ANNEX I

SUMMARY OF PRODUCT CHARACTERISTICS
1. NAME OF THE MEDICINAL PRODUCT

TAXOTERE 20 mg/0.5 ml concentrate and solvent for solution for infusion

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Each single-dose vial of TAXOTERE 20 mg/0.5 ml concentrate contains docetaxel (as trihydrate) corresponding to 20 mg of docetaxel (anhydrous). The viscous solution contains 40 mg/ml docetaxel (anhydrous).

Excipients with known effect:
Each single-dose vial of solvent contains 13% (w/w) ethanol 95% v/v in water for injection (252 mg of ethanol 95% v/v).

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Concentrate and solvent for solution for infusion.
The concentrate is a clear viscous, yellow to brown-yellow solution.
The solvent is a colourless solution.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Breast cancer

TAXOTERE in combination with doxorubicin and cyclophosphamide is indicated for the adjuvant treatment of patients with:
- operable node-positive breast cancer
- operable node-negative breast cancer

For patients with operable node-negative breast cancer, adjuvant treatment should be restricted to patients eligible to receive chemotherapy according to internationally established criteria for primary therapy of early breast cancer (see section 5.1).

TAXOTERE in combination with doxorubicin is indicated for the treatment of patients with locally advanced or metastatic breast cancer who have not previously received cytotoxic therapy for this condition.

TAXOTERE monotherapy is indicated for the treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic therapy. Previous chemotherapy should have included an anthracycline or an alkylating agent.

TAXOTERE in combination with trastuzumab is indicated for the treatment of patients with metastatic breast cancer whose tumours over express HER2 and who previously have not received chemotherapy for metastatic disease.

TAXOTERE in combination with capecitabine is indicated for the treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic chemotherapy. Previous therapy should have included an anthracycline.
Non-small cell lung cancer

TAXOTERE is indicated for the treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of prior chemotherapy.

TAXOTERE in combination with cisplatin is indicated for the treatment of patients with unresectable, locally advanced or metastatic non-small cell lung cancer, in patients who have not previously received chemotherapy for this condition.

Prostate cancer

TAXOTERE in combination with prednisone or prednisolone is indicated for the treatment of patients with metastatic castration-resistant prostate cancer.
TAXOTERE in combination with androgen-deprivation therapy (ADT), with or without prednisone or prednisolone, is indicated for the treatment of patients with metastatic hormone-sensitive prostate cancer.

Gastric adenocarcinoma

TAXOTERE in combination with cisplatin and 5-fluorouracil is indicated for the treatment of patients with metastatic gastric adenocarcinoma, including adenocarcinoma of the gastroesophageal junction, who have not received prior chemotherapy for metastatic disease.

Head and neck cancer

TAXOTERE in combination with cisplatin and 5-fluorouracil is indicated for the induction treatment of patients with locally advanced squamous cell carcinoma of the head and neck.

4.2 Posology and method of administration

The use of docetaxel should be confined to units specialised in the administration of cytotoxic chemotherapy and it should only be administered under the supervision of a physician qualified in the use of anticancer chemotherapy (see section 6.6).

Posology

For breast, non-small cell lung, gastric, and head and neck cancers, premedication consisting of an oral corticosteroid, such as dexamethasone 16 mg per day (e.g. 8 mg BID) for 3 days starting 1 day prior to docetaxel administration, unless contraindicated, can be used (see section 4.4).

For metastatic castration-resistant prostate cancer, given the concurrent use of prednisone or prednisolone the recommended premedication regimen is oral dexamethasone 8 mg, 12 hours, 3 hours and 1 hour before the docetaxel infusion (see section 4.4).

For metastatic hormone-sensitive prostate cancer, irrespective of the concurrent use of prednisone or prednisolone, the recommended premedication regimen is oral dexamethasone 8 mg 12 hours, 3 hours, and 1 hour before docetaxel infusion (see section 4.4).

Prophylactic G-CSF may be used to mitigate the risk of haematological toxicities.

Docetaxel is administered as a one-hour infusion every three weeks.

Breast cancer

In the adjuvant treatment of operable node-positive and node-negative breast cancer, the recommended dose of docetaxel is 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² every 3 weeks for 6 cycles (TAC regimen) (see also Dose adjustments during treatment).

For the treatment of patients with locally advanced or metastatic breast cancer, the recommended dose of docetaxel is 100 mg/m² in monotherapy. In first-line treatment, docetaxel 75 mg/m² is given in combination therapy with doxorubicin (50 mg/m²).
In combination with trastuzumab the recommended dose of docetaxel is 100 mg/m² every three weeks, with trastuzumab administered weekly. In the pivotal study the initial docetaxel infusion was started the day following the first dose of trastuzumab. The subsequent docetaxel doses were administered immediately after completion of the trastuzumab infusion, if the preceding dose of trastuzumab was well tolerated. For trastuzumab dose and administration, see trastuzumab summary of product characteristics.

In combination with capecitabine, the recommended dose of docetaxel is 75 mg/m² every three weeks, combined with capecitabine at 1250 mg/m² twice daily (within 30 minutes after a meal) for 2 weeks followed by a 1-week rest period. For capecitabine dose calculation according to body surface area, see capecitabine summary of product characteristics.

Non-small cell lung cancer
In chemotherapy naïve patients treated for non-small cell lung cancer, the recommended dose regimen is docetaxel 75 mg/m² immediately followed by cisplatin 75 mg/m² over 30-60 minutes. For treatment after failure of prior platinum-based chemotherapy, the recommended dose is 75 mg/m² as a single agent.

Prostate cancer
Metastatic castration-resistant prostate cancer
The recommended dose of docetaxel is 75 mg/m². Prednisone or prednisolone 5 mg orally twice daily is administered continuously (see section 5.1).

Metastatic hormone-sensitive prostate cancer
The recommended dose of docetaxel is 75 mg/m² every 3 weeks for 6 cycles. Prednisone or prednisolone 5 mg orally twice daily may be administered continuously.

Gastric adenocarcinoma
The recommended dose of docetaxel is 75 mg/m² as a 1-hour infusion, followed by cisplatin 75 mg/m², as a 1- to 3-hour infusion (both on day 1 only), followed by 5-fluorouracil 750 mg/m² per day given as a 24-hour continuous infusion for 5 days, starting at the end of the cisplatin infusion. Treatment is repeated every three weeks. Patients must receive premedication with antiemetics and appropriate hydration for cisplatin administration. Prophylactic G-CSF should be used to mitigate the risk of haematological toxicities (see also Dose adjustments during treatment).

Head and neck cancer
Patients must receive premedication with antiemetics and appropriate hydration (prior to and after cisplatin administration). Prophylactic G-CSF may be used to mitigate the risk of haematological toxicities. All patients on the docetaxel-containing arm of the TAX 323 and TAX 324 studies, received prophylactic antibiotics.

- Induction chemotherapy followed by radiotherapy (TAX 323)
  For the induction treatment of inoperable locally advanced squamous cell carcinoma of the head and neck (SCCHN), the recommended dose of docetaxel is 75 mg/m² as a 1 hour infusion followed by cisplatin 75 mg/m² over 1 hour, on day one, followed by 5-fluorouracil as a continuous infusion at 750 mg/m² per day for five days. This regimen is administered every 3 weeks for 4 cycles. Following chemotherapy, patients should receive radiotherapy.

- Induction chemotherapy followed by chemoradiotherapy (TAX 324)
  For the induction treatment of patients with locally advanced (technically unresectable, low probability of surgical cure, and aiming at organ preservation) squamous cell carcinoma of the head and neck (SCCHN), the recommended dose of docetaxel is 75 mg/m² as a 1 hour intravenous infusion on day 1, followed by cisplatin 100 mg/m² administered as a 30-minute to 3-hour infusion, followed by 5-fluorouracil 1000 mg/m²/day as a continuous infusion from day 1 to day 4. This regimen is administered every 3 weeks for 3 cycles. Following chemotherapy, patients should receive chemoradiotherapy.
For cisplatin and 5-fluorouracil dose modifications, see the corresponding summary of product characteristics.

Dose adjustments during treatment

General
Docetaxel should be administered when the neutrophil count is ≥ 1,500 cells/mm³.
In patients who experienced either febrile neutropenia, neutrophil count < 500 cells/mm³ for more than one week, severe or cumulative cutaneous reactions or severe peripheral neuropathy during docetaxel therapy, the dose of docetaxel should be reduced from 100 mg/m² to 75 mg/m² and/or from 75 to 60 mg/m². If the patient continues to experience these reactions at 60 mg/m², the treatment should be discontinued.

Adjuvant therapy for breast cancer
Primary G-CSF prophylaxis should be considered in patients who receive docetaxel, doxorubicin and cyclophosphamide (TAC) adjuvant therapy for breast cancer. Patients who experience febrile neutropenia and/or neutropenic infection should have their docetaxel dose reduced to 60 mg/m² in all subsequent cycles (see sections 4.4 and 4.8). Patients who experience Grade 3 or 4 stomatitis should have their dose decreased to 60 mg/m².

In combination with cisplatin
For patients who are dosed initially at docetaxel 75 mg/m² in combination with cisplatin and whose nadir of platelet count during the previous course of therapy is < 25,000 cells/mm³, or in patients who experience febrile neutropenia, or in patients with serious non-haematologic toxicities, the docetaxel dose in subsequent cycles should be reduced to 65 mg/m². For cisplatin dose adjustments, see the corresponding summary of product characteristics.

In combination with capecitabine
- For capecitabine dose modifications, see capecitabine summary of product characteristics.
- For patients developing the first appearance of Grade 2 toxicity, which persists at the time of the next docetaxel/capecitabine treatment, delay treatment until resolved to Grade 0-1, and resume at 100% of the original dose.
- For patients developing the second appearance of Grade 2 toxicity, or the first appearance of Grade 3 toxicity, at any time during the treatment cycle, delay treatment until resolved to Grade 0-1 and then resume treatment with docetaxel 55 mg/m².
- For any subsequent appearances of toxicities, or any Grade 4 toxicities, discontinue the docetaxel dose.

For trastuzumab dose modifications, see trastuzumab summary of product characteristics.

In combination with cisplatin and 5-fluorouracil
If an episode of febrile neutropenia, prolonged neutropenia or neutropenic infection occurs despite G-CSF use, the docetaxel dose should be reduced from 75 to 60 mg/m². If subsequent episodes of complicated neutropenia occur the docetaxel dose should be reduced from 60 to 45 mg/m². In case of Grade 4 thrombocytopenia the docetaxel dose should be reduced from 75 to 60 mg/m². Patients should not be retreated with subsequent cycles of docetaxel until neutrophils recover to a level > 1,500 cells/mm³ and platelets recover to a level > 100,000 cells/mm³. Discontinue treatment if these toxicities persist see section 4.4). Recommended dose modifications for toxicities in patients treated with docetaxel in combination with cisplatin and 5-fluorouracil (5-FU):
Toxicity Dose adjustment

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Dose adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea grade 3</td>
<td>First episode: reduce 5-FU dose by 20%.</td>
</tr>
<tr>
<td></td>
<td>Second episode: then reduce docetaxel dose by 20%.</td>
</tr>
<tr>
<td>Diarrhoea grade 4</td>
<td>First episode: reduce docetaxel and 5-FU doses by 20%</td>
</tr>
<tr>
<td>Stomatitis/mucositis</td>
<td>First episode: reduce 5-FU dose by 20%.</td>
</tr>
<tr>
<td>grade 3</td>
<td>Second episode: stop 5-FU only, at all subsequent cycles.</td>
</tr>
<tr>
<td></td>
<td>Third episode: reduce docetaxel dose by 20%.</td>
</tr>
<tr>
<td>Stomatitis/mucositis</td>
<td>First episode: stop 5-FU only, at all subsequent cycles.</td>
</tr>
<tr>
<td>grade 4</td>
<td>Second episode: reduce docetaxel dose by 20%.</td>
</tr>
</tbody>
</table>

For cisplatin and 5-fluorouracil dose adjustments, see the corresponding summary of product characteristics.

In the pivotal SCCHN studies patients who experienced complicated neutropenia (including prolonged neutropenia, febrile neutropenia, or infection), it was recommended to use G-CSF to provide prophylactic coverage (eg, day 6-15) in all subsequent cycles.

Special populations:

**Patients with hepatic impairment**
Based on pharmacokinetic data with docetaxel at 100 mg/m² as single agent, patients who have both elevations of transaminase (ALT and/or AST) greater than 1.5 times the upper limit of the normal range (ULN) and alkaline phosphatase greater than 2.5 times the ULN, the recommended dose of docetaxel is 75 mg/m² (see sections 4.4 and 5.2). For those patients with serum bilirubin > ULN and/or ALT and AST > 3.5 times the ULN associated with alkaline phosphatase > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated. In combination with cisplatin and 5-fluorouracil for the treatment of patients with gastric adenocarcinoma, the pivotal clinical study excluded patients with ALT and/or AST > 1.5 × ULN associated with alkaline phosphatase > 2.5 × ULN and bilirubin > 1 x ULN; for these patients, no dose-reductions can be recommended and docetaxel should not be used unless strictly indicated. No data are available in patients with hepatic impairment treated by docetaxel in combination in the other indications.

**Paediatric population**
The safety and efficacy of TAXOTERE in nasopharyngeal carcinoma in children aged 1 month to less than 18 years have not yet been established. There is no relevant use of TAXOTERE in the paediatric population in the indications breast cancer, non-small cell lung cancer, prostate cancer, gastric carcinoma and head and neck cancer, not including type II and III less differentiated nasopharyngeal carcinoma.

**Older people**
Based on a population pharmacokinetic analysis, there are no special instructions for use in the older people. In combination with capecitabine, for patients 60 years of age or more, a starting dose reduction of capecitabine to 75% is recommended (see capecitabine summary of product characteristics).

**Method of administration**
For instructions on preparation and administration of the product, see section 6.6.

4.3 **Contraindications**

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

Docetaxel must not be used in patients with baseline neutrophil count of < 1,500 cells/mm³.
Docetaxel must not be used in patients with severe liver impairment since there is no data available (see sections 4.2 and 4.4).

Contraindications for other medicinal products also apply, when combined with docetaxel.

4.4 Special warnings and precautions for use

For breast and non-small cell lung cancers, premedication consisting of an oral corticosteroid, such as dexamethasone 16 mg per day (e.g. 8 mg BID) for 3 days starting 1 day prior to docetaxel administration, unless contraindicated, can reduce the incidence and severity of fluid retention as well as the severity of hypersensitivity reactions. For prostate cancer, the premedication is oral dexamethasone 8 mg, 12 hours, 3 hours and 1 hour before the docetaxel infusion (see section 4.2).

Haematology

Neutropenia is the most frequent adverse reaction of docetaxel. Neutrophil nadirs occurred at a median of 7 days but this interval may be shorter in heavily pre-treated patients. Frequent monitoring of complete blood counts should be conducted on all patients receiving docetaxel. Patients should be retreated with docetaxel when neutrophils recover to a level ≥ 1,500 cells/mm$^3$ (see section 4.2).

In the case of severe neutropenia (< 500 cells/mm$^3$ for seven days or more) during a course of docetaxel therapy, a reduction in dose for subsequent courses of therapy or the use of appropriate symptomatic measures are recommended (see section 4.2).

In patients treated with docetaxel in combination with cisplatin and 5-fluorouracil (TCF), febrile neutropenia and neutropenic infection occurred at lower rates when patients received prophylactic G-CSF. Patients treated with TCF should receive prophylactic G-CSF to mitigate the risk of complicated neutropenia (febrile neutropenia, prolonged neutropenia or neutropenic infection). Patients receiving TCF should be closely monitored (see sections 4.2 and 4.8).

In patients treated with docetaxel in combination with doxorubicin and cyclophosphamide (TAC), febrile neutropenia and/or neutropenic infection occurred at lower rates when patients received primary G-CSF prophylaxis. Primary G-CSF prophylaxis should be considered in patients who receive adjuvant therapy with TAC for breast cancer to mitigate the risk of complicated neutropenia (febrile neutropenia, prolonged neutropenia or neutropenic infection). Patients receiving TAC should be closely monitored (see sections 4.2 and 4.8).

Gastrointestinal reactions

Caution is recommended for patients with neutropenia, particularly at risk for developing gastrointestinal complications. Although majority of cases occurred during the first or second cycle of docetaxel containing regimen, enterocolitis could develop at any time, and could lead to death as early as on the first day of onset. Patients should be closely monitored for early manifestations of serious gastrointestinal toxicity (see sections 4.2, 4.4 Haematology, and 4.8).

Hypersensitivity reactions

Patients should be observed closely for hypersensitivity reactions especially during the first and second infusions. Hypersensitivity reactions may occur within a few minutes following the initiation of the infusion of docetaxel, thus facilities for the treatment of hypotension and bronchospasm should be available. If hypersensitivity reactions occur, minor symptoms such as flushing or localised cutaneous reactions do not require interruption of therapy. However, severe reactions, such as severe hypotension, bronchospasm or generalised rash/erythema require immediate discontinuation of docetaxel and appropriate therapy. Patients who have developed severe hypersensitivity reactions should not be re-challenged with docetaxel. Patients who have previously experienced a hypersensitivity reaction to paclitaxel may be at risk to develop hypersensitivity reaction to docetaxel,
including more severe hypersensitivity reaction. These patients should be closely monitored during initiation of docetaxel therapy.

Cutaneous reactions

Localised skin erythema of the extremities (palms of the hands and soles of the feet) with oedema followed by desquamation has been observed. Severe symptoms such as eruptions followed by desquamation which lead to interruption or discontinuation of docetaxel treatment were reported (see section 4.2).

Severe Cutaneous Adverse Reactions (SCARs) such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN) and Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with docetaxel treatment. Patients should be informed about the signs and symptoms of serious skin manifestations and closely monitored. If signs and symptoms suggestive of these reactions appear discontinuation of docetaxel should be considered.

Fluid retention

Patients with severe fluid retention such as pleural effusion, pericardial effusion and ascites should be monitored closely.

Respiratory disorders

Acute respiratory distress syndrome, interstitial pneumonia/pneumonitis, interstitial lung disease, pulmonary fibrosis and respiratory failure have been reported and may be associated with fatal outcome. Cases of radiation pneumonitis have been reported in patients receiving concomitant radiotherapy.

If new or worsening pulmonary symptoms develop, patients should be closely monitored, promptly investigated, and appropriately treated. Interruption of docetaxel therapy is recommended until diagnosis is available. Early use of supportive care measures may help improve the condition. The benefit of resuming docetaxel treatment must be carefully evaluated.

Patients with liver impairment

In patients treated with docetaxel at 100 mg/m$^2$ as single agent who have serum transaminase levels (ALT and/or AST) greater than 1.5 times the ULN concurrent with serum alkaline phosphatase levels greater than 2.5 times the ULN, there is a higher risk of developing severe adverse reactions such as toxic deaths including sepsis and gastrointestinal haemorrhage which can be fatal, febrile neutropenia, infections, thrombocytopenia, stomatitis and asthenia. Therefore, the recommended dose of docetaxel in those patients with elevated liver function test (LFTs) is 75 mg/m$^2$ and LFTs should be measured at baseline and before each cycle (see section 4.2).

For patients with serum bilirubin levels > ULN and/or ALT and AST > 3.5 times the ULN concurrent with serum alkaline phosphatase levels > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated. In combination with cisplatin and 5-fluorouracil for the treatment of patients with gastric adenocarcinoma, the pivotal clinical study excluded patients with ALT and/or AST > 1.5 × ULN associated with alkaline phosphatase > 2.5 × ULN, and bilirubin > 1 × ULN; for these patients, no dose-reductions can be recommended and docetaxel should not be used unless strictly indicated. No data are available in patients with hepatic impairment treated by docetaxel in combination in the other indications.

Patients with renal impairment

There are no data available in patients with severely impaired renal function treated with docetaxel.
Nervous system

The development of severe peripheral neurotoxicity requires a reduction of dose (see section 4.2).

Cardiac toxicity

Heart failure has been observed in patients receiving docetaxel in combination with trastuzumab, particularly following anthracycline (doxorubicin or epirubicin)-containing chemotherapy. This may be moderate to severe and has been associated with death (see section 4.8).

When patients are candidates for treatment with docetaxel in combination with trastuzumab, they should undergo baseline cardiac assessment. Cardiac function should be further monitored during treatment (e.g. every three months) to help identify patients who may develop cardiac dysfunction. For more details see summary of product characteristics of trastuzumab.

Ventricular arrhythmia including ventricular tachycardia (sometimes fatal) has been reported in patients treated with docetaxel in combination regimens including doxorubicin, 5-fluorouracil and/or cyclophosphamide (see section 4.8).
Baseline cardiac assessment is recommended.

Eye disorders

Cystoid macular oedema (CMO) has been reported in patients treated with docetaxel. Patients with impaired vision should undergo a prompt and complete ophthalmologic examination. In case CMO is diagnosed, docetaxel treatment should be discontinued and appropriate treatment initiated (see section 4.8).

Second primary malignancies

Second primary malignancies have been reported when docetaxel was given in combination with anticancer treatments known to be associated with second primary malignancies. Second primary malignancies (including acute myeloid leukaemia, myelodysplastic syndrome and non-Hodgkin lymphoma) may occur several months or years after docetaxel-containing therapy. Patients should be monitored for second primary malignancies (see section 4.8).

