 mg film-coated tablets are light blue, capsule-shaped, 12.7 mm × 6.8 mm, and printed with “V 75” in black ink on one side and plain on the other side.

The following pack sizes are available:
- Blister card pack containing 28 film-coated tablets

Kalydeco 150 mg film-coated tablets are light blue, capsule-shaped, 16.5 mm × 8.4 mm, and printed with “V 150” in black ink on one side and plain on the other.

The following pack sizes are available:
- Blister card pack containing 28 film-coated tablets
- Blister pack containing 56 film-coated tablets
- Bottle containing 56 film-coated tablets

Marketing Authorisation Holder

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry,
Dublin 9, D09 T665,
Ireland
Tel: +353 (0)1 761 7299

Manufacturer

Almac Pharma Services (Ireland) Limited
Finnabair Industrial Estate
Dundalk
Co. Louth
A91 P9KD
Ireland

Almac Pharma Services Limited
Seagoe Industrial Estate
Craiggavon
Northern Ireland
BT63 5UA
United Kingdom

Millmount Healthcare Limited
Block-7, City North Business Campus
Stamullen
Co. Meath
K32 YD60
Ireland
For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder:

België/Belgique/Belgien, България, Česká republika, Danmark, Deutschland, Eesti, France, Hrvatska, Ireland, Island, Κύπρος, Latvija, Lietuva, Luxemburg/Luxemburg, Magyarország, Malta, Nederland, Norge, Österreich, Polska, Portugal, România, Slovenija, Slovenská republika, Suomi/Finland, Sverige, United Kingdom (Northern Ireland)
Vertex Pharmaceuticals (Ireland) Limited
Tél/Tel/Tel/Tele/Simi/Tηλ/Puh:
+353 (0) 1 761 7299

Ελλάδα
Vertex Φαρμακευτική Μονοπρόσωπη Ανώνυμη Εταιρία
Τηλ.: +30 (211) 2120535

España
Vertex Pharmaceuticals Spain, S.L.
Tel: + 34 91 7892800

Italia
Vertex Pharmaceuticals (Italy) S.r.l.
Tel: +39 0697794000

This leaflet was last revised in

Other sources of information
Detailed information on this medicine is available on the European Medicines Agency website: http://www.ema.europa.eu. There are also links to other websites about rare diseases and treatments.
1. **What Kalydeco is and what it is used for**

Kalydeco contains the active substance ivacaftor. Ivacaftor acts at the level of the cystic fibrosis transmembrane conductance regulator (CFTR), a protein that forms a channel at the cell surface that allows the movement of particles such as chloride in and out of the cell. Due to mutations in the CFTR gene (see below), chloride movement is reduced in those with cystic fibrosis (CF). Ivacaftor helps certain abnormal CFTR proteins open more often to improve chloride movement in and out of the cell.

Kalydeco granules are indicated for the treatment of babies and children aged 4 months and older and weighing 5 kg to less than 25 kg with cystic fibrosis (CF) who have an R117H CFTR mutation or one of the following gating mutations in the CFTR gene: G551D, G1244E, G1349D, G178R, G551S, S1251N, S1255P, S549N or S549R.

2. **What you need to know before your child takes Kalydeco**

Do not take Kalydeco

- if your child is allergic to ivacaftor or any of the other ingredients of this medicine (listed in section 6).

Warnings and precautions

Talk to your child’s doctor before your child takes Kalydeco.

- Talk to your child’s doctor if your child has liver problems or has had them previously. Your child’s doctor may need to adjust your child’s dose.
- Increased liver enzymes in the blood have been seen in some people receiving Kalydeco. Tell your child’s doctor right away if your child has any of these symptoms, which may be a sign of liver problems:
• Pain or discomfort in the upper right stomach (abdominal) area
• Yellowing of the skin or the white part of the eyes
• Loss of appetite
• Nausea or vomiting
• Dark urine

Your child’s doctor will do some blood tests to check your child’s liver before and during treatment, particularly during the first year and especially if blood tests showed high liver enzymes in the past.

• Talk to your child’s doctor if you have been told your child has kidney problems or has previously had them.

• Kalydeco is not recommended for patients who have undergone an organ transplant.

• Abnormality of the eye lens (cataract) without any effect on vision has been noted in some children and adolescents during treatment.

Your child’s doctor may perform some eye examinations prior to and during treatment with ivacaftor.

Children

Do not give this medicine to children under 4 months of age as it is not known if ivacaftor is safe and effective in these children.

Other medicines and Kalydeco

Tell your child’s doctor or pharmacist if your child is using, has recently used or might use any other medicines. Some medicines can affect how Kalydeco works or make side effects more likely. In particular, tell your child’s doctor if your child is taking any of the medicines listed below. Your child’s doctor may decide to adjust your child’s dose or if extra check-ups are needed.

• **Antifungal medicines** (used for the treatment of fungal infections). These include fluconazole, itraconazole, ketoconazole, posaconazole, and voriconazole.

• **Antibiotic medicines** (used for the treatment of bacterial infections). These include, clarithromycin, erythromycin, rifabutin, rifampicin and telithromycin.