Tumour Lysis Syndrome

Tumour lysis syndrome has been reported with docetaxel after the first or the second cycle (see section 4.8). Patients at risk of tumour lysis syndrome (e.g. with renal impairment, hyperuricemia, bulky tumour, rapid progression) should be closely monitored. Correction of dehydration and treatment of high uric acid levels are recommended prior to initiation of treatment.

Others

Women of childbearing potential must use contraceptive measures during treatment and for 2 months after cessation of treatment with docetaxel. Men must use contraceptive measures during treatment and for 4 months after cessation of treatment with docetaxel (see section 4.6).

The concomitant use of docetaxel with strong CYP3A4 inhibitors (e.g., ketoconazole, itraconazole, clarithromycin, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin and voriconazole) should be avoided (see section 4.5).
Additional cautions for use in adjuvant treatment of breast cancer

**Complicated neutropenia**
For patients who experience complicated neutropenia (prolonged neutropenia, febrile neutropenia or infection), G-CSF and dose reduction should be considered (see section 4.2).

**Gastrointestinal reactions**
Symptoms such as early abdominal pain and tenderness, fever, diarrhoea, with or without neutropenia, may be early manifestations of serious gastrointestinal toxicity and should be evaluated and treated promptly.

**Congestive heart failure (CHF)**
Patients should be monitored for symptoms of congestive heart failure during therapy and during the follow up period. In patients treated with the TAC regimen for node positive breast cancer, the risk of CHF has been shown to be higher during the first year after treatment (see sections 4.8 and 5.1).

**Patients with 4+ nodes**
As the benefit observed in patient with 4+ nodes was not statistically significant on disease-free survival (DFS) and overall survival (OS), the positive benefit/risk ratio for TAC in patients with 4+ nodes was not fully demonstrated at the final analysis (see section 5.1).

**Elderly**

**Cautions for use in adjuvant treatment of breast cancer**
There are limited data available in patients > 70 years of age on docetaxel use in combination with doxorubicin and cyclophosphamide.

**Cautions for use in castration-resistant prostate cancer**
Of the 333 patients treated with docetaxel every three weeks in a prostate cancer study (TAX 327), 209 patients were 65 years of age or greater and 68 patients were older than 75 years. In patients treated with docetaxel every three weeks, the incidence of related nail changes occurred at a rate ≥ 10% higher in patients who were 65 years of age or greater compared to younger patients. The incidence of related fever, diarrhoea, anorexia, and peripheral oedema occurred at rates ≥ 10% higher in patients who were 75 years of age or greater versus less than 65 years.

**Cautions for use in hormone-sensitive prostate cancer**
Of the 545 patients treated with docetaxel every 3 weeks in a hormone-sensitive prostate cancer study (STAMPEDE), 296 patients were 65 years of age or older, and 48 patients were 75 years of age or older. More patients aged ≥65 years in the docetaxel arm reported hypersensitivity reaction, neutropenia, anaemia, fluid retention, dyspnea, and nail changes when compared to the patients aged less than 65 years. None of these increases in frequency reached 10% difference with the control arm. In patients who were 75 years of age or older, when compared to younger patients, neutropenia, anaemia, diarrhea, dyspnea and upper respiratory tract infection were reported with a greater incidence (at least 10% higher).

**Cautions for use in gastric adenocarcinoma cancer**
Among the 300 (221 patients in the phase III part of the study and 79 patients in the phase II part) patients treated with docetaxel in combination with cisplatin and 5-fluorouracil in the gastric cancer study, 74 were 65 years of age or older and 4 patients were 75 years of age or older. The incidence of serious adverse events was higher in older people compared to younger patients. The incidence of the following adverse events (all grades): lethargy, stomatitis, neutropenic infection occurred at rates ≥ 10% higher in patients who were 65 years of age or older compared to younger patients.
Older people treated with TCF should be closely monitored.
Excipients

This medicinal product contains 13 % (w/w) ethanol 95% v/v (alcohol), i.e. up to 252 mg ethanol 95% v/v per solvent vial, equivalent to 6 ml of beer or 2.6 ml wine.

Harmful for those suffering from alcoholism.
To be taken into account in pregnant or breast-feeding women, in children and in high-risk groups such as patients with liver disease, or epilepsy.

Consideration should be given to possible effects on the central nervous system.

4.5 Interaction with other medicinal products and other forms of interaction

The amount of alcohol in this medicinal product may alter the effects of other medicinal products.

In vitro studies have shown that the metabolism of docetaxel may be modified by the concomitant administration of compounds which induce, inhibit or are metabolised by (and thus may inhibit the enzyme competitively) cytochrome P450-3A such as ciclosporine, ketoconazole and erythromycin. As a result, caution should be exercised when treating patients with these medicinal products as concomitant therapy since there is a potential for a significant interaction.

In case of combination with CYP3A4 inhibitors, the occurrence of docetaxel adverse reactions may increase, as a result of reduced metabolism. If the concomitant use of a strong CYP3A4 inhibitor (e.g., ketoconazole, itraconazole, clarithromycin, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin and voriconazole) cannot be avoided, a close clinical surveillance is warranted and a dose-adjustment of docetaxel may be suitable during the treatment with the strong CYP3A4 inhibitor (see section 4.4). In a pharmacokinetic study with 7 patients, the co-administration of docetaxel with the strong CYP3A4 inhibitor ketoconazole leads to a significant decrease in docetaxel clearance by 49%.

Docetaxel pharmacokinetics in the presence of prednisone was studied in patients with metastatic prostate cancer. Docetaxel is metabolised by CYP3A4 and prednisone is known to induce CYP3A4. No statistically significant effect of prednisone on the pharmacokinetics of docetaxel was observed.

Docetaxel is highly protein bound (> 95%). Although the possible in vivo interaction of docetaxel with concomitantly administered medicinal product has not been investigated formally, in vitro interactions with tightly protein-bound agents such as erythromycin, diphenhydramine, propranolol, propafenone, phenytoin, salicylate, sulfamethoxazole and sodium valproate did not affect protein binding of docetaxel. In addition, dexamethasone did not affect protein binding of docetaxel. Docetaxel did not influence the binding of digitoxin.

The pharmacokinetics of docetaxel, doxorubicin and cyclophosphamide were not influenced by their co-administration. Limited data from a single uncontrolled study were suggestive of an interaction between docetaxel and carboplatin. When combined to docetaxel, the clearance of carboplatin was about 50% higher than values previously reported for carboplatin monotherapy.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential/ Contraception in males and females

Women of childbearing potential and men receiving docetaxel should be advised to avoid becoming pregnant, and not to father a child and to inform the treating physician immediately should this occur.

Due to the genotoxic risk of docetaxel (see section 5.3), women of childbearing potential must use effective method of contraception during treatment and for 2 months after cessation of treatment with docetaxel. Men must use effective method of contraception during treatment and for 4 months after cessation of treatment with docetaxel.
Pregnancy

There is no information on the use of docetaxel in pregnant women. Docetaxel has been shown to be both embryotoxic and foetotoxic in rabbits and rats. As with other cytotoxic medicinal products, docetaxel may cause foetal harm when administered to pregnant women. Therefore, docetaxel must not be used during pregnancy unless clearly indicated.

Breast-feeding

Docetaxel is a lipophilic substance but it is not known whether it is excreted in human milk. Consequently, because of the potential for adverse reactions in nursing infants, breast feeding must be discontinued for the duration of docetaxel therapy.

Fertility

Studies in animals have shown that docetaxel may alter male fertility (see section 5.3). Therefore, males being treated with docetaxel must seek advice on conservation of sperm prior to treatment.

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. The amount of alcohol in this medicinal product and the side effects of the product may impair the ability to drive or use machines (see sections 4.4 and 4.8). Therefore, patients should be warned of the potential impact of the amount of alcohol and the side effects of this medicinal product on the ability to drive or use machines, and be advised not to drive or use machines if they experience these side effects during treatment.

4.8 Undesirable effects

Summary of the safety profile for all indications

The adverse reactions considered to be possibly or probably related to the administration of docetaxel have been obtained in:

- 1312 and 121 patients who received 100 mg/m² and 75 mg/m² of docetaxel as a single agent respectively.
- 258 patients who received docetaxel in combination with doxorubicin.
- 406 patients who received docetaxel in combination with cisplatin.
- 92 patients treated with docetaxel in combination with trastuzumab.
- 255 patients who received docetaxel in combination with capecitabine.
- 332 patients (TAX327) who received docetaxel in combination with prednisone or prednisolone (clinically important treatment related adverse events are presented).
- 1276 patients (744 and 532 in TAX 316 and GEICAM 9805 respectively) who received docetaxel in combination with doxorubicin and cyclophosphamide (clinically important treatment related adverse events are presented).
- 300 gastric adenocarcinoma patients (221 patients in the phase III part of the study and 79 patients in the phase II part) who received docetaxel in combination with cisplatin and 5-fluorouracil (clinically important treatment related adverse events are presented).
- 174 and 251 head and neck cancer patients who received docetaxel in combination with cisplatin and 5-fluorouracil (clinically important treatment related adverse events are presented).
- 545 patients (STAMPEDE study) who received docetaxel in combination with prednisone or prednisolone and ADT.

These reactions were described using the NCI Common Toxicity Criteria (grade 3 = G3; grade 3-4 = G3/4; grade 4 = G4), the COSTART and the MedDRA terms. Frequencies are defined as:
very common (≥ 1/10), common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1,000); very rare (< 1/10,000); not known (cannot be estimated from available data).

Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

The most commonly reported adverse reactions of docetaxel alone are: neutropenia (which was reversible and not cumulative; the median day to nadir was 7 days and the median duration of severe neutropenia (< 500 cells/mm$^3$) was 7 days), anaemia, alopecia, nausea, vomiting, stomatitis, diarrhoea and asthenia. The severity of adverse events of docetaxel may be increased when docetaxel is given in combination with other chemotherapeutic agents.

For combination with trastuzumab, adverse events (all grades) reported in ≥ 10% are displayed. There was an increased incidence of SAEs (40% vs. 31%) and Grade 4 AEs (34% vs. 23%) in the trastuzumab combination arm compared to docetaxel monotherapy.

For combination with capecitabine, the most frequent treatment-related undesirable effects (≥ 5%) reported in a phase III study in breast cancer patients failing anthracycline treatment are presented (see capecitabine summary of product characteristics).

For combination with ADT and with prednisone or prednisolone (STAMPEDE study), adverse events occurring over the 6 cycles of treatment with docetaxel and having at least 2% higher incidence in the docetaxel treatment arm by comparison to the control arm, are presented, using the CTCAE grading scale.

The following adverse reactions are frequently observed with docetaxel:

**Immune system disorders**

Hypersensitivity reactions have generally occurred within a few minutes following the start of the infusion of docetaxel and were usually mild to moderate. The most frequently reported symptoms were flushing, rash with or without pruritus, chest tightness, back pain, dyspnoea and fever or chills. Severe reactions were characterised by hypotension and/or bronchospasm or generalized rash/erythema (see section 4.4).

**Nervous system disorders**

The development of severe peripheral neurotoxicity requires a reduction of dose (see sections 4.2 and 4.4). Mild to moderate neuro-sensory signs are characterised by paresthesia, dysesthesia or pain including burning. Neuro-motor events are mainly characterised by weakness.

**Skin and subcutaneous tissue disorders**

Reversible cutaneous reactions have been observed and were generally considered as mild to moderate. Reactions were characterised by a rash including localised eruptions mainly on the feet and hands (including severe hand and foot syndrome), but also on the arms, face or thorax, and frequently associated with pruritus. Eruptions generally occurred within one week after the docetaxel infusion. Less frequently, severe symptoms such as eruptions followed by desquamation which rarely lead to interruption or discontinuation of docetaxel treatment were reported (see sections 4.2 and 4.4). Severe nail disorders are characterised by hypo- or hyperpigmentation and sometimes pain and onycholysis.

**General disorders and administration site conditions**

Infusion site reactions were generally mild and consisted of hyper pigmentation, inflammation, redness or dryness of the skin, phlebitis or extravasation and swelling of the vein. Fluid retention includes events such as peripheral oedema and less frequently pleural effusion, pericardial effusion, ascites and weight gain. The peripheral oedema usually starts at the lower
extremities and may become generalised with a weight gain of 3 kg or more. Fluid retention is cumulative in incidence and severity (see section 4.4).

Tabulated list of adverse reactions in breast cancer for TAXOTERE 100 mg/m² single agent

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infections (G3/4: 5.7%; including sepsis and pneumonia, fatal in 1.7%)</td>
<td>Infection associated with G4 neutropenia (G3/4: 4.6%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 76.4%); Anaemia (G3/4: 8.9%); Febrile neutropenia</td>
<td>Thrombocytopenia (G4: 0.2%)</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 5.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 4.1%); Peripheral motor neuropathy (G3/4: 4%); Dysgeusia (severe: 0.07%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 0.7%)</td>
<td></td>
<td>Cardiac failure</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Hypotension; Hypertension; Haemorrhage</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnoea (severe: 2.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Stomatitis (G3/4: 5.3%); Diarrhoea (G3/4: 4%); Nausea (G3/4: 4%); Vomiting (G3/4: 3%)</td>
<td>Constipation (severe: 0.2%); Abdominal pain (severe: 1%); Gastrointestinal haemorrhage (severe: 0.3%)</td>
<td>Oesophagitis (severe: 0.4%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Skin reaction (G3/4: 5.9%); Nail disorders (severe: 2.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (severe: 1.4%)</td>
<td></td>
<td>Arthralgia</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Fluid retention (severe: 6.5%); Asthenia (severe: 11.2%); Pain</td>
<td>Infusion site reaction; Non-cardiac chest pain (severe: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (&lt; 5%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Adverse Reactions

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3/4 Blood alkaline phosphatase increased (&lt; 4%); G3/4 AST increased (&lt; 3%); G3/4 ALT increased (&lt; 2%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description of selected adverse reactions in breast cancer for TAXOTERE 100 mg/m² single agent

**Blood and lymphatic system disorders**
Rare: bleeding episodes associated with grade 3/4 thrombocytopenia.

**Nervous system disorders**
Reversibility data are available among 35.3% of patients who developed neurotoxicity following docetaxel treatment at 100 mg/m² as single agent. The events were spontaneously reversible within 3 months.

**Skin and subcutaneous tissue disorders**
Very rare: one case of alopecia non-reversible at the end of the study. 73% of the cutaneous reactions were reversible within 21 days.

**General disorders and administration site conditions**
The median cumulative dose to treatment discontinuation was more than 1,000 mg/m² and the median time to fluid retention reversibility was 16.4 weeks (range 0 to 42 weeks). The onset of moderate and severe retention is delayed (median cumulative dose: 818.9 mg/m²) in patients with premedication compared with patients without premedication (median cumulative dose: 489.7 mg/m²); however, it has been reported in some patients during the early courses of therapy.

Tabulated list of adverse reactions in non-small cell lung cancer for TAXOTERE 75 mg/m² single agent

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infections (G3/4: 5%)</td>
<td>Febrile neutropenia</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 54.2%); Anaemia (G3/4: 10.8%); Thrombocytopenia (G4: 1.7%)</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (no severe)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 0.8%)</td>
<td>Peripheral motor neuropathy (G3/4: 2.5%)</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Arrhythmia (no severe)</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Hypotension</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 3.3%); Stomatitis (G3/4: 1.7%); Vomiting (G3/4: 0.8%); Diarrhoea (G3/4: 1.7%)</td>
<td>Constipation</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Skin reaction (G3/4: 0.8%)</td>
<td>Nail disorders (severe: 0.8%)</td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
</tr>
<tr>
<td>---------------------------------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td>Myalgia</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 12.4%); Fluid retention (severe: 0.8%); Pain</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (&lt; 2%)</td>
<td></td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in breast cancer for TAXOTERE 75 mg/m² in combination with doxorubicin

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 7.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 91.7%); Anaemia (G3/4: 9.4%); Febrile neutropenia; Thrombocytopenia (G4: 0.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 0.4%)</td>
<td>Peripheral motor neuropathy (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Cardiac failure; Arrhythmia (no severe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypotension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 5%); Stomatitis (G3/4: 7.8%); Diarrhoea (G3/4: 6.2%); Vomiting (G3/4: 5%); Constipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (severe: 0.4%); Skin reaction (no severe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td>Myalgia</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 8.1%); Fluid retention (severe:</td>
<td>Infusion site reaction</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>1.2%; Pain</td>
<td>G3/4 Blood bilirubin increased (&lt; 2.5%); G3/4 Blood alkaline phosphatase increased (&lt; 2.5%)</td>
<td>G3/4 AST increased (&lt; 1%); G3/4 ALT increased (&lt; 1%)</td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 5.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 51.5%); Anaemia (G3/4: 6.9%); Thrombocytopenia (G4: 0.5%)</td>
<td>Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 2.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 3.7%); Peripheral motor neuropathy (G3/4: 2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 0.7%)</td>
<td>Cardiac failure</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypotension (G3/4: 0.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 9.6%); Vomiting (G3/4: 7.6%); Diarrhoea (G3/4: 6.4%); Stomatitis (G3/4: 2%)</td>
<td>Constipation</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (severe: 0.7%); Skin reaction (G3/4: 0.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (severe: 0.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 9.9%); Fluid retention (severe: 0.7%); Fever (G3/4: 1.2%)</td>
<td>Infusion site reaction; Pain</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (2.1%); G3/4 ALT increased (1.3%)</td>
<td>G3/4 AST increased (0.5%); G3/4 Blood alkaline phosphatase increased (0.3%)</td>
<td></td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions in breast cancer for TAXOTERE 100 mg/m² in combination with trastuzumab

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 32%); Febrile neutropenia (includes neutropenia associated with fever and antibiotic use) or neutropenic sepsis</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Paresthesia; Headache; Dysgeusia; Hypoaesthesia</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased; Conjunctivitis</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Cardiac failure</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td></td>
<td>Lethargy</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>Weight increased</td>
</tr>
</tbody>
</table>

Description of selected adverse reactions in breast cancer for TAXOTERE 100 mg/m² in combination with trastuzumab

**Cardiac disorders**
Symptomatic cardiac failure was reported in 2.2% of the patients who received docetaxel plus trastuzumab compared to 0% of patients given docetaxel alone. In the docetaxel plus trastuzumab arm, 64% had received a prior anthracycline as adjuvant therapy compared with 55% in the docetaxel arm alone.

**Blood and lymphatic system disorders**
Very common: Haematological toxicity was increased in patients receiving trastuzumab and docetaxel, compared with docetaxel alone (32% grade 3/4 neutropenia versus 22%, using NCI-CTC criteria). Note that this is likely to be an underestimate since docetaxel alone at a dose of 100 mg/m² is known to result in neutropenia in 97% of patients, 76% grade 4, based on nadir blood counts. The incidence of febrile neutropenia/neutropenic sepsis was also increased in patients treated with Herceptin plus docetaxel (23% versus 17% for patients treated with docetaxel alone).
<table>
<thead>
<tr>
<th><strong>MedDRA system organ classes</strong></th>
<th><strong>Very common adverse reactions</strong></th>
<th><strong>Common adverse reactions</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Oral candidiasis (G3/4: &lt; 1%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 63%); Anaemia (G3/4: 10%)</td>
<td>Thrombocytopenia (G3/4: 3%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 1%); Decreased appetite</td>
<td>Dehydration (G3/4: 2%)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia (G3/4: &lt; 1%); Paresthesia (G3/4: &lt; 1%)</td>
<td>Dizziness; Headache (G3/4: &lt; 1%); Neuropathy peripheral</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Pharyngolaryngeal pain (G3/4: 2%)</td>
<td>Dyspnoea (G3/4: 1%); Cough (G3/4: &lt; 1%); Epistaxis (G3/4: &lt; 1%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Stomatitis (G3/4: 18%); Diarrhoea (G3/4: 14%); Nausea (G3/4: 6%); Vomiting (G3/4: 4%); Constipation (G3/4: 1%); Abdominal pain (G3/4: 2%); Dyspepsia</td>
<td>Abdominal pain upper; Dry mouth</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Hand-foot syndrome (G3/4: 24%); Alopecia (G3/4: 6%); Nail disorders (G3/4: 2%)</td>
<td>Dermatitis; Rash erythematous (G3/4: &lt; 1%); Nail discolouration; Onycholysis (G3/4: 1%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (G3/4: 2%); Arthralgia (G3/4: 1%)</td>
<td>Pain in extremity (G3/4: &lt; 1%); Back pain (G3/4: 1%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (G3/4: 3%); Pyrexia (G3/4: 1%); Fatigue/weakness (G3/4: 5%); Oedema peripheral (G3/4: 1%)</td>
<td>Lethargy; Pain</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight decreased; G3/4 Blood bilirubin increased (9%)</td>
<td></td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions in metastatic castration-resistant prostate cancer for TAXOTERE 75 mg/m² in combination with prednisone or prednisolone

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 3.3%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 32%);</td>
<td>Thrombocytopenia (G3/4: 0.6%); Febrile neutropenia</td>
</tr>
<tr>
<td></td>
<td>Anaemia (G3/4: 4.9%)</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 1.2%); Dysgeusia (G3/4: 0%)</td>
<td>Peripheral motor neuropathy (G3/4: 0%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Epistaxis (G3/4: 0%); Dyspnoea (G3/4: 0.6%); Cough (G3/4: 0%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 2.4%);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diarrhoea (G3/4: 1.2%);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stomatitis/Pharyngitis (G3/4: 0.9%); Vomiting (G3/4: 1.2%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia;</td>
<td>Exfoliative rash (G3/4: 0.3%)</td>
</tr>
<tr>
<td></td>
<td>Nail disorders (no severe)</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective bone disorders</td>
<td></td>
<td>Arthralgia (G3/4: 0.3%); Myalgia (G3/4: 0.3%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Fatigue (G3/4: 3.9%); Fluid retention (severe: 0.6%)</td>
<td></td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in high-risk locally advanced or metastatic hormone-sensitive prostate cancer for TAXOTERE 75 mg/m² in combination with prednisone or prednisolone and ADT (STAMPEDE study)

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3-4: 12 %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Febrile neutropenia (G3-4: 15%)</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocrine disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td>Anorexia</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Insomnia (G3: 1%)</td>
<td></td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions for adjuvant therapy with TAXOTERE 75 mg/m² in combination with doxorubicin and cyclophosphamide in patients with node-positive (TAX 316) and node-negative (GEICAM 9805) breast cancer - pooled data

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (≥G3: 2%)&lt;sup&gt;a&lt;/sup&gt; Headache</td>
<td>Dizziness</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Blurred vision</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Hypotension (G3: 0%)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnea (G3: 1%) Coughing (G3: 0%) Upper respiratory tract infection (G3: 1%)</td>
<td>Pharyngitis (G3: 0%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhea (G3: 3%) Stomatitis (G3: 0%) Constipation (G3: 0%) Nausea (G3: 1%) Dyspepsia Abdominal pain (G3: 0%) Flatulence</td>
<td>Vomiting (G3: 1%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3: 3%)&lt;sup&gt;a&lt;/sup&gt; Nail changes (G3: 1%)</td>
<td>Rash</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3-4: 2%) Flu-like symptoms (G3: 0%) Asthenia (G3: 0%) Fluid retention</td>
<td>Fever (G3: 1%) Oral candidiasis Hypocalcaemia (G3: 0%) Hypophosphataemia (G3-4: 1%) Hypokalaemia (G3: 0%)</td>
</tr>
</tbody>
</table>

<sup>a</sup> From the GETUG AFU15 study

<table>
<thead>
<tr>
<th>MedDRA System Organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 2.4%); Neutropenic infection (G3/4: 2.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MedDRA System Organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Anaemia (G3/4: 3%); Neutropenia (G3/4: 59.2%); Thrombocytopenia (G3/4: 1.6%); Febrile neutropenia (G3/4: NA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 1.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia (G3/4: 0.6%); Peripheral sensory neuropathy (G3/4: &lt;0.1%)</td>
<td>Peripheral motor neuropathy (G3/4: 0%)</td>
<td>Syncope (G3/4: 0%); Neurotoxicity (G3/4: 0%); Somnolence (G3/4: 0%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Conjunctivitis (G3/4: &lt;0.1%)</td>
<td>Lacrimation increased (G3/4: &lt;0.1%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
<td>Arrhythmia (G3/4: 0.2%)</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hot flush (G3/4: 0.5%)</td>
<td>Hypotension (G3/4: 0%); Phlebitis (G3/4: 0%)</td>
<td>Lymphoedema (G3/4: 0%)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td></td>
<td>Cough (G3/4: 0%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 5.0%); Stomatitis (G3/4: 6.0%); Vomiting (G3/4: 4.2%); Diarrhoea (G3/4: 3.4%); Constipation (G3/4: 0.5%)</td>
<td>Abdominal pain (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (persisting: &lt;3%); Skin disorder (G3/4: 0.6%); Nail disorders (G3/4: 0.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (G3/4: 0.7%); Arthralgia (G3/4: 0.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td>Amenorrhoea (G3/4: NA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (G3/4: 10.0%); Pyrexia (G3/4: NA); Oedema peripheral (G3/4: 0.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>Weight increased (G3/4: 0%); Weight decreased</td>
<td></td>
</tr>
<tr>
<td>MedDRA System Organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>(G3/4: 0.2%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description of selected adverse reactions for adjuvant therapy with TAXOTERE 75 mg/m² in combination with doxorubicin and cyclophosphamide in patients with node-positive (TAX 316) and node-negative (GEICAM 9805) breast cancer

Nervous system disorders

In study TAX316 peripheral sensory neuropathy started during the treatment period and persisted into the follow-up period in 84 patients (11.3%) in TAC arm and 15 patients (2%) in FAC arm. At the end of the follow-up period (median follow-up time of 8 years), peripheral sensory neuropathy was observed to be ongoing in 10 patients (1.3%) in TAC arm, and in 2 patients (0.3%) in FAC arm. In GEICAM 9805 study peripheral sensory neuropathy that started during the treatment period persisted into the follow-up period in 10 patients (1.9%) in TAC arm and 4 patients (0.8%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), peripheral sensory neuropathy was observed to be ongoing in 3 patients (0.6%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

Cardiac disorders

In study TAX316, 26 patients (3.5%) in the TAC arm and 17 patients (2.3%) in the FAC arm experienced congestive heart failure. All except one patient in each arm were diagnosed with CHF more than 30 days after the treatment period. Two patients in the TAC arm and 4 patients in the FAC arm died because of cardiac failure.

In GEICAM 9805 study, 3 patients (0.6%) in TAC arm and 3 patients (0.6%) in FAC arm developed congestive heart failure during the follow-up period. At the end of the follow-up period (actual median follow-up time of 10 years and 5 months), no patients had CHF in TAC arm and 1 patient in TAC arm died because of dilated cardiomyopathy, and CHF was observed to be ongoing in 1 patient (0.2%) in FAC arm.

Skin and subcutaneous tissue disorders

In study TAX316 alopecia persisting into the follow-up period after the end of chemotherapy was reported in 687 of 744 TAC patients (92.3%) and 645 of 736 FAC patients (87.6%). At the end of the follow-up period (actual median follow-up time of 8 years), alopecia was observed to be ongoing in 29 TAC patients (3.9%) and 16 FAC patients (2.2%).

In GEICAM 9805 study alopecia that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 49 patients (9.2%) in TAC arm and 35 patients (6.7%) in FAC arm. Alopecia related to study drug started or worsened during the follow-up period in 42 patients (7.9%) in TAC arm and 30 patients (5.8%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), alopecia was observed to be ongoing in 3 patients (0.6%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

Reproductive system and breast disorders

In TAX316 amenorrhoea that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 202 of 744 TAC patients (27.2%) and 125 of 736 FAC patients (17.0%). Amenorrhoea was observed to be ongoing at the end of the follow-up period (median follow-up time of 8 years) in 121 of 744 TAC patients (16.3%) and 86 FAC patients (11.7%). In GEICAM 9805 study amenorrhoea that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 18 patients (3.4%) in TAC arm and 5 patients (1.0%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), amenorrhoea was observed to be ongoing in 7 patients (1.3%) in TAC arm, and in 4 patients (0.8%) in FAC arm.

General disorders and administration site conditions

In study TAX316 peripheral oedema that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was observed in 119 of 744 TAC patients (16.0%) and
23 of 736 FAC patients (3.1%). At the end of the follow-up period (actual median follow-up time of 8 years), peripheral oedema was ongoing in 19 TAC patients (2.6%) and 4 FAC patients (0.5%).

In study TAX316 lymphoedema that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 11 of 744 TAC patients (1.5%) and 1 of 736 FAC patients (0.1%). At the end of the follow-up period (actual median follow-up time of 8 years), lymphoedema was observed to be ongoing in 6 TAC patients (0.8%) and 1 FAC patient (0.1%).

In study TAX316 asthenia that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 236 of 744 TAC patients (31.7%) and 180 of 736 FAC patients (24.5%). At the end of the follow-up period (actual median follow-up time of 8 years), asthenia was observed to be ongoing in 29 TAC patients (3.9%) and 16 FAC patients (2.2%).

In study GEICAM 9805 peripheral oedema that started during the treatment period persisted into the follow-up period in 4 patients (0.8%) in TAC arm and in 2 patients (0.4%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), no patients (0%) in TAC arm had peripheral oedema and it was observed to be ongoing in 1 patient (0.2%) in FAC arm.

Lymphoedema that started during the treatment period persisted into the follow-up period in 5 patients (0.9%) in TAC arm and 2 patients (0.4%) in FAC arm. At the end of the follow-up period, lymphoedema was observed to be ongoing in 4 patients (0.8%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

Asthenia that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 12 patients (2.3%) in TAC arm and 4 patients (0.8%) in FAC arm. At the end of the follow-up period, asthenia was observed to be ongoing in 2 patients (0.4%) in TAC arm, and in 2 patients (0.4%) in FAC arm.

Acute leukaemia / Myelodysplastic syndrome.

After 10 years of follow up in study TAX316, acute leukaemia was reported in 3 of 744 TAC patients (0.4%) and in 1 of 736 FAC patients (0.1%). One TAC patient (0.1%) and 1 FAC patient (0.1%) died due to AML during the follow-up period (median follow-up time of 8 years). Myelodysplastic syndrome was reported in 2 of 744 TAC patients (0.3%) and in 1 of 736 FAC patients (0.1%).

After 10 years of follow-up in GEICAM 9805 study, acute leukaemia occurred in 1 of 532 (0.2%) patients in TAC arm. No cases were reported in patients in FAC arm. No patient was diagnosed with myelodysplastic syndrome in either treatment groups.

Neutropenic complications

Table below shows that the incidence of Grade 4 neutropenia, febrile neutropenia and neutropenic infection was decreased in patients who received primary G-CSF prophylaxis after it was made mandatory in the TAC arm - GEICAM study.

<table>
<thead>
<tr>
<th>Neutropenic complications in patients receiving TAC with or without primary G-CSF prophylaxis (GEICAM 9805)</th>
<th>Without primary G-CSF prophylaxis (n = 111) n (%)</th>
<th>With primary G-CSF prophylaxis (n = 421) n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia (Grade 4)</td>
<td>104 (93.7)</td>
<td>135 (32.1)</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>28 (25.2)</td>
<td>23 (5.5)</td>
</tr>
<tr>
<td>Neutropenic infection</td>
<td>14 (12.6)</td>
<td>21 (5.0)</td>
</tr>
<tr>
<td>Neutropenic infection (Grade 3-4)</td>
<td>2 (1.8)</td>
<td>5 (1.2)</td>
</tr>
</tbody>
</table>
### Tabulated list of adverse reactions in gastric adenocarcinoma cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Neutropenic infection; Infection (G3/4: 11.7%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Anaemia (G3/4: 20.9%); Neutropenia (G3/4: 83.2%); Thrombocytopenia (G3/4: 8.8%); Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 1.7%)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 11.7%)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 8.7%)</td>
<td>Dizziness (G3/4: 2.3%); Peripheral motor neuropathy (G3/4: 1.3%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased (G3/4: 0%)</td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Hearing impaired (G3/4: 0%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 1.0%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhoea (G3/4: 19.7%); Nausea (G3/4: 16%); Stomatitis (G3/4: 23.7%); Vomiting (G3/4: 14.3%)</td>
<td>Constipation (G3/4: 1.0%); Gastrointestinal pain (G3/4: 1.0%); Oesophagitis/dysphagia/odynophagia (G3/4: 0.7%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 4.0%)</td>
<td>Rash pruritus (G3/4: 0.7%); Nail disorders (G3/4: 0.7%); Skin exfoliation (G3/4: 0%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 19.0%); Fever (G3/4: 2.3%); Fluid retention (severe/life-threatening: 1%)</td>
<td></td>
</tr>
</tbody>
</table>

### Description of selected adverse reactions in gastric adenocarcinoma cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

**Blood and lymphatic system disorders**
Febrile neutropenia and neutropenic infection occurred in 17.2% and 13.5% of patients respectively, regardless of G-CSF use. G-CSF was used for secondary prophylaxis in 19.3% of patients (10.7% of the cycles). Febrile neutropenia and neutropenic infection occurred respectively in 12.1% and 3.4% of patients when patients received prophylactic G-CSF, in 15.6% and 12.9% of patients without prophylactic G-CSF (see section 4.2).

### Tabulated list of adverse reactions in head and neck cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

- **Induction chemotherapy followed by radiotherapy (TAX 323)**

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 6.3%); Neutropenic infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
<td>------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl cysts and polyps)</td>
<td></td>
<td>Cancer pain (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 76.3%); Anaemia (G3/4: 9.2%); Thrombocytopenia (G3/4: 5.2%)</td>
<td>Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (no severe)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 0.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia/Parosmia; Peripheral sensory neuropathy (G3/4: 0.6%)</td>
<td>Dizziness</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Lacrimation increased; Conjunctivitis</td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td>Hearing impaired</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Myocardial ischemia (G3/4: 1.7%)</td>
<td>Arrhythmia (G3/4: 0.6%)</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Venous disorder (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 0.6%); Stomatitis (G3/4: 4.0%); Diarrhoea (G3/4: 2.9%); Vomiting (G3/4: 0.6%)</td>
<td>Constipation; Esophagitis/dysphagia/ odynophagia (G3/4: 0.6%); Abdominal pain; Dyspepsia; Gastrointestinal haemorrhage (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 10.9%)</td>
<td>Rash pruritic; Dry skin; Skin exfoliative (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td>Myalgia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 3.4%); Pyrexia (G3/4: 0.6%); Fluid retention; Oedema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>Weight increased</td>
<td></td>
</tr>
</tbody>
</table>

- Induction chemotherapy followed by chemoradiotherapy (TAX 324)
<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 3.6%)</td>
<td>Neutropenic infection</td>
<td></td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl cysts and polyps)</td>
<td>Neutropenia (G3/4: 83.5%); Anaemia (G3/4: 12.4%); Thrombocytopenia (G3/4: 4.0%); Febrile neutropenia</td>
<td>Cancer pain (G3/4: 1.2%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Anorexia (G3/4: 12.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Dysgeusia/Parosmia (G3/4: 0.4%); Peripheral sensory neuropathy (G3/4: 1.2%)</td>
<td>Dizziness (G3/4: 2.0%); Peripheral motor neuropathy (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Hearing impaired (G3/4: 1.2%)</td>
<td>Lacrimation increased</td>
<td>Conjunctivitis</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 2.0%)</td>
<td>Ischemia myocardial</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Venous disorder</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 13.9%); Stomatitis (G3/4: 20.7%); Vomiting (G3/4: 8.4%); Diarrhoea (G3/4: 6.8%); Esophagitis/dysphagia/odynophagia (G3/4: 12.0%); Constipation (G3/4: 0.4%)</td>
<td>Dyspepsia (G3/4: 0.8%); Gastrointestinal pain (G3/4: 1.2%); Gastrointestinal haemorrhage (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 4.0%); Rash pruritic</td>
<td>Dry skin; Desquamation</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal, connective tissue bone disorders</td>
<td></td>
<td>Myalgia (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 4.0%); Pyrexia (G3/4: 3.6%); Fluid retention (G3/4: 1.2%); Oedema (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight decreased</td>
<td>Weight increased</td>
<td></td>
</tr>
</tbody>
</table>
Post-marketing experience

Neoplasms benign, malignant and unspecified (incl cysts and polyps)
Second primary malignancies (frequency not known), including non-Hodgkin lymphoma have been reported in association with docetaxel when used in combination with other anticancer treatments known to be associated with second primary malignancies. Acute myeloid leukaemia and myelodysplastic syndrome have been reported (frequency uncommon) in pivotal clinical studies in breast cancer with TAC regimen.

Blood and lymphatic system disorders
Bone marrow suppression and other haematologic adverse reactions have been reported. Disseminated intravascular coagulation (DIC), often in association with sepsis or multi-organ failure, has been reported.

Immune system disorders
Some cases of anaphylactic shock, sometimes fatal, have been reported. Hypersensitivity reactions (frequency not known) have been reported with docetaxel in patients who previously experienced hypersensitivity reactions to paclitaxel.

Nervous system disorders
Rare cases of convulsion or transient loss of consciousness have been observed with docetaxel administration. These reactions sometimes appear during the infusion of the medicinal product.

Eye disorders
Very rare cases of transient visual disturbances (flashes, flashing lights, scotomata) typically occurring during infusion of the medicinal product and in association with hypersensitivity reactions have been reported. These were reversible upon discontinuation of the infusion. Cases of lacrimation with or without conjunctivitis, as cases of lacrimal duct obstruction resulting in excessive tearing have been rarely reported. Cases of cystoid macular oedema (CMO) have been reported in patients treated with docetaxel.

Ear and labyrinth disorders
Rare cases of ototoxicity, hearing impaired and/or hearing loss have been reported.

Cardiac disorders
Rare cases of myocardial infarction have been reported. Ventricular arrhythmia including ventricular tachycardia (frequency not known), sometimes fatal, has been reported in patients treated with docetaxel in combination regimens including doxorubicin, 5-fluorouracil and/or cyclophosphamide.

Vascular disorders
Venous thromboembolic events have rarely been reported.

Respiratory, thoracic and mediastinal disorders
Acute respiratory distress syndrome and cases of interstitial pneumonia/ pneumonitis, interstitial lung disease, pulmonary fibrosis and respiratory failure sometimes fatal have rarely been reported. Rare cases of radiation pneumonitis have been reported in patients receiving concomitant radiotherapy.

Gastrointestinal disorders
Rare cases of enterocolitis, including colitis, ischemic colitis, and neutropenic enterocolitis, have been reported with a potential fatal outcome (frequency not known). Rare occurrences of dehydration have been reported as a consequence of gastrointestinal events including enterocolitis and gastrointestinal perforation. Rare cases of ileus and intestinal obstruction have been reported.
Hepatobiliary disorders  
Very rare cases of hepatitis, sometimes fatal primarily in patients with pre-existing liver disorders, have been reported.

Skin and subcutaneous tissue disorders  
Cases of cutaneous lupus erythematosus, bullous eruptions such as erythema multiforme and severe cutaneous adverse reactions such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN) and Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with docetaxel. Scleroderma-like changes usually preceded by peripheral lymphoedema have been reported with docetaxel. Cases of permanent alopecia (frequency not known) have been reported.

Renal and urinary disorders  
Renal insufficiency and renal failure have been reported. In about 20% of these cases there were no risk factors for acute renal failure such as concomitant nephrotoxic medicinal products and gastrointestinal disorders.

General disorders and administration site conditions  
Radiation recall phenomena have rarely been reported. Injection site recall reaction (recurrence of skin reaction at a site of previous extravasation following administration of docetaxel at a different site) has been observed at the site of previous extravasation (frequency not known). Fluid retention has not been accompanied by acute episodes of oliguria or hypotension. Dehydration and pulmonary oedema have rarely been reported.

Metabolism and nutrition disorders  
Cases of electrolyte imbalance have been reported. Cases of hyponatraemia have been reported, mostly associated with dehydration, vomiting and pneumonia. Hypokalaemia, hypomagnesaemia, and hypocalcaemia were observed, usually in association with gastrointestinal disorders and in particular with diarrhoea. Tumour lysis syndrome, potentially fatal, has been reported (frequency not known).

Musculoskeletal disorder  
Myositis has been reported with docetaxel (frequency not known).

Reporting of suspected adverse reactions  
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose  
There were a few reports of overdose. There is no known antidote for docetaxel overdose. In case of overdose, the patient should be kept in a specialised unit and vital functions closely monitored. In cases of overdose, exacerbation of adverse events may be expected. The primary anticipated complications of overdose would consist of bone marrow suppression, peripheral neurotoxicity and mucositis. Patients should receive therapeutic G-CSF as soon as possible after discovery of overdose. Other appropriate symptomatic measures should be taken, as needed.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties  
Pharmacotherapeutic group: Taxanes, ATC Code: L01CD 02
Mechanism of action

Docetaxel is an antineoplastic agent which acts by promoting the assembly of tubulin into stable microtubules and inhibits their disassembly which leads to a marked decrease of free tubulin. The binding of docetaxel to microtubules does not alter the number of protofilaments.

Docetaxel has been shown in vitro to disrupt the microtubular network in cells which is essential for vital mitotic and interphase cellular functions.

Pharmacodynamic effects

Docetaxel was found to be cytotoxic in vitro against various murine and human tumour cell lines and against freshly excised human tumour cells in clonogenic assays. Docetaxel achieves high intracellular concentrations with a long cell residence time. In addition, docetaxel was found to be active on some but not all cell lines over expressing the p-glycoprotein which is encoded by the multidrug resistance gene. In vivo, docetaxel is schedule independent and has a broad spectrum of experimental anti-tumour activity against advanced murine and human grafted tumours.