• **Epilepsy medicines** (used for the treatment of epileptic seizures or fits). These include carbamazepine, phenobarbital, and phenytoin.

• **Herbal medicines.** These include St. John’s wort (*Hypericum perforatum*).

• **Immunosuppressants** (used after an organ transplantation). These include ciclosporin, everolimus, sirolimus, and tacrolimus.

• **Cardiac glycosides** (used for the treatment of some heart conditions). These include digoxin.

• **Anticoagulant medicines** (used to prevent blood clots). These include warfarin.

• **Medicines for diabetes.** These include glimepiride and glipizide.

• **Medicines for lowering blood pressure.** These include verapamil.

Kalydeco with food and drink

Avoid giving your child food or drink containing grapefruit during treatment with Kalydeco as they may increase the side effects of Kalydeco by increasing the amount of ivacaftor in your child’s body.

Driving and using machines

Kalydeco can make your child dizzy. If your child feels dizzy, it is advised that your child does not ride his/her bike or do anything else that needs his/her full attention.
Kalydeco contains lactose and sodium.
If you have been told by your child’s doctor that your child has an intolerance to some sugars, contact your child’s doctor before your child takes this medicine.

Kalydeco contains less than 1 mmol sodium (23 mg) per dose, that is to say essentially ‘sodium-free’.

3. How to take Kalydeco

Always give your child this medicine exactly as your child’s doctor has told you to. Check with your child’s doctor if you are not sure.

Your child’s doctor will determine the correct dose for your child. Your child must keep using all other medicines, unless your child’s doctor tells him/her to stop using any.

Kalydeco dosing recommendations are provided in Table 1.

Table 1: Dosing recommendations for children aged 4 months and older

<table>
<thead>
<tr>
<th>Age</th>
<th>Weight</th>
<th>Dose</th>
<th>Total daily dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 months to less than 6 months</td>
<td>5 kg or more</td>
<td>One Kalydeco sachet of 25 mg granules taken orally every 12 hours with fat-containing food</td>
<td>50 mg</td>
</tr>
<tr>
<td>6 months and older</td>
<td>5 kg to less than 7 kg</td>
<td>One Kalydeco sachet of 25 mg granules taken orally every 12 hours with fat-containing food</td>
<td>50 mg</td>
</tr>
<tr>
<td></td>
<td>7 kg to less than 14 kg</td>
<td>One Kalydeco sachet of 50 mg granules taken orally every 12 hours with fat-containing food</td>
<td>100 mg</td>
</tr>
<tr>
<td></td>
<td>14 kg to less than 25 kg</td>
<td>One Kalydeco sachet of 75 mg granules taken orally every 12 hours with fat-containing food</td>
<td>150 mg</td>
</tr>
<tr>
<td>25 kg or more</td>
<td></td>
<td>Please refer to Kalydeco tablets Package Leaflet</td>
<td></td>
</tr>
</tbody>
</table>

If your child has liver problems, your child’s doctor may need to reduce the dose of Kalydeco as your child’s liver will not clear the medicine as fast as in children who have normal liver function.

- **Moderate liver problems in children 6 months of age or older:** the dose may be reduced to one half of the indicated dose in the table above, that is one sachet once daily.
- **Severe liver problems in children 6 months of age or older:** the use is not recommended but your child’s doctor will decide if it is appropriate for your child to use this medicine in which case the dose (as indicated in the table above) must be reduced to one sachet every other day.
- **Liver problems in children between 4 months and 6 months of age:** the use is not recommended but your child’s doctor will decide if it is appropriate for your child to use and what dose your child should have.

Kalydeco is for oral use.

Each sachet is for single use only.

Giving Kalydeco to your child:
- Hold sachet of granules with cut line on top.
- Shake sachet gently to settle contents.
- Tear or cut sachet open along cut line.
- Mix the entire content of a sachet with 5 mL of age-appropriate soft food or liquid. Food or liquid should be at room temperature or below. Some examples of age-appropriate soft foods or
liquids include puréed fruits or vegetables, yogurt, applesauce, water, milk, breast milk, infant formula, or juice.

- Once mixed, give the product to your child immediately. If this is not possible, give it within the following hour after mixing. Ensure that the mixture is completely and immediately consumed.
- A fat-containing meal or snack should be given to your child just before or just after dosing (some examples are provided below).

Meals or snacks that contain fat include those prepared with butter or oils or those containing eggs. Other fat-containing foods are:

- Cheese, whole milk, whole-milk dairy products, yogurt, breast milk, infant formula, chocolate
- Meats, oily fish
- Avocados, hummus, soy-based products (tofu)
- Nuts, fat-containing nutritional bars or drinks

If your child takes more Kalydeco than he/she should

Your child may experience side effects, including those mentioned in section 4 below. If so, contact your child’s doctor or pharmacist to ask for advice. If possible, have your child’s medicine and this leaflet with you.

If you forget to give your child Kalydeco

Give the missed dose if less than 6 hours have passed since the time your child missed the dose. Otherwise, wait until your child’s next scheduled dose as you normally would. Do not give your child a double dose to make up for a forgotten dose.