Clinical efficacy and safety

Breast cancer

TAXOTERE in combination with doxorubicin and cyclophosphamide: adjuvant therapy

Patients with operable node-positive breast cancer (TAX 316)

Data from a multi-centre open label randomised study support the use of docetaxel for the adjuvant treatment of patients with operable node-positive breast cancer and KPS ≥ 80%, between 18 and 70 years of age. After stratification according to the number of positive lymph nodes (1-3, 4+), 1491 patients were randomised to receive either docetaxel 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² (TAC arm), or doxorubicin 50 mg/m² followed by fluorouracil 500 mg/m² and cyclophosphamide 500 mg/m² (FAC arm). Both regimens were administered once every 3 weeks for 6 cycles. Docetaxel was administered as a 1-hour infusion, all other medicinal products were given as intravenous bolus on day one. G-CSF was administered as secondary prophylaxis to patients who experienced complicated neutropenia (febrile neutropenia, prolonged neutropenia, or infection). Patients on the TAC arm received antibiotic prophylaxis with ciprofloxacin 500 mg orally twice daily for 10 days starting on day 5 of each cycle, or equivalent. In both arms, after the last cycle of chemotherapy, patients with positive oestrogen and/or progesterone receptors received tamoxifen 20 mg daily for up to 5 years. Adjuvant radiation therapy was prescribed according to guidelines in place at participating institutions and was given to 69% of patients who received TAC and 72% of patients who received FAC. Two interim analyses and one final analysis were performed. The first interim analysis was planned 3 years after the date when half of study enrolment was done. The second interim analysis was done after 400 DFS events had been recorded overall, which led to a median follow-up of 55 months. The final analysis was performed when all patients had reached their 10-year follow-up visit (unless they had a DFS event or were lost to follow-up before). Disease-free survival (DFS) was the primary efficacy endpoint and Overall survival (OS) was the secondary efficacy endpoint.

A final analysis was performed with an actual median follow up of 96 months. Significantly longer disease-free survival for the TAC arm compared to the FAC arm was demonstrated. Incidence of relapses at 10 years was reduced in patients receiving TAC compared to those who received FAC (39% versus 45%, respectively) i.e. an absolute risk reduction by 6% (p = 0.0043). Overall survival at 10 years was also significantly increased with TAC compared to FAC (76% versus 69%, respectively) i.e. an absolute reduction of the risk of death by 7% (p = 0.002). As the benefit observed in patients with 4+ nodes was not statistically significant on DFS and OS, the positive benefit/risk ratio for TAC in patients with 4+ nodes was not fully demonstrated at the final analysis.
Overall, the study results demonstrate a positive benefit risk ratio for TAC compared to FAC.

TAC-treated patient subsets according to prospectively defined major prognostic factors were analysed:

<table>
<thead>
<tr>
<th>Patient subset</th>
<th>Number of patients</th>
<th>Hazard ratio*</th>
<th>95% CI</th>
<th>p =</th>
<th>Hazard ratio*</th>
<th>95% CI</th>
<th>p =</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of positive nodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>745</td>
<td>0.80</td>
<td>0.68-0.93</td>
<td>0.0043</td>
<td></td>
<td>0.74</td>
<td>0.61-0.90</td>
</tr>
<tr>
<td>1-3</td>
<td>467</td>
<td>0.72</td>
<td>0.58-0.91</td>
<td>0.0047</td>
<td></td>
<td>0.62</td>
<td>0.46-0.82</td>
</tr>
<tr>
<td>4+</td>
<td>278</td>
<td>0.87</td>
<td>0.70-1.09</td>
<td>0.2290</td>
<td></td>
<td>0.87</td>
<td>0.67-1.12</td>
</tr>
</tbody>
</table>

*a hazard ratio of less than 1 indicates that TAC is associated with a longer disease-free survival and overall survival compared to FAC

Patients with operable node-negative breast cancer eligible to receive chemotherapy (GEICAM 9805)

Data from a multi-centre open label randomised trial support the use of TAXOTERE for the adjuvant treatment of patients with operable node-negative breast cancer eligible to receive chemotherapy. 1060 patients were randomised to receive either TAXOTERE 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² (539 patients in TAC arm), or doxorubicin 50 mg/m² followed by fluorouracil 500 mg/m² and cyclophosphamide 500 mg/m² (521 patients in FAC arm), as adjuvant treatment of operable node-negative breast cancer patients with high risk of relapse according to 1998 St. Gallen criteria (tumour size >2 cm and/or negative ER and PR and/or high histological/nuclear grade (grade 2 to 3) and/or age <35 years). Both regimens were administered once every 3 weeks for 6 cycles. TAXOTERE was administered as a 1-hour infusion, all other medicinal products were given intravenously on day 1 every three weeks. Primary prophylactic G-CSF was made mandatory in TAC arm after 230 patients were randomised. The incidence of Grade 4 neutropenia, febrile neutropenia and neutropenic infection was decreased in patients who received primary G-CSF prophylaxis (see section 4.8). In both arms, after the last cycle of chemotherapy, patients with ER+ and/or PgR+ tumours received tamoxifen 20 mg once a day for up to 5 years. Adjuvant radiation therapy was administered according to guidelines in place at participating institutions and was given to 57.3% of patients who received TAC and 51.2% of patients who received FAC.

One primary analysis and one updated analysis were performed. The primary analysis was done when all patients had a follow-up of greater than 5 years (median follow-up time of 77 months). The updated analysis was performed when all patients had reached their 10-year (median follow up time of 10 years and 5 months) follow-up visit (unless they had a DFS event or were lost to follow-up previously). Disease-free survival (DFS) was the primary efficacy endpoint and Overall survival (OS) was the secondary efficacy endpoint.

At the median follow-up time of 77 months, significantly longer disease-free survival for the TAC arm compared to the FAC arm was demonstrated. TAC-treated patients had a 32% reduction in the risk of relapse compared to those treated with FAC (hazard ratio = 0.68, 95% CI (0.49-0.93), p = 0.01). At the median follow up time of 10 years and 5 months, TAC-treated patients had a 16.5% reduction in the risk of relapse compared to those treated with FAC (hazard ratio = 0.84, 95% CI (0.65-1.08), p=0.1646). DFS data were not statistically significant but were still associated with a positive trend in favour of TAC.

At the median follow-up time of 77 months, overall survival (OS) was longer in the TAC arm with TAC-treated patients having a 24% reduction in the risk of death compared to FAC (hazard ratio = 0.76, 95% CI (0.46-1.26, p = 0.29). However, the distribution of OS was not significantly different between the 2 groups.
At the median follow up time of 10 years and 5 months, TAC-treated patients had a 9% reduction in the risk of death compared to FAC-treated patients (hazard ratio = 0.91, 95% CI (0.63-1.32)). The survival rate was 93.7% in the TAC arm and 91.4 % in the FAC arm, at the 8-year follow-up time point, and 91.3 % in the TAC arm and 89 % in the FAC arm, at the 10-year follow-up time point.

The positive benefit risk ratio for TAC compared to FAC remained unchanged.

TAC-treated patient subsets according to prospectively defined major prognostic factors were analysed in the primary analysis (at the median follow-up time of 77 months) (see table below):

Subset Analyses-Adjuvant Therapy in Patients with Node-negative Breast Cancer Study (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Patient subset</th>
<th>Number of patients in TAC group</th>
<th>Disease Free Survival</th>
<th>Hazard ratio*</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>539</td>
<td></td>
<td>0.68</td>
<td>0.49-0.93</td>
</tr>
<tr>
<td>Age category 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;50 years</td>
<td>260</td>
<td></td>
<td>0.67</td>
<td>0.43-1.05</td>
</tr>
<tr>
<td>≥50 years</td>
<td>279</td>
<td></td>
<td>0.67</td>
<td>0.43-1.05</td>
</tr>
<tr>
<td>Age category 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;35 years</td>
<td>42</td>
<td></td>
<td>0.31</td>
<td>0.11-0.89</td>
</tr>
<tr>
<td>≥35 years</td>
<td>497</td>
<td></td>
<td>0.73</td>
<td>0.52-1.01</td>
</tr>
<tr>
<td>Hormonal receptor status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>195</td>
<td></td>
<td>0.7</td>
<td>0.45-1.1</td>
</tr>
<tr>
<td>Positive</td>
<td>344</td>
<td></td>
<td>0.62</td>
<td>0.4-0.97</td>
</tr>
<tr>
<td>Tumour size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤2 cm</td>
<td>285</td>
<td></td>
<td>0.69</td>
<td>0.43-1.1</td>
</tr>
<tr>
<td>&gt;2 cm</td>
<td>254</td>
<td></td>
<td>0.68</td>
<td>0.45-1.04</td>
</tr>
<tr>
<td>Histological grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1 (includes grade not assessed)</td>
<td>64</td>
<td></td>
<td>0.79</td>
<td>0.24-2.6</td>
</tr>
<tr>
<td>Grade 2</td>
<td>216</td>
<td></td>
<td>0.77</td>
<td>0.46-1.3</td>
</tr>
<tr>
<td>Grade 3</td>
<td>259</td>
<td></td>
<td>0.59</td>
<td>0.39-0.9</td>
</tr>
<tr>
<td>Menopausal status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Menopausal</td>
<td>285</td>
<td></td>
<td>0.64</td>
<td>0.40-1</td>
</tr>
<tr>
<td>Post-Menopausal</td>
<td>254</td>
<td></td>
<td>0.72</td>
<td>0.47-1.12</td>
</tr>
</tbody>
</table>

*a hazard ratio (TAC/FAC) of less than 1 indicates that TAC is associated with a longer disease free survival compared to FAC.

Exploratory subgroup analyses for disease-free survival for patients who meet the 2009 St. Gallen chemotherapy criteria – (ITT population) were performed and presented here below:

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>TAC</th>
<th>FAC</th>
<th>Hazard ratio (TAC/FAC)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting relative indication for chemotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18/214 (8.4%)</td>
<td>26/227 (11.5%)</td>
<td>0.796 (0.434 - 1.459)</td>
<td>0.4593</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48/325 (14.8%)</td>
<td>69/294 (23.5%)</td>
<td>0.606 (0.42 - 0.877)</td>
<td>0.0072</td>
</tr>
</tbody>
</table>

TAC = docetaxel, doxorubicin and cyclophosphamide
FAC = 5-fluorouracil, doxorubicin and cyclophosphamide
CI = confidence interval; ER = oestrogen receptor
PR = progesterone receptor
a ER/PR-negative or Grade 3 or tumour size >5 cm

The estimated hazard ratio was using Cox proportional hazard model with treatment group as the factor.

**TAXOTERE as single agent**

Two randomised phase III comparative studies, involving a total of 326 alkylating or 392 anthracycline failure metastatic breast cancer patients, have been performed with docetaxel at the recommended dose and regimen of 100 mg/m² every 3 weeks.

In alkylating-failure patients, docetaxel was compared to doxorubicin (75 mg/m² every 3 weeks). Without affecting overall survival time (docetaxel 15 months vs. doxorubicin 14 months, p = 0.38) or time to progression (docetaxel 27 weeks vs. doxorubicin 23 weeks, p = 0.54), docetaxel increased response rate (52% vs. 37%, p = 0.01) and shortened time to response (12 weeks vs. 23 weeks, p = 0.007). Three docetaxel patients (2%) discontinued the treatment due to fluid retention, whereas 15 doxorubicin patients (9%) discontinued due to cardiac toxicity (three cases of fatal congestive heart failure).

In anthracycline-failure patients, docetaxel was compared to the combination of mitomycin C and vinblastine (12 mg/m² every 6 weeks and 6 mg/m² every 3 weeks). Docetaxel increased response rate (33% vs. 12%, p < 0.0001), prolonged time to progression (19 weeks vs. 11 weeks, p = 0.0004) and prolonged overall survival (11 months vs. 9 months, p = 0.01).

During these two phase III studies, the safety profile of docetaxel was consistent with the safety profile observed in phase II studies (see section 4.8).

An open-label, multi-centre, randomised phase III study was conducted to compare docetaxel monotherapy and paclitaxel in the treatment of advanced breast cancer in patients whose previous therapy should have included an anthracycline. A total of 449 patients were randomised to receive either docetaxel monotherapy 100 mg/m² as a 1 hour infusion or paclitaxel 175 mg/m² as a 3 hour infusion. Both regimens were administered every 3 weeks. Without affecting the primary endpoint, overall response rate (32% vs 25%, p = 0.10), docetaxel prolonged median time to progression (24.6 weeks vs 15.6 weeks; p < 0.01) and median survival (15.3 months vs 12.7 months; p = 0.03). More grade 3/4 adverse events were observed for docetaxel monotherapy (55.4%) compared to paclitaxel (23.0%).

**TAXOTERE in combination with doxorubicin**

One large randomised phase III study, involving 429 previously untreated patients with metastatic disease, has been performed with doxorubicin (50 mg/m²) in combination with docetaxel (75 mg/m²) (AT arm) versus doxorubicin (60 mg/m²) in combination with cyclophosphamide (600 mg/m²) (AC arm). Both regimens were administered on day 1 every 3 weeks.

- Time to progression (TTP) was significantly longer in the AT arm versus AC arm, p = 0.0138. The median TTP was 37.3 weeks (95% CI: 33.4 - 42.1) in AT arm and 31.9 weeks (95% CI: 27.4 - 36.0) in AC arm.
- Overall response rate (ORR) was significantly higher in the AT arm versus AC arm, p = 0.009. The ORR was 59.3% (95% CI: 52.8 - 65.9) in AT arm versus 46.5% (95% CI: 39.8 - 53.2) in AC arm.

In this study, AT arm showed a higher incidence of severe neutropenia (90% versus 68.6%), febrile neutropenia (33.3% versus 10%), infection (8% versus 2.4%), diarrhoea (7.5% versus 1.4%), asthenia (8.5% versus 2.4%), and pain (2.8% versus 0%) than AC arm. On the other hand, AC arm showed a
higher incidence of severe anaemia (15.8% versus 8.5%) than AT arm, and, in addition, a higher incidence of severe cardiac toxicity: congestive heart failure (3.8% versus 2.8%), absolute LVEF decrease ≥ 20% (13.1% versus 6.1%), absolute LVEF decrease ≥ 30% (6.2% versus 1.1%). Toxic deaths occurred in 1 patient in the AT arm (congestive heart failure) and in 4 patients in the AC arm (1 due to septic shock and 3 due to congestive heart failure).

In both arms, quality of life measured by the EORTC questionnaire was comparable and stable during treatment and follow-up.

**TAXOTERE in combination with trastuzumab**

Docetaxel in combination with trastuzumab was studied for the treatment of patients with metastatic breast cancer whose tumours over express HER2, and who previously had not received chemotherapy for metastatic disease. One hundred eighty six patients were randomised to receive docetaxel (100 mg/m²) with or without trastuzumab; 60% of patients received prior anthracycline-based adjuvant chemotherapy. Docetaxel plus trastuzumab was efficacious in patients whether or not they had received prior adjuvant anthracyclines. The main test method used to determine HER2 positivity in this pivotal study was immunohistochemistry (IHC). A minority of patients were tested using fluorescence in-situ hybridization (FISH). In this study, 87% of patients had disease that was IHC 3+, and 95% of patients entered had disease that was IHC 3+ and/or FISH positive. Efficacy results are summarized in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Docetaxel plus trastuzumab¹</th>
<th>Docetaxel¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 92</td>
<td>n = 94</td>
</tr>
<tr>
<td>Response rate (95% CI)</td>
<td>61% (50-71)</td>
<td>34% (25-45)</td>
</tr>
<tr>
<td>Median duration of response (months) (95% CI)</td>
<td>11.4 (9.2-15.0)</td>
<td>5.1 (4.4-6.2)</td>
</tr>
<tr>
<td>Median TTP (months) (95% CI)</td>
<td>10.6 (7.6-12.9)</td>
<td>5.7 (5.0-6.5)</td>
</tr>
<tr>
<td>Median survival (months) (95% CI)</td>
<td>30.5₂ (26.8-ne)</td>
<td>22.1₂ (17.6-28.9)</td>
</tr>
</tbody>
</table>

**TTP** = time to progression; “ne” indicates that it could not be estimated or it was not yet reached.

¹Full analysis set (intent-to-treat)

²Estimated median survival

**TAXOTERE in combination with capecitabine**

Data from one multi-centre, randomised, controlled phase III clinical study support the use of docetaxel in combination with capecitabine for treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic chemotherapy, including an anthracycline. In this study, 255 patients were randomised to treatment with docetaxel (75 mg/m² as a 1 hour intravenous infusion every 3 weeks) and capecitabine (1250 mg/m² twice daily for 2 weeks followed by 1-week rest period). 256 patients were randomised to treatment with docetaxel alone (100 mg/m² as a 1 hour intravenous infusion every 3 weeks). Survival was superior in the docetaxel + capecitabine combination arm (p = 0.0126). Median survival was 442 days (docetaxel + capecitabine) vs. 352 days (docetaxel alone). The overall objective response rates in the all-randomised population (investigator assessment) were 41.6% (docetaxel + capecitabine) vs. 29.7% (docetaxel alone); p = 0.0058. Time to progressive disease was superior in the docetaxel + capecitabine combination arm (p < 0.0001). The median time to progression was 186 days (docetaxel + capecitabine) vs. 128 days (docetaxel alone).
Non-small cell lung cancer

Patients previously treated with chemotherapy with or without radiotherapy

In a phase III study, in previously treated patients, time to progression (12.3 weeks versus 7 weeks) and overall survival were significantly longer for docetaxel at 75 mg/m² compared to Best Supportive Care. The 1-year survival rate was also significantly longer in docetaxel (40%) versus BSC (16%). There was less use of morphinic analgesics (p < 0.01), non-morphinic analgesics (p < 0.01), other disease-related medications (p = 0.06) and radiotherapy (p < 0.01) in patients treated with docetaxel at 75 mg/m² compared to those with BSC. The overall response rate was 6.8% in the evaluable patients, and the median duration of response was 26.1 weeks.

TAXOTERE in combination with platinum agents in chemotherapy-naïve patients

In a phase III study, 1218 patients with unresectable stage IIIB or IV NSCLC, with KPS of 70% or greater, and who did not receive previous chemotherapy for this condition, were randomised to either docetaxel (T) 75 mg/m² as a 1 hour infusion immediately followed by cisplatin (Cis) 75 mg/m² over 30-60 minutes every 3 weeks (TCis), docetaxel 75 mg/m² as a 1 hour infusion in combination with carboplatin (AUC 6 mg/ml.min) over 30-60 minutes every 3 weeks, or vinorelbine (V) 25 mg/m² administered over 6-10 minutes on days 1, 8, 15, 22 followed by cisplatin 100 mg/m² administered on day 1 of cycles repeated every 4 weeks (VCis).

Survival data, median time to progression and response rates for two arms of the study are illustrated in the following table:

<table>
<thead>
<tr>
<th></th>
<th>TCis n = 408</th>
<th>VCis n = 404</th>
<th>Statistical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Primary end-point):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median survival (months)</td>
<td>11.3</td>
<td>10.1</td>
<td>Hazard ratio: 1.122 [97.2% CI: 0.937; 1.342]*</td>
</tr>
<tr>
<td>1-year Survival (%)</td>
<td>46</td>
<td>41</td>
<td>Treatment difference: 5.4% [95% CI: -1.1; 12.0]</td>
</tr>
<tr>
<td>2-year Survival (%)</td>
<td>21</td>
<td>14</td>
<td>Treatment difference: 6.2% [95% CI: 0.2; 12.3]</td>
</tr>
<tr>
<td>Median time to progression</td>
<td>22.0</td>
<td>23.0</td>
<td>Hazard ratio: 1.032 [95% CI: 0.876; 1.216]</td>
</tr>
<tr>
<td>(weeks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall response rate (%)</td>
<td>31.6</td>
<td>24.5</td>
<td>Treatment difference: 7.1% [95% CI: 0.7; 13.5]</td>
</tr>
</tbody>
</table>

*: Corrected for multiple comparisons and adjusted for stratification factors (stage of disease and region of treatment), based on evaluable patient population.

Secondary end-points included change of pain, global rating of quality of life by EuroQoL-5D, Lung Cancer Symptom Scale, and changes in Karnofsky performance status. Results on these end-points were supportive of the primary end-points results.

For docetaxel/carboplatin combination, neither equivalent nor non-inferior efficacy could be proven compared to the reference treatment combination VCis.

Prostate cancer

Metastatic castration-resistant prostate cancer

The safety and efficacy of docetaxel in combination with prednisone or prednisolone in patients with metastatic castration-resistant prostate cancer were evaluated in a randomised multi-centre phase III
study (TAX 327). A total of 1006 patients with KPS ≥ 60 were randomised to the following treatment groups:

- Docetaxel 75 mg/m² every 3 weeks for 10 cycles.
- Docetaxel 30 mg/m² administered weekly for the first 5 weeks in a 6 week cycle for 5 cycles.
- Mitoxantrone 12 mg/m² every 3 weeks for 10 cycles.

All 3 regimens were administered in combination with prednisone or prednisolone 5 mg twice daily, continuously.

Patients who received docetaxel every three weeks demonstrated significantly longer overall survival compared to those treated with mitoxantrone. The increase in survival seen in the docetaxel weekly arm was not statistically significant compared to the mitoxantrone control arm. Efficacy endpoints for the docetaxel arms versus the control arm are summarized in the following table:

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel every 3 weeks</th>
<th>Docetaxel every week</th>
<th>Mitoxantrone every 3 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>335</td>
<td>334</td>
<td>337</td>
</tr>
<tr>
<td>Median survival (months)</td>
<td>18.9</td>
<td>17.4</td>
<td>16.5</td>
</tr>
<tr>
<td>95% CI</td>
<td>(17.0-21.2)</td>
<td>(15.7-19.0)</td>
<td>(14.4-18.6)</td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>0.761</td>
<td>0.912</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.619-0.936)</td>
<td>(0.747-1.113)</td>
<td>--</td>
</tr>
<tr>
<td>p-value*</td>
<td>0.0094</td>
<td>0.3624</td>
<td>--</td>
</tr>
</tbody>
</table>

| Number of patients     | 291                     | 282                  | 300                       |
| PSA** response rate (%)| 45.4                    | 47.9                 | 31.7                      |
| 95% CI                 | (39.5-51.3)              | (41.9-53.9)          | (26.4-37.3)               |
| p-value*               | 0.0005                  | <0.0001              | --                        |

| Number of patients     | 153                     | 154                  | 157                       |
| Pain response rate (%)  | 34.6                    | 31.2                 | 21.7                      |
| 95% CI                 | (27.1-42.7)              | (24.0-39.1)          | (15.5-28.9)               |
| p-value*               | 0.0107                  | 0.0798               | --                        |

| Number of patients     | 141                     | 134                  | 137                       |
| Tumour response rate (%)| 12.1                    | 8.2                  | 6.6                       |
| 95% CI                 | (7.2-18.6)               | (4.2-14.2)           | (3.0-12.1)                |
| p-value*               | 0.1112                  | 0.5853               | --                        |

†Stratified log-rank test
*Threshold for statistical significance = 0.0175
**PSA: Prostate-Specific Antigen

Given the fact that docetaxel every week presented a slightly better safety profile than docetaxel every 3 weeks, it is possible that certain patients may benefit from docetaxel every week.

No statistical differences were observed between treatment groups for Global Quality of Life.

**Metastatic hormone-sensitive prostate cancer**

STAMPEDE study

The safety and efficacy of docetaxel administered concomitantly with standard of care (ADT) in patients with high-risk locally advanced or metastatic hormone-sensitive prostate cancer were evaluated in a randomised multi-centre, multi-arm multi-stage (MAMS) study with a seamless phase II/III design (STAMPEDE – MRC PR08). A total of 1776 male patients were allocated to the treatment arms of interest:

- Standard of care + docetaxel 75 mg/m², administered every 3 weeks for 6 cycles
- Standard of care alone

Docetaxel regimen was administered in combination with prednisone or prednisolone 5 mg twice daily continuously.

Among the 1776 randomised patients 1086 (61%) had metastatic disease, 362 were randomised to docetaxel in combination with standard of care, 724 received standard of care alone.
In these metastatic prostate cancer patients, the median overall survival was significantly longer in docetaxel treatment groups than in the standard of care alone group, with a median overall survival 19 months longer with the addition of docetaxel to standard of care (HR = 0.76, 95% CI = 0.62-0.92, p=0.005).

Efficacy results in metastatic prostate cancer patients for docetaxel arm versus control arm are summarized in the following table:

Efficacy of docetaxel in combination with prednisone or prednisolone and standard of care in the treatment of patients with metastatic hormone-sensitive prostate cancer (STAMPEDE)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + standard of care</th>
<th>Standard of care alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of metastatic prostate cancer patients</td>
<td>362</td>
<td>724</td>
</tr>
<tr>
<td>Median overall survival (months)</td>
<td>62</td>
<td>43</td>
</tr>
<tr>
<td>95% CI</td>
<td>51-73</td>
<td>40-48</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.76</td>
<td>(0.62-0.92)</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure-Free survival</td>
<td>20.4</td>
<td>12</td>
</tr>
<tr>
<td>Median (months)</td>
<td>16.8-25.2</td>
<td>9.6-12</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.66</td>
<td>(0.57-0.76)</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p-value calculated from the likelihood ratio test and adjusted for all stratification factors (except center and planned hormone therapy) and stratified by trial period

Failure-free survival: time from randomization to first evidence of at least one of: biochemical failure (defined as a rise in PSA of 50% above the within-24-week nadir and above 4 ng/mL and confirmed by retest or treatment); progression either locally, in lymph nodes, or in distant metastases; skeletal-related event; or death from prostate cancer.

CHAARTED study

The safety and efficacy of docetaxel administered at the beginning of androgen-deprivation therapy (ADT) in patients with metastatic hormone-sensitive prostate cancer were evaluated in a randomised Phase III multi-centre study (CHAARTED). A total of 790 male patients were allocated to the 2 treatment groups.

- ADT + docetaxel 75 mg/m² given at the beginning of ADT, administered every 3 weeks for 6 cycles
- ADT alone

The median overall survival was significantly longer in docetaxel treatment group than in the ADT alone group, with a median overall survival 13.6 months longer with the addition of docetaxel to ADT (hazard ratio (HR) = 0.61, 95% confidence interval (CI) = 0.47-0.80, p=0.0003).

Efficacy results or the docetaxel arm versus the control arm are summarized in the following table:
### Efficacy of docetaxel and ADT in the treatment of patients with metastatic hormone-sensitive prostate cancer (CHAARTED)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel +ADT</th>
<th>ADT alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>397</td>
<td>393</td>
</tr>
<tr>
<td>Median overall survival (months)</td>
<td>57.6</td>
<td>44.0</td>
</tr>
<tr>
<td><strong>95% CI</strong></td>
<td>49.1-72.8</td>
<td>34.4-49.1</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td><strong>95% CI</strong></td>
<td>(0.47-0.80)</td>
<td>--</td>
</tr>
<tr>
<td>p-value(^a)</td>
<td>0.0003</td>
<td>--</td>
</tr>
<tr>
<td>Progression Free Survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>19.8</td>
<td>11.6</td>
</tr>
<tr>
<td><strong>95% CI</strong></td>
<td>16.7-22.8</td>
<td>10.8-14.3</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.60</td>
<td>--</td>
</tr>
<tr>
<td><strong>95% CI</strong></td>
<td>0.51-0.72</td>
<td>--</td>
</tr>
<tr>
<td>p-value(^\ast)</td>
<td>P&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>PSA response(^**) at 6 months – N(%)</td>
<td>127 (32.0)</td>
<td>77 (19.6)</td>
</tr>
<tr>
<td>p-value(^\ast)</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>PSA response(^**) at 12 months – N(%)</td>
<td>110 (27.7)</td>
<td>66 (16.8)</td>
</tr>
<tr>
<td>p-value(^\ast)</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>Time to castration-resistant prostate cancer(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>20.2</td>
<td>11.7</td>
</tr>
<tr>
<td><strong>95% CI</strong></td>
<td>(17.2-23.6)</td>
<td>(10.8-14.7)</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td><strong>95% CI</strong></td>
<td>(0.51-0.72)</td>
<td>--</td>
</tr>
<tr>
<td>p-value(^\ast)</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>Time to clinical progression(^c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>33.0</td>
<td>19.8</td>
</tr>
<tr>
<td><strong>95% CI</strong></td>
<td>(27.3-41.2)</td>
<td>(17.9-22.8)</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td><strong>95% CI</strong></td>
<td>(0.50-0.75)</td>
<td>--</td>
</tr>
<tr>
<td>p-value(^\ast)</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
</tbody>
</table>

\(^a\) Time to event variables: Stratified log-rank test.
Response rate variables: Fisher's Exact test
* p-value for descriptive purpose.
** PSA response: Prostate-Specific Antigen response: PSA level <0.2 ng/mL measured for two consecutive measurements at least 4 weeks apart.
\(^b\) Time to castration-resistant prostate cancer = time from randomization to PSA progression or clinical progression (i.e., increasing symptomatic bone metastases, progression per Response Evaluation Criteria in Solid Tumours (RECIST) criteria, or clinical deterioration due to cancer per the Investigator’s opinion), whichever occurred first.
\(^c\) The time to clinical progression = the time from randomization until clinical progression (i.e., increased symptoms of bone metastases; progression according to RECIST; or clinical deterioration due to cancer according to the investigator’s opinion).

### Gastric adenocarcinoma

A multi-centre, open-label, randomised study was conducted to evaluate the safety and efficacy of docetaxel for the treatment of patients with metastatic gastric adenocarcinoma, including adenocarcinoma of the gastroesophageal junction, who had not received prior chemotherapy for
A total of 445 patients with KPS > 70 were treated with either docetaxel (T) (75 mg/m² on day 1) in combination with cisplatin (C) (75 mg/m² on day 1) and 5-fluorouracil (F) (750 mg/m² per day for 5 days) or cisplatin (100 mg/m² on day 1) and 5-fluorouracil (1000 mg/m² per day for 5 days). The length of a treatment cycle was 3 weeks for the TCF arm and 4 weeks for the CF arm. The median number of cycles administered per patient was 6 (with a range of 1-16) for the TCF arm compared to 4 (with a range of 1-12) for the CF arm. Time to progression (TTP) was the primary endpoint. The risk reduction of progression was 32.1% and was associated with a significantly longer TTP (p = 0.0004) in favour of the TCF arm. Overall survival was also significantly longer (p = 0.0201) in favour of the TCF arm with a risk reduction of mortality of 22.7%. Efficacy results are summarized in the following table:

**Efficacy of docetaxel in the treatment of patients with gastric adenocarcinoma**

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>TCF n = 221</th>
<th>CF n = 224</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median TTP (months) (95% CI)</td>
<td>5.6 (4.86-5.91)</td>
<td>3.7 (3.45-4.47)</td>
</tr>
<tr>
<td>Hazard ratio (95% CI) *p-value</td>
<td>1.473 (1.189-1.825)</td>
<td>0.0004</td>
</tr>
<tr>
<td>Median survival (months) (95% CI)</td>
<td>9.2 (8.38-10.58)</td>
<td>8.6 (7.16-9.46)</td>
</tr>
<tr>
<td>2-year estimate (%)</td>
<td>18.4</td>
<td>8.8</td>
</tr>
<tr>
<td>Hazard ratio (95% CI) *p-value</td>
<td>1.293 (1.041-1.606)</td>
<td>0.0201</td>
</tr>
<tr>
<td>Overall response rate (CR+PR) (%)</td>
<td>36.7</td>
<td>25.4</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td>0.0106</td>
</tr>
<tr>
<td>Progressive disease as best overall</td>
<td>16.7</td>
<td>25.9</td>
</tr>
<tr>
<td>Response (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Unstratified logrank test

Subgroup analyses across age, gender and race consistently favoured the TCF arm compared to the CF arm.

A survival update analysis conducted with a median follow-up time of 41.6 months no longer showed a statistically significant difference although always in favour of the TCF regimen and showed that the benefit of TCF over CF is clearly observed between 18 and 30 months of follow up.

Overall, quality of life (QoL) and clinical benefit results consistently indicated improvement in favour of the TCF arm. Patients treated with TCF had a longer time to 5% definitive deterioration of global health status on the QLQ-C30 questionnaire (p = 0.0121) and a longer time to definitive worsening of Karnofsky performance status (p = 0.0088) compared to patients treated with CF.

**Head and neck cancer**

- Induction chemotherapy followed by radiotherapy (TAX323)
  
  The safety and efficacy of docetaxel in the induction treatment of patients with squamous cell carcinoma of the head and neck (SCCHN) was evaluated in a phase III, multi-centre, open-label, randomised study (TAX323). In this study, 358 patients with inoperable locally advanced SCCHN, and WHO performance status 0 or 1, were randomised to one of two treatment arms. Patients on the docetaxel arm received docetaxel (T) 75 mg/m² followed by cisplatin (P) 75 mg/m² followed by 5-fluorouracil (F) 750 mg/m² per day as a continuous infusion for 5 days. This regimen was administered every three weeks for 4 cycles in case at least a minor response (≥ 25% reduction in bidimensionally measured tumour size) was observed after 2 cycles. At the end of chemotherapy, with a minimal interval of 4 weeks and a maximal interval of 7 weeks, patients whose disease did not progress received radiotherapy (RT) according to institutional guidelines for 7 weeks (TPF/RT).
Patients on the comparator arm received cisplatin (P) 100 mg/m² followed by 5-fluorouracil (F) 1000 mg/m² per day for 5 days. This regimen was administered every three weeks for 4 cycles in case at least a minor response (≥ 25% reduction in bidimensionally measured tumour size) was observed after 2 cycles. At the end of chemotherapy, with a minimal interval of 4 weeks and a maximal interval of 7 weeks, patients whose disease did not progress received radiotherapy (RT) according to institutional guidelines for 7 weeks (PF/RT). Locoregional therapy with radiation was delivered either with a conventional fraction (1.8 Gy - 2.0 Gy once a day, 5 days per week for a total dose of 66 to 70 Gy), or accelerated/hyperfractionated regimens of radiation therapy (twice a day, with a minimum interfraction interval of 6 hours, 5 days per week). A total of 70 Gy was recommended for accelerated regimens and 74 Gy for hyperfractionated schemes. Surgical resection was allowed following chemotherapy, before or after radiotherapy. Patients on the TPF arm received antibiotic prophylaxis with ciprofloxacin 500 mg orally twice daily for 10 days starting on day 5 of each cycle, or equivalent.

The primary endpoint in this study, progression-free survival (PFS), was significantly longer in the TPF arm compared to the PF arm, p = 0.0042 (median PFS: 11.4 vs. 8.3 months respectively) with an overall median follow up time of 33.7 months. Median overall survival was also significantly longer in favour of the TPF arm compared to the PF arm (median OS: 18.6 vs. 14.5 months respectively) with a 28% risk reduction of mortality, p = 0.0128. Efficacy results are presented in the table below:

### Efficacy of docetaxel in the induction treatment of patients with inoperable locally advanced SCCHN (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + Cis + 5-FU</th>
<th>Cis + 5-FU</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Median progression free survival (months)</strong> (95% CI)</td>
<td>11.4 (10.1-14.0)</td>
<td>8.3 (7.4-9.1)</td>
</tr>
<tr>
<td><strong>Adjusted hazard ratio</strong> (95% CI)</td>
<td>0.70 (0.55-0.89)</td>
<td></td>
</tr>
<tr>
<td><strong>p-value</strong></td>
<td>0.0042</td>
<td></td>
</tr>
<tr>
<td><strong>Median survival (months)</strong> (95% CI)</td>
<td>18.6 (15.7-24.0)</td>
<td>14.5 (11.6-18.7)</td>
</tr>
<tr>
<td><strong>Hazard ratio</strong></td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td><strong>(95% CI)</strong></td>
<td>(0.56-0.93)</td>
<td></td>
</tr>
<tr>
<td><strong>p-value</strong></td>
<td>0.0128</td>
<td></td>
</tr>
<tr>
<td><strong>Best overall response to chemotherapy (%)</strong> (95% CI)</td>
<td>67.8 (60.4-74.6)</td>
<td>53.6 (46.0-61.0)</td>
</tr>
<tr>
<td><strong>p-value</strong></td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td><strong>Best overall response to study treatment</strong> (chemotherapy +/- radiotherapy) (%) (95% CI)</td>
<td>72.3 (65.1-78.8)</td>
<td>58.6 (51.0-65.8)</td>
</tr>
<tr>
<td><strong>p-value</strong></td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td><strong>Median duration of response to chemotherapy ± radiotherapy (months)</strong> (95% CI)</td>
<td>n = 128 15.7 (13.4-24.6)</td>
<td>n = 106 11.7 (10.2-17.4)</td>
</tr>
<tr>
<td><strong>Hazard ratio</strong></td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td><strong>(95% CI)</strong></td>
<td>(0.52-0.99)</td>
<td></td>
</tr>
<tr>
<td><strong>p-value</strong></td>
<td>0.0457</td>
<td></td>
</tr>
</tbody>
</table>

A hazard ratio of less than 1 favours docetaxel + cisplatin + 5-FU

*Cox model (adjustment for Primary tumour site, T and N clinical stages and PSWHO)

**Logrank test

*** Chi-square test

**Quality of life parameters**

Patients treated with TPF experienced significantly less deterioration of their Global health score compared to those treated with PF (p = 0.01, using the EORTC QLQ-C30 scale).
Clinical benefit parameters
The performance status scale, for head and neck (PSS-HN) subscales designed to measure understandability of speech, ability to eat in public, and normalcy of diet, was significantly in favour of TPF as compared to PF. Median time to first deterioration of WHO performance status was significantly longer in the TPF arm compared to PF. Pain intensity score improved during treatment in both groups indicating adequate pain management.

- Induction chemotherapy followed by chemoradiotherapy (TAX324)
  The safety and efficacy of docetaxel in the induction treatment of patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN) was evaluated in a randomised, multi-centre open-label, phase III study (TAX324). In this study, 501 patients, with locally advanced SCCHN, and a WHO performance status of 0 or 1, were randomised to one of two arms. The study population comprised patients with technically unresectable disease, patients with low probability of surgical cure and patients aiming at organ preservation. The efficacy and safety evaluation solely addressed survival endpoints and the success of organ preservation was not formally addressed. Patients on the docetaxel arm received docetaxel (T) 75 mg/m² by intravenous infusion on day 1 followed by cisplatin (P) 100 mg/m² administered as a 30-minute to three-hour intravenous infusion, followed by the continuous intravenous infusion of 5-fluorouracil (F) 1000 mg/m²/day from day 1 to day 4. The cycles were repeated every 3 weeks for 3 cycles. All patients who did not have progressive disease were to receive chemoradiotherapy (CRT) as per protocol (TPF/CRT). Patients on the comparator arm received cisplatin (P) 100 mg/m² as a 30-minute to three-hour intravenous infusion on day 1 followed by the continuous intravenous infusion of 5-fluorouracil (F) 1000 mg/m²/day from day 1 to day 5. The cycles were repeated every 3 weeks for 3 cycles. All patients who did not have progressive disease were to receive CRT as per protocol (PF/CRT).

Patients in both treatment arms were to receive 7 weeks of CRT following induction chemotherapy with a minimum interval of 3 weeks and no later than 8 weeks after start of the last cycle (day 22 to day 56 of last cycle). During radiotherapy, carboplatin (AUC 1.5) was given weekly as a one-hour intravenous infusion for a maximum of 7 doses. Radiation was delivered with megavoltage equipment using once daily fractionation (2 Gy per day, 5 days per week for 7 weeks, for a total dose of 70-72 Gy). Surgery on the primary site of disease and/or neck could be considered at any time following completion of CRT. All patients on the docetaxel-containing arm of the study received prophylactic antibiotics. The primary efficacy endpoint in this study, overall survival (OS) was significantly longer (log-rank test, p = 0.0058) with the docetaxel-containing regimen compared to PF (median OS: 70.6 versus 30.1 months respectively), with a 30% risk reduction in mortality compared to PF (hazard ratio (HR) = 0.70, 95% confidence interval (CI) = 0.54-0.90) with an overall median follow up time of 41.9 months. The secondary endpoint, PFS, demonstrated a 29% risk reduction of progression or death and a 22 month improvement in median PFS (35.5 months for TPF and 13.1 for PF). This was also statistically significant with an HR of 0.71; 95% CI 0.56-0.90; log-rank test p = 0.004. Efficacy results are presented in the table below:
Efficacy of docetaxel in the induction treatment of patients with locally advanced SCCHN (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + Cis + 5-FU</th>
<th>Cis + 5-FU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 255</td>
<td>n = 246</td>
</tr>
<tr>
<td>Median overall survival (months)</td>
<td>70.6</td>
<td>30.1</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(49.0-NA)</td>
<td>(20.9-51.5)</td>
</tr>
<tr>
<td>Hazard ratio:</td>
<td>0.70</td>
<td>0.54-0.90</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>0.0058</td>
<td></td>
</tr>
<tr>
<td>Median PFS (months)</td>
<td>35.5</td>
<td>13.1</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(19.3-NA)</td>
<td>(10.6 - 20.2)</td>
</tr>
<tr>
<td>Hazard ratio:</td>
<td>0.71</td>
<td>0.56 - 0.90</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Best overall response (CR + PR) to chemotherapy (%)</td>
<td>71.8</td>
<td>64.2</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(65.8-77.2)</td>
<td>(57.9-70.2)</td>
</tr>
<tr>
<td>***p-value</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>Best overall response (CR + PR) to study treatment [chemotherapy +/- chemoradiotherapy] (%)</td>
<td>76.5</td>
<td>71.5</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(70.8-81.5)</td>
<td>(65.5-77.1)</td>
</tr>
<tr>
<td>***p-value</td>
<td>0.209</td>
<td></td>
</tr>
</tbody>
</table>

A hazard ratio of less than 1 favours docetaxel + cisplatin + fluorouracil
*un-adjusted log-rank test
**un-adjusted log-rank test, not adjusted for multiple comparisons
***Chi square test, not adjusted for multiple comparisons
NA-not applicable

Paediatric population

The European Medicines Agency has waived the obligation to submit the results of studies with TAXOTERE in all subsets of the paediatric population in breast cancer, non-small cell lung cancer, prostate cancer, gastric carcinoma and head and neck cancer, not including type II and III less differentiated nasopharyngeal carcinoma (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

Absorption

The pharmacokinetics of docetaxel have been evaluated in cancer patients after administration of 20-115 mg/m² in phase I studies. The kinetic profile of docetaxel is dose independent and consistent with a three-compartment pharmacokinetic model with half-lives for the α, β and γ (terminal) phases of 4 min, 36 min and between 11.1 h and 17.5 h, respectively, when sampled up to 24 hours. An additional study assessing the pharmacokinetics of docetaxel at similar doses (75 – 100 mg/m²) in patients, but over a longer time interval (over 22 days) found a longer mean terminal elimination half-life between 91 and 120 hours. The late phase is due, in part, to a relatively slow efflux of docetaxel from the peripheral compartment.