If you stop giving your child Kalydeco

Give Kalydeco to your child for as long as your child’s doctor recommends. Do not stop unless your child’s doctor advises you to. If you have any further questions on the use of this medicine, ask your child’s doctor or pharmacist.

4. Possible side effects

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Serious side effects

Stomach (abdominal) ache and increased liver enzymes in the blood.

Possible signs of liver problems

Increased liver enzymes in the blood are common in patients with CF. These may be signs of liver problems:

- Pain or discomfort in the upper right area of the stomach (abdominal) area
- Yellowing of the skin or white part of the eyes
- Loss of appetite
- Nausea or vomiting
- Dark urine

Tell your child’s doctor straight away if he/she gets any of these.

Very common side effects (may affect more than 1 in 10 people)

- Upper respiratory tract infection (the common cold), including sore throat and nasal congestion
- Headache
- Dizziness
- Diarrhoea
• Stomach or abdominal pain
• Changes in the type of bacteria in mucus
• Increased liver enzymes (signs of stress on the liver)
• Rash

Common side effects (may affect up to 1 in 10 people)
• Runny nose
• Ear pain, ear discomfort
• Ringing in the ears
• Redness inside the ear
• Inner ear disorder (feeling dizzy or spinning)
• Sinus congestion
• Redness in the throat
• Breast mass

Uncommon side effects (may affect up to 1 in 100 people)
• Ear congestion
• Breast inflammation
• Enlargement of the breast in males
• Nipple changes or pain

Additional side effects in children and adolescents
Side effects seen in children and adolescents are similar to those observed in adults. However, increased liver enzymes in the blood are more frequently seen in young children.

Reporting of side effects

If your child gets any side effects, talk to your child’s doctor or pharmacist. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in [Appendix V](#). By reporting side effects you can help provide more information on the safety of this medicine.

5. **How to store Kalydeco**

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the carton, wallet and sachet after EXP. The expiry date refers to the last day of that month.

This medicine does not require any special storage conditions.

Once mixed, the mixture has been shown to be stable for one hour.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.

6. **Contents of the pack and other information**

What Kalydeco contains

Kalydeco 25 mg granules in sachet:
The active substance is ivacaftor. Each sachet contains 25 mg of ivacaftor.

Kalydeco 50 mg granules in sachet:
The active substance is ivacaftor. Each sachet contains 50 mg of ivacaftor.
Kalydeco 75 mg granules in sachet:
The active substance is ivacaftor. Each sachet contains 75 mg of ivacaftor.

The other ingredients are: silica, colloidal anhydrous, croscarmellose sodium, hypromellose acetate succinate, lactose monohydrate, magnesium stearate, mannitol, sucralose and sodium laurilsulfate (E487).

See the end of section 2 - Kalydeco contains lactose and sodium.

What Kalydeco looks like and contents of the pack

Kalydeco 25 mg granules in sachet are white to off-white granules.
Kalydeco 50 mg granules in sachet are white to off-white granules.
Kalydeco 75 mg granules in sachet are white to off-white granules.

The granules are supplied in sachets.
- Pack size of 56 sachets (contains 4 individual wallets with 14 sachets per wallet)

Kalydeco 75 mg granules in sachet are white to off-white granules.

The granules are supplied in sachets.
- Pack size of 28 sachets (contains 4 individual wallets with 7 sachets per wallet)

Marketing Authorisation Holder

Vertex Pharmaceuticals (Ireland) Limited
Unit 49, Block F2, Northwood Court, Santry, Dublin 9, D09 T665, Ireland
Tel: +353 (0)1 761 7299

Manufacturer

Almac Pharma Services (Ireland) Limited
Finnabair Industrial Estate
Dundalk
Co. Louth
A91 P9KD
Ireland

Almac Pharma Services Limited
Seagoe Industrial Estate
Craigavon
Northern Ireland
BT63 5UA
United Kingdom

Millmount Healthcare Limited
Block-7, City North Business Campus
Stamullen
Co. Meath
K32 YD60
Ireland
For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder:

België/Belgique/Belgien, България, Česká republika, Danmark, Deutschland, Eesti, France, Hrvatska, Ireland, Island, Κύπρος, Latvija, Lietuva, Luxembourg/Luxemburg, Magyarország, Malta, Nederland, Norge, Österreich, Polska, Portugal, România, Slovenija, Slovenská republika, Suomi/Finland, Sverige, United Kingdom (Northern Ireland)

Vertex Pharmaceuticals (Ireland) Limited
Tel/Tel/Tel/Tlf/Sim/Tηλ/Puh:
+353 (0) 1 761 7299

España

Vertex Pharmaceuticals Spain, S.L.
Tel: +34 91 7892800

Ελλάδα

Vertex Φαρμακευτική Μονοπρόσωπη Ανώνυμη Εταιρία
Τηλ: +30 (211) 2120535

Italia

Vertex Pharmaceuticals (Italy) S.r.l.
Tel: +39 0697794000

This leaflet was last revised in

Other sources of information

Detailed information on this medicine is available on the European Medicines Agency website: http://www.ema.europa.eu. There are also links to other websites about rare diseases and treatments.