Distribution

Following the administration of a 100 mg/m² dose given as a one-hour infusion a mean peak plasma level of 3.7 µg/ml was obtained with a corresponding AUC of 4.6 h.µg/ml. Mean values for total body clearance and steady-state volume of distribution were 21 l/h/m² and 113 l, respectively. Inter
individual variation in total body clearance was approximately 50%. Docetaxel is more than 95% bound to plasma proteins.

**Elimination**

A study of $^{14}$C-docetaxel has been conducted in three cancer patients. Docetaxel was eliminated in both the urine and faeces following cytochrome P450-mediated oxidative metabolism of the tert-butyl ester group, within seven days, the urinary and faecal excretion accounted for about 6% and 75% of the administered radioactivity, respectively. About 80% of the radioactivity recovered in faeces is excreted during the first 48 hours as one major inactive metabolite and 3 minor inactive metabolites and very low amounts of unchanged medicinal product.

**Special populations**

**Age and gender**
A population pharmacokinetic analysis has been performed with docetaxel in 577 patients. Pharmacokinetic parameters estimated by the model were very close to those estimated from phase I studies. The pharmacokinetics of docetaxel were not altered by the age or sex of the patient.

**Hepatic impairment**
In a small number of patients ($n = 23$) with clinical chemistry data suggestive of mild to moderate liver function impairment (ALT, AST $\geq 1.5$ times the ULN associated with alkaline phosphatase $\geq 2.5$ times the ULN), total clearance was lowered by 27% on average (see section 4.2).

**Fluid retention**
Docetaxel clearance was not modified in patients with mild to moderate fluid retention and there are no data available in patients with severe fluid retention.

**Combination therapy**

**Doxorubicin**
When used in combination, docetaxel does not influence the clearance of doxorubicin and the plasma levels of doxorubicinol (a doxorubicin metabolite). The pharmacokinetics of docetaxel, doxorubicin and cyclophosphamide were not influenced by their coadministration.

**Capecitabine**
Phase I study evaluating the effect of capecitabine on the pharmacokinetics of docetaxel and vice versa showed no effect by capecitabine on the pharmacokinetics of docetaxel ($C_{\text{max}}$ and AUC) and no effect by docetaxel on the pharmacokinetics of a relevant capecitabine metabolite 5'-DFUR.

**Cisplatin**
Clearance of docetaxel in combination therapy with cisplatin was similar to that observed following monotherapy. The pharmacokinetic profile of cisplatin administered shortly after docetaxel infusion is similar to that observed with cisplatin alone.

**Cisplatin and 5-fluorouracil**
The combined administration of docetaxel, cisplatin and 5-fluorouracil in 12 patients with solid tumours had no influence on the pharmacokinetics of each individual medicinal product.

**Prednisone and dexamethasone**
The effect of prednisone on the pharmacokinetics of docetaxel administered with standard dexamethasone premedication has been studied in 42 patients.

**Prednisone**
No effect of prednisone on the pharmacokinetics of docetaxel was observed.
5.3 Preclinical safety data

The carcinogenic potential of docetaxel has not been studied.

Docetaxel has been shown to be genotoxic by an aneugenic mechanism in the \textit{in vitro} micronucleus and chromosome aberration test in CHO-K1 cells and in the \textit{in vivo} micronucleus test in the mouse. However, it did not induce mutagenicity in the Ames test or the CHO/HGPRT gene mutation assay. These results are consistent with the pharmacological activity of docetaxel.

Undesirable effects on the testis observed in rodent toxicity studies suggest that docetaxel may impair male fertility.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Concentrate vial:
- Polysorbate 80
- Citric acid.

Solvent vial:
- Ethanol 95%
- Water for injections.

6.2 Incompatibilities

This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.

6.3 Shelf-life

- 2 years.
- Premix solution: The premix solution contains 10 mg/ml docetaxel and should be used immediately after preparation. However, the chemical and physical stability of the premix solution has been demonstrated for 8 hours when stored either between 2°C and 8°C or at room temperature (below 25°C).
- Infusion solution: The infusion solution should be used within 4 hours at room temperature (below 25°C).

6.4 Special precautions for storage

Do not store above 25°C or below 2°C.
Store in the original package in order to protect from light.
For storage conditions of the diluted medicinal product, see section 6.3.

6.5 Nature and contents of container

Each blister pack contains:
- one single-dose vial of concentrate and,
- one single-dose vial of solvent.

**TAXOTERE** 20 mg/0.5 ml concentrate for solution for infusion vial

7 ml clear glass Type I vial with a green flip-off cap.
This vial contains 0.5 ml of a 40 mg/ml solution of docetaxel in polysorbate 80 (fill volume: 24.4 mg/0.61 ml). This fill volume has been established during the development of TAXOTERE to compensate for liquid loss during preparation of the premix due to foaming, adhesion to the walls of the vial and "dead-volume". This overfill ensures that after dilution with the entire contents of the accompanying solvent for TAXOTERE vial, there is a minimal extractable premix volume of 2 ml containing 10 mg/ml docetaxel which corresponds to the labelled amount of 20 mg/0.5 ml per vial.

**Solvent vial**

7 ml clear glass Type I vial with a transparent colourless flip-off cap.

Solvent vial contains 1.5 ml of a 13% w/w solution of ethanol 95% in water for injections (fill volume: 1.98 ml). The addition of the entire contents of the solvent vial to the contents of the TAXOTERE 20 mg/0.5 ml concentrate for solution for infusion vial ensures a premix concentration of 10 mg/ml docetaxel.

### 6.6 Special precautions for disposal and other handling

TAXOTERE is an antineoplastic agent and, as with other potentially toxic compounds, caution should be exercised when handling it and preparing TAXOTERE solutions. The use of gloves is recommended.

If TAXOTERE concentrate, premix solution or infusion solution should come into contact with skin, wash immediately and thoroughly with soap and water. If TAXOTERE concentrate, premix solution or infusion solution should come into contact with mucous membranes, wash immediately and thoroughly with water.

**Preparation for the intravenous administration**

**a) Preparation of the TAXOTERE premix solution (10 mg docetaxel/ml)**

If the vials are stored under refrigeration, allow the required number of TAXOTERE boxes to stand at room temperature (below 25°C) for 5 minutes.

Using a syringe fitted with a needle, aseptically withdraw the entire contents of the solvent for TAXOTERE vial by partially inverting the vial.

Inject the entire contents of the syringe into the corresponding TAXOTERE vial.

Remove the syringe and needle and mix manually by repeated inversions for at least 45 seconds. Do not shake.

Allow the premix vial to stand for 5 minutes at room temperature (below 25°C) and then check that the solution is homogenous and clear (foaming is normal even after 5 minutes due to the presence of polysorbate 80 in the formulation).

The premix solution contains 10 mg/ml docetaxel and should be used immediately after preparation. However the chemical and physical stability of the premix solution has been demonstrated for 8 hours when stored either between 2°C and 8°C or at room temperature (below 25°C).

**b) Preparation of the infusion solution**

More than one premix vial may be necessary to obtain the required dose for the patient. Based on the required dose for the patient expressed in mg, aseptically withdraw the corresponding premix volume containing 10 mg/ml docetaxel from the appropriate number of premix vials using graduated syringes fitted with a needle. For example, a dose of 140 mg docetaxel would require 14 ml docetaxel premix solution.
Inject the required premix volume into a 250 ml infusion bag or bottle containing either 5% glucose solution or sodium chloride 9 mg/ml (0.9%) solution for infusion.

If a dose greater than 200 mg of docetaxel is required, use a larger volume of the infusion vehicle so that a concentration of 0.74 mg/ml docetaxel is not exceeded.

Mix the infusion bag or bottle manually using a rocking motion.

The TAXOTERE infusion solution should be used within 4 hours and should be aseptically administered as a 1-hour infusion under room temperature (below 25°C) and normal lighting conditions.

As with all parenteral products, TAXOTERE premix solution and infusion solution should be visually inspected prior to use, solutions containing a precipitate should be discarded.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

Sanofi Mature IP, 54 rue La Boétie, 75008 Paris, France

8. MARKETING AUTHORISATION NUMBER

EU/1/95/002/001

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 27 November 1995
Date of latest renewal: 27 November 2005

10. DATE OF REVISION OF THE TEXT

1. **NAME OF THE MEDICINAL PRODUCT**

TAXOTERE 80 mg/2 ml concentrate and solvent for solution for infusion

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**

Each single-dose vial of TAXOTERE 80 mg/2 ml concentrate contains docetaxel (as trihydrate) corresponding to 80 mg of docetaxel (anhydrous). The viscous solution contains 40 mg/ml docetaxel (anhydrous).

**Excipient with known effect:**
Each single-dose vial of solvent contains 13% (w/w) ethanol 95% v/v in water for injection (932 mg of ethanol 95% v/v).

For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**

Concentrate and solvent for solution for infusion.

The concentrate is a clear viscous, yellow to brown-yellow solution.

The solvent is a colourless solution.

4. **CLINICAL PARTICULARS**

4.1 **Therapeutic indications**

**Breast cancer**

TAXOTERE in combination with doxorubicin and cyclophosphamide is indicated for the adjuvant treatment of patients with:
- operable node-positive breast cancer
- operable node-negative breast cancer

For patients with operable node-negative breast cancer, adjuvant treatment should be restricted to patients eligible to receive chemotherapy according to internationally established criteria for primary therapy of early breast cancer (see section 5.1).

TAXOTERE in combination with doxorubicin is indicated for the treatment of patients with locally advanced or metastatic breast cancer who have not previously received cytotoxic therapy for this condition.

TAXOTERE monotherapy is indicated for the treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic therapy. Previous chemotherapy should have included an anthracycline or an alkylating agent.

TAXOTERE in combination with trastuzumab is indicated for the treatment of patients with metastatic breast cancer whose tumours over express HER2 and who previously have not received chemotherapy for metastatic disease.

TAXOTERE in combination with capecitabine is indicated for the treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic chemotherapy. Previous therapy should have included an anthracycline.
Non-small cell lung cancer

TAXOTERE is indicated for the treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of prior chemotherapy.

TAXOTERE in combination with cisplatin is indicated for the treatment of patients with unresectable, locally advanced or metastatic non-small cell lung cancer, in patients who have not previously received chemotherapy for this condition.

Prostate cancer

TAXOTERE in combination with prednisone or prednisolone is indicated for the treatment of patients with metastatic castration-resistant prostate cancer.

TAXOTERE in combination with androgen-deprivation therapy (ADT), with or without prednisone or prednisolone, is indicated for the treatment of patients with metastatic hormone-sensitive prostate cancer.

Gastric adenocarcinoma

TAXOTERE in combination with cisplatin and 5-fluorouracil is indicated for the treatment of patients with metastatic gastric adenocarcinoma, including adenocarcinoma of the gastroesophageal junction, who have not received prior chemotherapy for metastatic disease.

Head and neck cancer

TAXOTERE in combination with cisplatin and 5-fluorouracil is indicated for the induction treatment of patients with locally advanced squamous cell carcinoma of the head and neck.

4.2 Posology and method of administration

The use of docetaxel should be confined to units specialised in the administration of cytotoxic chemotherapy and it should only be administered under the supervision of a physician qualified in the use of anticancer chemotherapy (see section 6.6).

Posology

For breast, non-small cell lung, gastric, and head and neck cancers, premedication consisting of an oral corticosteroid, such as dexamethasone 16 mg per day (e.g. 8 mg BID) for 3 days starting 1 day prior to docetaxel administration, unless contraindicated, can be used (see section 4.4).

For metastatic castration-resistant prostate cancer, given the concurrent use of prednisone or prednisolone the recommended premedication regimen is oral dexamethasone 8 mg, 12 hours, 3 hours and 1 hour before the docetaxel infusion (see section 4.4).

For metastatic hormone-sensitive prostate cancer, irrespective of the concurrent use of prednisone or prednisolone, the recommended premedication regimen is oral dexamethasone 8 mg 12 hours, 3 hours, and 1 hour before docetaxel infusion (see section 4.4).

Prophylactic G-CSF may be used to mitigate the risk of haematological toxicities.

Docetaxel is administered as a one-hour infusion every three weeks.

Breast cancer

In the adjuvant treatment of operable node-positive and node-negative breast cancer, the recommended dose of docetaxel is 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² every 3 weeks for 6 cycles (TAC regimen) (see also Dose adjustments during treatment).
For the treatment of patients with locally advanced or metastatic breast cancer, the recommended dose of docetaxel is 100 mg/m² in monotherapy. In first-line treatment, docetaxel 75 mg/m² is given in combination therapy with doxorubicin (50 mg/m²).

In combination with trastuzumab the recommended dose of docetaxel is 100 mg/m² every three weeks, with trastuzumab administered weekly. In the pivotal study the initial docetaxel infusion was started the day following the first dose of trastuzumab. The subsequent docetaxel doses were administered immediately after completion of the trastuzumab infusion, if the preceding dose of trastuzumab was well tolerated. For trastuzumab dose and administration, see trastuzumab summary of product characteristics.

In combination with capecitabine, the recommended dose of docetaxel is 75 mg/m² every three weeks, combined with capecitabine at 1250 mg/m² twice daily (within 30 minutes after a meal) for 2 weeks followed by a 1-week rest period. For capecitabine dose calculation according to body surface area, see capecitabine summary of product characteristics.

**Non-small cell lung cancer**

In chemotherapy naïve patients treated for non-small cell lung cancer, the recommended dose regimen is docetaxel 75 mg/m² immediately followed by cisplatin 75 mg/m² over 30-60 minutes. For treatment after failure of prior platinum-based chemotherapy, the recommended dose is 75 mg/m² as a single agent.

**Prostate cancer**

*Metastatic castration-resistant prostate cancer*

The recommended dose of docetaxel is 75 mg/m². Prednisone or prednisolone 5 mg orally twice daily is administered continuously (see section 5.1).

*Metastatic hormone-sensitive prostate cancer*

The recommended dose of docetaxel is 75 mg/m² every 3 weeks for 6 cycles. Prednisone or prednisolone 5 mg orally twice daily may be administered continuously.

**Gastric adenocarcinoma**

The recommended dose of docetaxel is 75 mg/m² as a 1-hour infusion, followed by cisplatin 75 mg/m², as a 1- to 3-hour infusion (both on day 1 only), followed by 5-fluorouracil 750 mg/m² per day given as a 24-hour continuous infusion for 5 days, starting at the end of the cisplatin infusion. Treatment is repeated every three weeks. Patients must receive premedication with antiemetics and appropriate hydration for cisplatin administration. Prophylactic G-CSF should be used to mitigate the risk of haematological toxicities (see also Dose adjustments during treatment).

**Head and neck cancer**

Patients must receive premedication with antiemetics and appropriate hydration (prior to and after cisplatin administration). Prophylactic G-CSF may be used to mitigate the risk of haematological toxicities. All patients on the docetaxel-containing arm of the TAX 323 and TAX 324 studies, received prophylactic antibiotics.

- Induction chemotherapy followed by radiotherapy (TAX 323)
  
  For the induction treatment of inoperable locally advanced squamous cell carcinoma of the head and neck (SCCHN), the recommended dose of docetaxel is 75 mg/m² as a 1 hour infusion followed by cisplatin 75 mg/m² over 1 hour, on day one, followed by 5-fluorouracil as a continuous infusion at 750 mg/m² per day for five days. This regimen is administered every 3 weeks for 4 cycles. Following chemotherapy, patients should receive radiotherapy.

- Induction chemotherapy followed by chemoradiotherapy (TAX 324)
  
  For the induction treatment of patients with locally advanced (technically unresectable, low probability of surgical cure, and aiming at organ preservation) squamous cell carcinoma of the head and neck (SCCHN), the recommended dose of docetaxel is 75 mg/m² as a 1 hour intravenous infusion on day 1, followed by cisplatin 100 mg/m² administered as a 30-minute to 3-hour
infusion, followed by 5-fluorouracil 1000 mg/m²/day as a continuous infusion from day 1 to day 4. This regimen is administered every 3 weeks for 3 cycles. Following chemotherapy, patients should receive chemoradiotherapy.

For cisplatin and 5-fluorouracil dose modifications, see the corresponding summary of product characteristics.

Dose adjustments during treatment

General
Docetaxel should be administered when the neutrophil count is ≥ 1,500 cells/mm³.
In patients who experienced either febrile neutropenia, neutrophil count < 500 cells/mm³ for more than one week, severe or cumulative cutaneous reactions or severe peripheral neuropathy during docetaxel therapy, the dose of docetaxel should be reduced from 100 mg/m² to 75 mg/m² and/or from 75 to 60 mg/m². If the patient continues to experience these reactions at 60 mg/m², the treatment should be discontinued.

Adjuvant therapy for breast cancer
Primary G-CSF prophylaxis should be considered in patients who receive docetaxel, doxorubicin and cyclophosphamide (TAC) adjuvant therapy for breast cancer. Patients who experience febrile neutropenia and/or neutropenic infection should have their docetaxel dose reduced to 60 mg/m² in all subsequent cycles (see sections 4.4 and 4.8). Patients who experience Grade 3 or 4 stomatitis should have their dose decreased to 60 mg/m².

In combination with cisplatin
For patients who are dosed initially at docetaxel 75 mg/m² in combination with cisplatin and whose nadir of platelet count during the previous course of therapy is < 25,000 cells/mm³, or in patients who experience febrile neutropenia, or in patients with serious non-haematologic toxicities, the docetaxel dose in subsequent cycles should be reduced to 65 mg/m². For cisplatin dose adjustments, see the corresponding summary of product characteristics.

In combination with capecitabine
- For capecitabine dose modifications, see capecitabine summary of product characteristics.
- For patients developing the first appearance of Grade 2 toxicity, which persists at the time of the next docetaxel/capecitabine treatment, delay treatment until resolved to Grade 0-1, and resume at 100% of the original dose.
- For patients developing the second appearance of Grade 2 toxicity, or the first appearance of Grade 3 toxicity, at any time during the treatment cycle, delay treatment until resolved to Grade 0-1 and then resume treatment with docetaxel 55 mg/m².
- For any subsequent appearances of toxicities, or any Grade 4 toxicities, discontinue the docetaxel dose.

For trastuzumab dose modifications, see trastuzumab summary of product characteristics.

In combination with cisplatin and 5-fluorouracil
If an episode of febrile neutropenia, prolonged neutropenia or neutropenic infection occurs despite G-CSF use, the docetaxel dose should be reduced from 75 to 60 mg/m². If subsequent episodes of complicated neutropenia occur the docetaxel dose should be reduced from 60 to 45 mg/m². In case of Grade 4 thrombocytopenia the docetaxel dose should be reduced from 75 to 60 mg/m². Patients should not be retreated with subsequent cycles of docetaxel until neutrophils recover to a level > 1,500 cells/mm³ and platelets recover to a level > 100,000 cells/mm³. Discontinue treatment if these toxicities persist (see section 4.4).
Recommended dose modifications for toxicities in patients treated with docetaxel in combination with cisplatin and 5-fluorouracil (5-FU):
<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Dose adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea grade 3</td>
<td>First episode: reduce 5-FU dose by 20%.</td>
</tr>
<tr>
<td></td>
<td>Second episode: then reduce docetaxel dose by 20%.</td>
</tr>
<tr>
<td>Diarrhoea grade 4</td>
<td>First episode: reduce docetaxel and 5-FU doses by 20%.</td>
</tr>
<tr>
<td>Stomatitis/mucositis grade 3</td>
<td>First episode: reduce 5-FU dose by 20%.</td>
</tr>
<tr>
<td></td>
<td>Second episode: stop 5-FU only, at all subsequent cycles.</td>
</tr>
<tr>
<td></td>
<td>Third episode: reduce docetaxel dose by 20%.</td>
</tr>
<tr>
<td>Stomatitis/mucositis grade 4</td>
<td>First episode: stop 5-FU only, at all subsequent cycles.</td>
</tr>
<tr>
<td></td>
<td>Second episode: reduce docetaxel dose by 20%.</td>
</tr>
</tbody>
</table>

For cisplatin and 5-fluorouracil dose adjustments, see the corresponding summary of product characteristics.

In the pivotal SCCHN studies patients who experienced complicated neutropenia (including prolonged neutropenia, febrile neutropenia, or infection), it was recommended to use G-CSF to provide prophylactic coverage (eg, day 6-15) in all subsequent cycles.

Special populations:

Patients with hepatic impairment
Based on pharmacokinetic data with docetaxel at 100 mg/m² as single agent, patients who have both elevations of transaminase (ALT and/or AST) greater than 1.5 times the upper limit of the normal range (ULN) and alkaline phosphatase greater than 2.5 times the ULN, the recommended dose of docetaxel is 75 mg/m² (see sections 4.4 and 5.2). For those patients with serum bilirubin > ULN and/or ALT and AST > 3.5 times the ULN associated with alkaline phosphatase > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated.

In combination with cisplatin and 5-fluorouracil for the treatment of patients with gastric adenocarcinoma, the pivotal clinical study excluded patients with ALT and/or AST > 1.5 × ULN associated with alkaline phosphatase > 2.5 × ULN, and bilirubin > 1 × ULN; for these patients, no dose-reductions can be recommended and docetaxel should not be used unless strictly indicated. No data are available in patients with hepatic impairment treated by docetaxel in combination in the other indications.

Paediatric population
The safety and efficacy of TAXOTERE in nasopharyngeal carcinoma in children aged 1 month to less than 18 years have not yet been established.

There is no relevant use of TAXOTERE in the paediatric population in the indications breast cancer, non-small cell lung cancer, prostate cancer, gastric carcinoma and head and neck cancer, not including type II and III less differentiated nasopharyngeal carcinoma.

Older people
Based on a population pharmacokinetic analysis, there are no special instructions for use in older people.

In combination with capecitabine, for patients 60 years of age or more, a starting dose reduction of capecitabine to 75% is recommended (see capecitabine summary of product characteristics).

Method of administration
For instructions on preparation and administration of the product, see section 6.6.

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

Docetaxel must not be used in patients with baseline neutrophil count of < 1,500 cells/mm³.
Docetaxel must not be used in patients with severe liver impairment since there is no data available (see sections 4.2 and 4.4).

Contraindications for other medicinal products also apply, when combined with docetaxel.

4.4 Special warnings and precautions for use

For breast and non-small cell lung cancers, premedication consisting of an oral corticosteroid, such as dexamethasone 16 mg per day (e.g. 8 mg BID) for 3 days starting 1 day prior to docetaxel administration, unless contraindicated, can reduce the incidence and severity of fluid retention as well as the severity of hypersensitivity reactions. For prostate cancer, the premedication is oral dexamethasone 8 mg, 12 hours, 3 hours and 1 hour before the docetaxel infusion (see section 4.2).

Haematology

Neutropenia is the most frequent adverse reaction of docetaxel. Neutrophil nadirs occurred at a median of 7 days but this interval may be shorter in heavily pre-treated patients. Frequent monitoring of complete blood counts should be conducted on all patients receiving docetaxel. Patients should be retreated with docetaxel when neutrophils recover to a level \( \geq 1,500 \text{ cells/mm}^3 \) (see section 4.2).

In the case of severe neutropenia (< 500 cells/mm\(^3\) for seven days or more) during a course of docetaxel therapy, a reduction in dose for subsequent courses of therapy or the use of appropriate symptomatic measures are recommended (see section 4.2).

In patients treated with docetaxel in combination with cisplatin and 5-fluorouracil (TCF), febrile neutropenia and neutropenic infection occurred at lower rates when patients received prophylactic G-CSF. Patients treated with TCF should receive prophylactic G-CSF to mitigate the risk of complicated neutropenia (febrile neutropenia, prolonged neutropenia or neutropenic infection). Patients receiving TCF should be closely monitored (see sections 4.2 and 4.8).

In patients treated with docetaxel in combination with doxorubicin and cyclophosphamide (TAC), febrile neutropenia and/or neutropenic infection occurred at lower rates when patients received primary G-CSF prophylaxis. Primary G-CSF prophylaxis should be considered in patients who receive adjuvant therapy with TAC for breast cancer to mitigate the risk of complicated neutropenia (febrile neutropenia, prolonged neutropenia or neutropenic infection). Patients receiving TAC should be closely monitored (see sections 4.2 and 4.8).

Gastrointestinal reactions

Caution is recommended for patients with neutropenia, particularly at risk for developing gastrointestinal complications. Although majority of cases occurred during the first or second cycle of docetaxel containing regimen, enterocolitis could develop at any time, and could lead to death as early as on the first day of onset. Patients should be closely monitored for early manifestations of serious gastrointestinal toxicity (see sections 4.2, 4.4 Haematology, and 4.8).

Hypersensitivity reactions

Patients should be observed closely for hypersensitivity reactions especially during the first and second infusions. Hypersensitivity reactions may occur within a few minutes following the initiation of the infusion of docetaxel, thus facilities for the treatment of hypotension and bronchospasm should be available. If hypersensitivity reactions occur, minor symptoms such as flushing or localised cutaneous reactions do not require interruption of therapy. However, severe reactions, such as severe hypotension, bronchospasm or generalised rash/erythema require immediate discontinuation of docetaxel and appropriate therapy. Patients who have developed severe hypersensitivity reactions should not be re-challenged with docetaxel. Patients who have previously experienced a hypersensitivity reaction to paclitaxel may be at risk to develop hypersensitivity reaction to docetaxel,
including more severe hypersensitivity reaction. These patients should be closely monitored during initiation of docetaxel therapy.

**Cutaneous reactions**

Localised skin erythema of the extremities (palms of the hands and soles of the feet) with oedema followed by desquamation has been observed. Severe symptoms such as eruptions followed by desquamation which lead to interruption or discontinuation of docetaxel treatment were reported (see section 4.2).

Severe Cutaneous Adverse Reactions (SCARs) such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN) and Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with docetaxel treatment. Patients should be informed about the signs and symptoms of serious skin manifestations and closely monitored. If signs and symptoms suggestive of these reactions appear discontinuation of docetaxel should be considered.

**Fluid retention**

Patients with severe fluid retention such as pleural effusion, pericardial effusion and ascites should be monitored closely.

**Respiratory disorders**

Acute respiratory distress syndrome, interstitial pneumonia/pneumonitis, interstitial lung disease, pulmonary fibrosis and respiratory failure have been reported and may be associated with fatal outcome. Cases of radiation pneumonitis have been reported in patients receiving concomitant radiotherapy. If new or worsening pulmonary symptoms develop, patients should be closely monitored, promptly investigated, and appropriately treated. Interruption of docetaxel therapy is recommended until diagnosis is available. Early use of supportive care measures may help improve the condition. The benefit of resuming docetaxel treatment must be carefully evaluated.

**Patients with liver impairment**

In patients treated with docetaxel at 100 mg/m$^2$ as single agent who have serum transaminase levels (ALT and/or AST) greater than 1.5 times the ULN concurrent with serum alkaline phosphatase levels greater than 2.5 times the ULN, there is a higher risk of developing severe adverse reactions such as toxic deaths including sepsis and gastrointestinal haemorrhage which can be fatal, febrile neutropenia, infections, thrombocytopenia, stomatitis and asthenia. Therefore, the recommended dose of docetaxel in those patients with elevated liver function test (LFTs) is 75 mg/m$^2$ and LFTs should be measured at baseline and before each cycle (see section 4.2). For patients with serum bilirubin levels > ULN and/or ALT and AST > 3.5 times the ULN concurrent with serum alkaline phosphatase levels > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated. In combination with cisplatin and 5-fluorouracil for the treatment of patients with gastric adenocarcinoma, the pivotal clinical study excluded patients with ALT and/or AST > 1.5 × ULN associated with alkaline phosphatase > 2.5 × ULN, and bilirubin > 1 x ULN; for these patients, no dose-reductions can be recommended and docetaxel should not be used unless strictly indicated. No data are available in patients with hepatic impairment treated by docetaxel in combination in the other indications.

**Patients with renal impairment**

There are no data available in patients with severely impaired renal function treated with docetaxel.
Nervous system

The development of severe peripheral neurotoxicity requires a reduction of dose (see section 4.2).

Cardiac toxicity

Heart failure has been observed in patients receiving docetaxel in combination with trastuzumab, particularly following anthracycline (doxorubicin or epirubicin)-containing chemotherapy. This may be moderate to severe and has been associated with death (see section 4.8).

When patients are candidates for treatment with docetaxel in combination with trastuzumab, they should undergo baseline cardiac assessment. Cardiac function should be further monitored during treatment (e.g. every three months) to help identify patients who may develop cardiac dysfunction. For more details see summary of product characteristics of trastuzumab.

Ventricular arrhythmia including ventricular tachycardia (sometimes fatal) has been reported in patients treated with docetaxel in combination regimens including doxorubicin, 5-fluorouracil and/or cyclophosphamide (see section 4.8). Baseline cardiac assessment is recommended.

Eye disorders

Cystoid macular oedema (CMO) has been reported in patients treated with docetaxel. Patients with impaired vision should undergo a prompt and complete ophthalmologic examination. In case CMO is diagnosed, docetaxel treatment should be discontinued and appropriate treatment initiated (see section 4.8).

Second primary malignancies

Second primary malignancies have been reported when docetaxel was given in combination with anticancer treatments known to be associated with second primary malignancies. Second primary malignancies (including acute myeloid leukaemia, myelodysplastic syndrome and non-Hodgkin lymphoma) may occur several months or years after docetaxel-containing therapy. Patients should be monitored for second primary malignancies (see section 4.8).

Tumour Lysis Syndrome

Tumour lysis syndrome has been reported with docetaxel after the first or the second cycle (see section 4.8). Patients at risk of tumour lysis syndrome (e.g. with renal impairment, hyperuricemia, bulky tumour, rapid progression) should be closely monitored. Correction of dehydration and treatment of high uric acid levels are recommended prior to initiation of treatment.

Others

Women of childbearing potential must use contraceptive measures during treatment and for 2 months after cessation of treatment with docetaxel. Men must use contraceptive measures during treatment and for 4 months after cessation of treatment with docetaxel (see section 4.6).

The concomitant use of docetaxel with strong CYP3A4 inhibitors (e.g., ketoconazole, itraconazole, clarithromycin, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin and voriconazole) should be avoided (see section 4.5).
Additional cautions for use in adjuvant treatment of breast cancer

**Complicated neutropenia**

For patients who experience complicated neutropenia (prolonged neutropenia, febrile neutropenia or infection), G-CSF and dose reduction should be considered (see section 4.2).

**Gastrointestinal reactions**

Symptoms such as early abdominal pain and tenderness, fever, diarrhoea, with or without neutropenia, may be early manifestations of serious gastrointestinal toxicity and should be evaluated and treated promptly.

**Congestive heart failure (CHF)**

Patients should be monitored for symptoms of congestive heart failure during therapy and during the follow up period. In patients treated with the TAC regimen for node positive breast cancer, the risk of CHF has been shown to be higher during the first year after treatment (see sections 4.8 and 5.1).

**Patients with 4+ nodes**

As the benefit observed in patient with 4+ nodes was not statistically significant on disease-free survival (DFS) and overall survival (OS), the positive benefit/risk ratio for TAC in patients with 4+ nodes was not fully demonstrated at the final analysis (see section 5.1).

**Elderly**

CAUTIONS FOR USE IN ADJUVANT TREATMENT OF BREAST CANCER

There are limited data available in patients > 70 years of age on docetaxel use in combination with doxorubicin and cyclophosphamide.

**Cautions for use in castration-resistant prostate cancer**

Of the 333 patients treated with docetaxel every three weeks in a prostate cancer study (TAX 327), 209 patients were 65 years of age or greater and 68 patients were older than 75 years. In patients treated with docetaxel every three weeks, the incidence of related nail changes occurred at a rate ≥ 10% higher in patients who were 65 years of age or greater compared to younger patients. The incidence of related fever, diarrhoea, anorexia, and peripheral oedema occurred at rates ≥ 10% higher in patients who were 75 years of age or greater versus less than 65 years.

**Cautions for use in hormone-sensitive prostate cancer**

Of the 545 patients treated with docetaxel every 3 weeks in a hormone-sensitive prostate cancer study (STAMPEDE), 296 patients were 65 years of age or older, and 48 patients were 75 years of age or older. More patients aged ≥65 years in the docetaxel arm reported hypersensitivity reaction, neutropenia, anaemia, fluid retention, dyspnea, and nail changes when compared to the patients aged less than 65 years. None of these increases in frequency reached 10% difference with the control arm. In patients who were 75 years of age or older, when compared to younger patients, neutropenia, anaemia, diarrhea, dyspnea and upper respiratory tract infection were reported with a greater incidence (at least 10% higher).

**Cautions for use in gastric adenocarcinoma cancer**

Among the 300 (221 patients in the phase III part of the study and 79 patients in the phase II part) patients treated with docetaxel in combination with cisplatin and 5-fluorouracil in the gastric cancer study, 74 were 65 years of age or older and 4 patients were 75 years of age or older. The incidence of serious adverse events was higher in older people compared to younger patients. The incidence of the following adverse events (all grades): lethargy, stomatitis, neutropenic infection occurred at rates ≥ 10% higher in patients who were 65 years of age or older compared to younger patients. Older people treated with TCF should be closely monitored.
Excipients

This medicinal product contains 13 % (w/w) ethanol 95% v/v (alcohol), i.e. up to 932 mg ethanol 95% v/v per solvent vial, equivalent to 23 ml of beer or 9.5 ml wine.

Harmful for those suffering from alcoholism.
To be taken into account in pregnant or breast-feeding women, in children and in high-risk groups such as patients with liver disease, or epilepsy.

Consideration should be given to possible effects on the central nervous system.

4.5 Interaction with other medicinal products and other forms of interaction

The amount of alcohol in this medicinal product may alter the effects of other medicinal products.

*In vitro* studies have shown that the metabolism of docetaxel may be modified by the concomitant administration of compounds which induce, inhibit or are metabolised by (and thus may inhibit the enzyme competitively) cytochrome P450-3A such as ciclosporine, ketoconazole and erythromycin. As a result, caution should be exercised when treating patients with these medicinal products as concomitant therapy since there is a potential for a significant interaction.

In case of combination with CYP3A4 inhibitors, the occurrence of docetaxel adverse reactions may increase, as a result of reduced metabolism. If the concomitant use of a strong CYP3A4 inhibitor (e.g., ketoconazole, itraconazole, clarithromycin, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin and voriconazole) cannot be avoided, a close clinical surveillance is warranted and a dose-adjustment of docetaxel may be suitable during the treatment with the strong CYP3A4 inhibitor (see section 4.4). In a pharmacokinetic study with 7 patients, the co-administration of docetaxel with the strong CYP3A4 inhibitor ketoconazole leads to a significant decrease in docetaxel clearance by 49%.

Docetaxel pharmacokinetics in the presence of prednisone was studied in patients with metastatic prostate cancer. Docetaxel is metabolised by CYP3A4 and prednisone is known to induce CYP3A4. No statistically significant effect of prednisone on the pharmacokinetics of docetaxel was observed.

Docetaxel is highly protein bound (> 95%). Although the possible *in vivo* interaction of docetaxel with concomitantly administered medicinal product has not been investigated formally, *in vitro* interactions with tightly protein-bound agents such as erythromycin, diphenhydramine, propranolol, propafenone, phenytoin, salicylate, sulfamethoxazole and sodium valproate did not affect protein binding of docetaxel. In addition, dexamethasone did not affect protein binding of docetaxel. Docetaxel did not influence the binding of digitoxin.

The pharmacokinetics of docetaxel, doxorubicin and cyclophosphamide were not influenced by their co-administration. Limited data from a single uncontrolled study were suggestive of an interaction between docetaxel and carboplatin. When combined to docetaxel, the clearance of carboplatin was about 50% higher than values previously reported for carboplatin monotherapy.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential/ Contraception in males and females

Women of childbearing potential and men receiving docetaxel should be advised to avoid becoming pregnant, and not to father a child and to inform the treating physician immediately should this occur.

Due to the genotoxic risk of docetaxel (see section 5.3), women of childbearing potential must use effective method of contraception during treatment and for 2 months after cessation of treatment with docetaxel. Men must use effective method of contraception during treatment and for 4 months after cessation of treatment with docetaxel.
Pregnancy

There is no information on the use of docetaxel in pregnant women. Docetaxel has been shown to be both embryotoxic and foetotoxic in rabbits and rats. As with other cytotoxic medicinal products, docetaxel may cause foetal harm when administered to pregnant women. Therefore, docetaxel must not be used during pregnancy unless clearly indicated.

Breast-feeding

Docetaxel is a lipophilic substance but it is not known whether it is excreted in human milk. Consequently, because of the potential for adverse reactions in nursing infants, breast feeding must be discontinued for the duration of docetaxel therapy.

Fertility

Studies in animals have shown that docetaxel may alter male fertility (see section 5.3). Therefore, males being treated with docetaxel must seek advice on conservation of sperm prior to treatment.

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. The amount of alcohol in this medicinal product and the side effects of the product may impair the ability to drive or use machines (see sections 4.4 and 4.8). Therefore, patients should be warned of the potential impact of the amount of alcohol and the side effects of this medicinal product on the ability to drive or use machines, and be advised not to drive or use machines if they experience these side effects during treatment.

4.8 Undesirable effects

Summary of the safety profile for all indications

The adverse reactions considered to be possibly or probably related to the administration of docetaxel have been obtained in:

- 1312 and 121 patients who received 100 mg/m² and 75 mg/m² of docetaxel as a single agent respectively.
- 258 patients who received docetaxel in combination with doxorubicin.
- 406 patients who received docetaxel in combination with cisplatin.
- 92 patients treated with docetaxel in combination with trastuzumab.
- 255 patients who received docetaxel in combination with capcitabine.
- 332 patients (TAX327) who received docetaxel in combination with prednisone or prednisolone (clinically important treatment related adverse events are presented).
- 1276 patients (744 and 532 in TAX 316 and GEICAM 9805 respectively) who received docetaxel in combination with doxorubicin and cyclophosphamide (clinically important treatment related adverse events are presented).
- 300 gastric adenocarcinoma patients (221 patients in the phase III part of the study and 79 patients in the phase II part) who received docetaxel in combination with cisplatin and 5-fluorouracil (clinically important treatment related adverse events are presented).
- 174 and 251 head and neck cancer patients who received docetaxel in combination with cisplatin and 5-fluorouracil (clinically important treatment related adverse events are presented).
- 545 patients (STAMPEDE study) who received docetaxel in combination with prednisone or prednisolone and ADT.

These reactions were described using the NCI Common Toxicity Criteria (grade 3 = G3; grade 3-4 = G3/4; grade 4 = G4), the COSTART and the MedDRA terms. Frequencies are defined as:
very common (≥ 1/10), common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1,000); very rare (< 1/10,000); not known (cannot be estimated from available data).

Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

The most commonly reported adverse reactions of docetaxel alone are: neutropenia (which was reversible and not cumulative; the median day to nadir was 7 days and the median duration of severe neutropenia (< 500 cells/mm$^3$) was 7 days), anaemia, alopecia, nausea, vomiting, stomatitis, diarrhoea and asthenia. The severity of adverse events of docetaxel may be increased when docetaxel is given in combination with other chemotherapeutic agents.

For combination with trastuzumab, adverse events (all grades) reported in ≥ 10% are displayed. There was an increased incidence of SAEs (40% vs. 31%) and Grade 4 AEs (34% vs. 23%) in the trastuzumab combination arm compared to docetaxel monotherapy.

For combination with capecitabine, the most frequent treatment-related undesirable effects (≥ 5%) reported in a phase III study in breast cancer patients failing anthracycline treatment are presented (see capecitabine summary of product characteristics).

For combination with ADT and with prednisone or prednisolone (STAMPEDE study), adverse events occurring over the 6 cycles of treatment with docetaxel and having at least 2% higher incidence in the docetaxel treatment arm by comparison to the control arm, are presented, using the CTCAE grading scale.

The following adverse reactions are frequently observed with docetaxel:

**Immune system disorders**

Hypersensitivity reactions have generally occurred within a few minutes following the start of the infusion of docetaxel and were usually mild to moderate. The most frequently reported symptoms were flushing, rash with or without pruritus, chest tightness, back pain, dyspnoea and fever or chills. Severe reactions were characterised by hypotension and/or bronchospasm or generalized rash/erythema (see section 4.4).

**Nervous system disorders**

The development of severe peripheral neurotoxicity requires a reduction of dose (see sections 4.2 and 4.4). Mild to moderate neuro-sensory signs are characterised by paresthesia, dysesthesia or pain including burning. Neuro-motor events are mainly characterised by weakness.

**Skin and subcutaneous tissue disorders**

Reversible cutaneous reactions have been observed and were generally considered as mild to moderate. Reactions were characterised by a rash including localised eruptions mainly on the feet and hands (including severe hand and foot syndrome), but also on the arms, face or thorax, and frequently associated with pruritus. Eruptions generally occurred within one week after the docetaxel infusion. Less frequently, severe symptoms such as eruptions followed by desquamation which rarely lead to interruption or discontinuation of docetaxel treatment were reported (see sections 4.2 and 4.4). Severe nail disorders are characterised by hypo- or hyperpigmentation and sometimes pain and onycholysis.

**General disorders and administration site conditions**

Infusion site reactions were generally mild and consisted of hyper pigmentation, inflammation, redness or dryness of the skin, phlebitis or extravasation and swelling of the vein. Fluid retention includes events such as peripheral oedema and less frequently pleural effusion, pericardial effusion, ascites and weight gain. The peripheral oedema usually starts at the lower
extremities and may become generalised with a weight gain of 3 kg or more. Fluid retention is cumulative in incidence and severity (see section 4.4).

Tabulated list of adverse reactions in breast cancer for TAXOTERE 100 mg/m² single agent

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infections (G3/4: 5.7%; including sepsis and pneumonia, fatal in 1.7%)</td>
<td>Infection associated with G4 neutropenia (G3/4: 4.6%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 76.4%); Anaemia (G3/4: 8.9%); Febrile neutropenia</td>
<td>Thrombocytopenia (G4: 0.2%)</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 5.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 4.1%); Peripheral motor neuropathy (G3/4: 4%); Dysgeusia (severe: 0.07%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Arrhythmia (G3/4: 0.7%)</td>
<td>Cardiac failure</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Hypotension; Hypertension; Haemorrhage</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnoea (severe: 2.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Stomatitis (G3/4: 5.3%); Diarrhoea (G3/4: 4%); Nausea (G3/4: 4%); Vomiting (G3/4: 3%)</td>
<td>Constipation (severe: 0.2%); Abdominal pain (severe: 1%); Gastrointestinal haemorrhage (severe: 0.3%)</td>
<td>Oesophagitis (severe: 0.4%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Skin reaction (G3/4: 5.9%); Nail disorders (severe: 2.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (severe: 1.4%)</td>
<td></td>
<td>Arthralgia</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Fluid retention (severe: 6.5%); Asthenia (severe: 11.2%); Pain</td>
<td>Infusion site reaction; Non-cardiac chest pain (severe: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>G3/4 Blood bilirubin increased (&lt;5%)</td>
<td></td>
</tr>
</tbody>
</table>

60
MedDRA system organ classes | Very common adverse reactions | Common adverse reactions | Uncommon adverse reactions
--- | --- | --- | ---
 |  | G3/4 Blood alkaline phosphatase increased (<4%); G3/4 AST increased (<3%); G3/4 ALT increased (<2%) |  |

Description of selected adverse reactions in breast cancer for TAXOTERE 100 mg/m² single agent

**Blood and lymphatic system disorders**
Rare: bleeding episodes associated with grade 3/4 thrombocytopenia.

**Nervous system disorders**
Reversibility data are available among 35.3% of patients who developed neurotoxicity following docetaxel treatment at 100 mg/m² as single agent. The events were spontaneously reversible within 3 months.

**Skin and subcutaneous tissue disorders**
Very rare: one case of alopecia non-reversible at the end of the study. 73% of the cutaneous reactions were reversible within 21 days.

**General disorders and administration site conditions**
The median cumulative dose to treatment discontinuation was more than 1,000 mg/m² and the median time to fluid retention reversibility was 16.4 weeks (range 0 to 42 weeks). The onset of moderate and severe retention is delayed (median cumulative dose: 818.9 mg/m²) in patients with premedication compared with patients without premedication (median cumulative dose: 489.7 mg/m²); however, it has been reported in some patients during the early courses of therapy.

Tabulated list of adverse reactions in non-small cell lung cancer for TAXOTERE 75 mg/m² single agent

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infections (G3/4: 5%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 54.2%); Anaemia (G3/4: 10.8%); Thrombocytopenia (G4: 1.7%)</td>
<td>Febrile neutropenia</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (no severe)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 0.8%)</td>
<td>Peripheral motor neuropathy (G3/4: 2.5%)</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Arrhythmia (no severe)</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Hypotension</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 3.3%); Stomatitis (G3/4: 1.7%); Vomiting (G3/4: 0.8%); Diarrhoea (G3/4: 1.7%)</td>
<td>Constipation</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Skin reaction (G3/4: 0.8%)</td>
<td>Nail disorders (severe: 0.8%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective</td>
<td></td>
<td>Myalgia</td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>tissue disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 12.4%); Fluid retention (severe: 0.8%); Pain</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>G3/4 Blood bilirubin increased (&lt; 2%)</td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in breast cancer for TAXOTERE 75 mg/m² in combination with doxorubicin

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 7.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 91.7%); Anaemia (G3/4: 9.4%); Febrile neutropenia; Thrombocytopenia (G4: 0.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 0.4%)</td>
<td>Peripheral motor neuropathy (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Cardiac failure; Arrhythmia (no severe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td></td>
<td>Hypotension</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 5%); Stomatitis (G3/4: 7.8%); Diarrhoea (G3/4: 6.2%); Vomiting (G3/4: 5%); Constipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (severe: 0.4%); Skin reaction (no severe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td></td>
<td>Myalgia</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 8.1%); Fluid retention (severe: 1.2%); Pain</td>
<td></td>
<td>Infusion site reaction</td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (&lt; 2.5%); G3/4 Blood alkaline</td>
<td>G3/4 AST increased (&lt; 1%); G3/4 ALT increased</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phosphatase increased</td>
<td>(&lt; 1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in non-small cell lung cancer for TAXOTERE 75 mg/m² in combination with cisplatin

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 5.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 51.5%); Anaemia (G3/4: 6.9%); Thrombocytopenia (G4: 0.5%)</td>
<td>Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 2.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 3.7%); Peripheral motor neuropathy (G3/4: 2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 0.7%)</td>
<td>Cardiac failure</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypotension (G3/4: 0.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 9.6%); Vomiting (G3/4: 7.6%); Diarrhoea (G3/4: 6.4%); Stomatitis (G3/4: 2%)</td>
<td>Constipation</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (severe: 0.7%); Skin reaction (G3/4: 0.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (severe: 0.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 9.9%); Fluid retention (severe: 0.7%); Fever (G3/4: 1.2%)</td>
<td>Infusion site reaction; Pain</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (2.1%); G3/4 ALT increased (1.3%)</td>
<td>G3/4 AST increased (0.5%); G3/4 Blood alkaline phosphatase increased (0.3%)</td>
<td></td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions in breast cancer for TAXOTERE 100 mg/m² in combination with trastuzumab

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 32%); Febrile neutropenia (includes neutropenia associated with fever and antibiotic use) or neutropenic sepsis</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Paresthesia; Headache; Dysgeusia; Hypoaesthesia</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased; Conjunctivitis</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Cardiac failure</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Lymphoedema</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Epistaxis; Pharyngolaryngeal pain; Nasopharyngitis; Dyspnoea; Cough; Rhinorrhoea</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea; Diarrhoea; Vomiting; Constipation; Stomatitis; Dyspepsia; Abdominal pain</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Erythema; Rash; Nail disorders</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia; Arthralgia; Pain in extremity; Bone pain; Back pain</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia; Oedema peripheral; Pyrexia; Fatigue; Mucosal inflammation; Pain; Influenza like illness; Chest pain; Chills</td>
<td>Lethargy</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight increased</td>
<td></td>
</tr>
</tbody>
</table>

Description of selected adverse reactions in breast cancer for Taxotere 100 mg/m² in combination with trastuzumab

**Cardiac disorders**
Symptomatic cardiac failure was reported in 2.2% of the patients who received docetaxel plus trastuzumab compared to 0% of patients given docetaxel alone. In the docetaxel plus trastuzumab arm, 64% had received a prior anthracycline as adjuvant therapy compared with 55% in the docetaxel arm alone.

**Blood and lymphatic system disorders**
Very common: Haematological toxicity was increased in patients receiving trastuzumab and docetaxel, compared with docetaxel alone (32% grade 3/4 neutropenia versus 22%, using NCI-CTC criteria). Note that this is likely to be an underestimate since docetaxel alone at a dose of 100 mg/m² is known to result in neutropenia in 97% of patients, 76% grade 4, based on nadir blood counts. The incidence of febrile neutropenia/neutropenic sepsis was also increased in patients treated with Herceptin plus docetaxel (23% versus 17% for patients treated with docetaxel alone).
Tabulated list of adverse reactions in breast cancer for TAXOTERE 75 mg/m² in combination with capecitabine

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Oral candidiasis (G3/4: &lt; 1%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutopenia (G3/4: 63%); Anaemia (G3/4: 10%)</td>
<td>Thrombocytopenia (G3/4: 3%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 1%); Decreased appetite</td>
<td>Dehydration (G3/4: 2%)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia (G3/4: &lt; 1%); Pareaesthesia (G3/4: &lt; 1%)</td>
<td>Dizziness; Headache (G3/4: &lt; 1%); Neuropathy peripheral</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Pharyngolaryngeal pain (G3/4: 2%)</td>
<td>Dyspnoea (G3/4: 1%); Cough (G3/4: &lt; 1%); Epistaxis (G3/4: &lt; 1%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Stomatitis (G3/4: 18%); Diarrhoea (G3/4: 14%); Nausea (G3/4: 6%); Vomiting (G3/4: 4%); Constipation (G3/4: 1%); Abdominal pain (G3/4: 2%); Dyspepsia</td>
<td>Abdominal pain upper; Dry mouth</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Hand-foot syndrome (G3/4: 24%); Alopecia (G3/4: 6%); Nail disorders (G3/4: 2%)</td>
<td>Dermatitis; Rash erythematous (G3/4: &lt; 1%); Nail discoloration; Onycholysis (G3/4: 1%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (G3/4: 2%); Arthralgia (G3/4: 1%)</td>
<td>Pain in extremity (G3/4: &lt; 1%); Back pain (G3/4: 1%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (G3/4: 3%); Pyrexia (G3/4: 1%); Fatigue/weakness (G3/4: 5%); Oedema peripheral (G3/4: 1%)</td>
<td>Lethargy; Pain</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight decreased; G3/4 Blood bilirubin increased (9%)</td>
<td></td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions in metastatic castration-resistant prostate cancer for TAXOTERE 75 mg/m² in combination with prednisone or prednisolone

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 3.3%)</td>
<td>Thrombocytopenia (G3/4: 0.6%); Febrile neutropenia</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 32%); Anaemia (G3/4: 4.9%)</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hyposensitivity (G3/4: 0.6%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 1.2%); Dysgeusia (G3/4: 0%)</td>
<td>Peripheral motor neuropathy (G3/4: 0%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Lacration increased (G3/4: 0.6%)</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Cardiac left ventricular function decrease (G3/4: 0.3%)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Epistaxis (G3/4: 0%); Dyspnoea (G3/4: 0.6%); Cough (G3/4: 0%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 2.4%); Diarrhoea (G3/4: 1.2%); Stomatitis/Pharyngitis (G3/4: 0.9%); Vomiting (G3/4: 1.2%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (no severe)</td>
<td>Exfoliative rash (G3/4: 0.3%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective bone disorders</td>
<td></td>
<td>Arthralgia (G3/4: 0.3%); Myalgia (G3/4: 0.3%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Fatigue (G3/4: 3.9%); Fluid retention (severe: 0.6%)</td>
<td></td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in high-risk locally advanced or metastatic hormone-sensitive prostate cancer for TAXOTERE 75 mg/m² in combination with prednisone or prednisolone and ADT (STAMPEDE study)

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3-4: 12 %) Anaemia</td>
<td>Hypersensitivity (G3-4: 1%)</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Febrile neutropenia (G3-4: 15%)</td>
<td></td>
</tr>
<tr>
<td>Endocrine disorders</td>
<td></td>
<td>Diabetes (G3-4: 1%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td>Anorexia</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia (G3: 1%)</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (≥G3: 2%)&lt;sup&gt;a&lt;/sup&gt; Headache</td>
<td>Dizziness</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Blurred vision</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Hypotension (G3: 0%)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnea (G3: 1%) Coughing (G3: 0%) Upper respiratory tract infection (G3: 1%)</td>
<td>Pharyngitis (G3: 0%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhea (G3: 3%) Stomatitis (G3: 0%) Constipation (G3: 0%) Nausea (G3: 1%) Dyspepsia Abdominal pain (G3: 0%) Flatulence</td>
<td>Vomiting (G3: 1%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3: 3%)&lt;sup&gt;a&lt;/sup&gt; Nail changes (G3: 1%)</td>
<td>Rash</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3-4: 2%) Flu-like symptoms (G3: 0%) Asthenia (G3: 0%) Fluid retention</td>
<td>Fever (G3: 1%) Oral candidiasis Hypocalcaemia (G3: 0%) Hypophosphataemia (G3-4: 1%) Hypokalaemia (G3: 0%)</td>
</tr>
</tbody>
</table>

<sup>a</sup> From the GETUG AFU15 study
Tabulated list of adverse reactions in breast cancer for adjuvant therapy with TAXOTERE 75 mg/m² in combination with doxorubicin and cyclophosphamide in patients with node-positive (TAX 316) and node-negative (GEICAM 9805) breast cancer - pooled data

<table>
<thead>
<tr>
<th>MedDRA System Organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 2.4%); Neutropenic infection (G3/4: 2.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Anaemia (G3/4: 3%); Neutropenia (G3/4: 59.2%); Thrombocytopenia (G3/4: 1.6%); Febrile neutropenia (G3/4: NA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 1.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia (G3/4: 0.6%); Peripheral sensory neuropathy (G3/4: &lt;0.1%)</td>
<td>Peripheral motor neuropathy (G3/4: 0%);</td>
<td>Syncope (G3/4: 0%); Neurotoxicity (G3/4: 0%); Somnolence (G3/4: 0%);</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Conjunctivitis (G3/4: &lt;0.1%)</td>
<td>Lacrimation increased (G3/4: &lt;0.1%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Arrhythmia (G3/4: 0.2%)</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hot flush (G3/4: 0.5%)</td>
<td>Hypotension (G3/4: 0%); Phlebitis (G3/4: 0%)</td>
<td>Lymphoedema (G3/4: 0%);</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td></td>
<td>Cough (G3/4: 0%);</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 5.0%); Stomatitis (G3/4: 6.0%); Vomiting (G3/4: 4.2%); Diarrhoea (G3/4: 3.4%); Constipation (G3/4: 0.5%)</td>
<td>Abdominal pain (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (persisting: &lt;3%); Skin disorder (G3/4: 0.6%); Nail disorders (G3/4: 0.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (G3/4: 0.7%); Arthralgia (G3/4: 0.2%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Description of selected adverse reactions for adjuvant therapy with Taxotere 75 mg/m² in combination with doxorubicin and cyclophosphamide in patients with node-positive (TAX 316) and node-negative (GEICAM 9805) breast cancer

Nervous system disorders
In study TAX316 peripheral sensory neuropathy started during the treatment period and persisted into the follow-up period in 84 patients (11.3%) in TAC arm and 15 patients (2%) in FAC arm. At the end of the follow-up period (median follow-up time of 8 years), peripheral sensory neuropathy was observed to be ongoing in 10 patients (1.3%) in TAC arm, and in 2 patients (0.3%) in FAC arm. In GEICAM 9805 study peripheral sensory neuropathy that started during the treatment period persisted into the follow-up period in 10 patients (1.9%) in TAC arm and 4 patients (0.8%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), peripheral sensory neuropathy was observed to be ongoing in 3 patients (0.6%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

Cardiac disorders
In study TAX316, 26 patients (3.5%) in the TAC arm and 17 patients (2.3%) in the FAC arm experienced congestive heart failure. All except one patient in each arm were diagnosed with CHF more than 30 days after the treatment period. Two patients in the TAC arm and 4 patients in the FAC arm died because of cardiac failure. In GEICAM 9805 study, 3 patients (0.6%) in TAC arm and 3 patients (0.6%) in FAC arm developed congestive heart failure during the follow-up period. At the end of the follow-up period (actual median follow-up time of 10 years and 5 months), no patients had CHF in TAC arm and 1 patient in TAC arm died because of dilated cardiomyopathy, and CHF was observed to be ongoing in 1 patient (0.2%) in FAC arm.

Skin and subcutaneous tissue disorders
In study TAX316 alopecia persisting into the follow-up period after the end of chemotherapy was reported in 687 of 744 TAC patients (92.3%) and 645 of 736 FAC patients (87.6%). At the end of the follow-up period (actual median follow-up time of 8 years), alopecia was observed to be ongoing in 29 TAC patients (3.9%) and 16 FAC patients (2.2%). In GEICAM 9805 study alopecia that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 49 patients (9.2%) in TAC arm and 35 patients (6.7%) in FAC arm. Alopecia related to study drug started or worsened during the follow-up period in 42 patients (7.9%) in TAC arm and 30 patients (5.8%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), alopecia was observed to be ongoing in 3 patients (0.6%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

Reproductive system and breast disorders
In TAX316 amenorrhoea that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 202 of 744 TAC patients (27.2%) and 125 of 736 FAC patients (16.9%).
FAC patients (17.0%). Amenorrhea was observed to be ongoing at the end of the follow-up period (median follow-up time of 8 years) in 121 of 744 TAC patients (16.3%) and 86 FAC patients (11.7%). In GEICAM 9805 study amenorrhoea that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 18 patients (3.4 %) in TAC arm and 5 patients (1.0 %) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), amenorrhoea was observed to be ongoing in 7 patients (1.3%) in TAC arm, and in 4 patients (0.8%) in FAC arm.

General disorders and administration site conditions
In study TAX316 peripheral oedema that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was observed in 119 of 744 TAC patients (16.0%) and 23 of 736 FAC patients (3.1%). At the end of the follow-up period (actual median follow-up time of 8 years), peripheral oedema was ongoing in 19 TAC patients (2.6%) and 4 FAC patients (0.5%). In study TAX316 lymphoedema that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 11 of 744 TAC patients (1.5%) and 1 of 736 FAC patients (0.1%). At the end of the follow-up period (actual median follow-up time of 8 years), lymphoedema was observed to be ongoing in 6 TAC patients (0.8%) and 1 FAC patient (0.1%). In study TAX316 asthenia that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 236 of 744 TAC patients (31.7%) and 180 of 736 FAC patients (24.5%). At the end of the follow-up period (actual median follow-up time of 8 years), asthenia was observed to be ongoing in 29 TAC patients (3.9%) and 16 FAC patients (2.2%).

In study GEICAM 9805 peripheral oedema that started during the treatment period persisted into the follow-up period in 4 patients (0.8%) in TAC arm and in 2 patients (0.4%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), no patients (0%) in TAC arm had peripheral oedema and it was observed to be ongoing in 1 patient (0.2%) in FAC arm. Lymphoedema that started during the treatment period persisted into the follow-up period in 5 patients (0.9%) in TAC arm and 2 patients (0.4 %) in FAC arm. At the end of the follow-up period, lymphoedema was observed to be ongoing in 4 patients (0.8%) in TAC arm, and in 1 patient (0.2%) in FAC arm. Asthenia that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 12 patients (2.3 %) in TAC arm and 4 patients (0.8 %) in FAC arm. At the end of the follow-up period, asthenia was observed to be ongoing in 2 patients (0.4%) in TAC arm, and in 2 patients (0.4%) in FAC arm.

Acute leukaemia / Myelodysplastic syndrome.
After 10 years of follow up in study TAX316, acute leukaemia was reported in 3 of 744 TAC patients (0.4%) and in 1 of 736 FAC patients (0.1%). One TAC patient (0.1%) and 1 FAC patient (0.1%) died due to AML during the follow-up period (median follow-up time of 8 years). Myelodysplastic syndrome was reported in 2 of 744 TAC patients (0.3%) and in 1 of 736 FAC patients (0.1%). After 10 years of follow-up in GEICAM 9805 study, acute leukaemia occurred in 1 of 532 (0.2%) patients in TAC arm. No cases were reported in patients in FAC arm. No patient was diagnosed with myelodysplastic syndrome in either treatment groups.

Neutropenic complications
Table below shows that the incidence of Grade 4 neutropenia, febrile neutropenia and neutropenic infection was decreased in patients who received primary G-CSF prophylaxis after it was made mandatory in the TAC arm. – GEICAM study.
Neutropenic complications in patients receiving TAC with or without primary G-CSF prophylaxis (GEICAM 9805)

<table>
<thead>
<tr>
<th></th>
<th>Without primary G-CSF prophylaxis (n = 111) n (%)</th>
<th>With primary G-CSF prophylaxis (n = 421) n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia (Grade 4)</td>
<td>104 (93.7)</td>
<td>135 (32.1)</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>28 (25.2)</td>
<td>23 (5.5)</td>
</tr>
<tr>
<td>Neutropenic infection</td>
<td>14 (12.6)</td>
<td>21 (5.0)</td>
</tr>
<tr>
<td>Neutropenic infection (Grade 3-4)</td>
<td>2 (1.8)</td>
<td>5 (1.2)</td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in gastric adenocarcinoma cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Neutropenic infection; Infection (G3/4: 11.7%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Anaemia (G3/4: 20.9%); Neutropenia (G3/4: 83.2%); Thrombocytopenia (G3/4: 8.8%); Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 1.7%)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 11.7%)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 8.7%)</td>
<td>Dizziness (G3/4: 2.3%); Peripheral motor neuropathy (G3/4: 1.3%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased (G3/4: 0%)</td>
<td>Hearing impaired (G3/4: 0%)</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 1.0%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhoea (G3/4: 19.7%); Nausea (G3/4: 16%); Stomatitis (G3/4: 23.7%); Vomiting (G3/4: 14.3%)</td>
<td>Constipation (G3/4: 1.0%); Gastrointestinal pain (G3/4: 1.0%); Oesophagitis/dysphagia/odynophagy (G3/4: 0.7%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 4.0%)</td>
<td>Rash pruritus (G3/4: 0.7%); Nail disorders (G3/4: 0.7%); Skin exfoliation (G3/4: 0%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 19.0%); Fever (G3/4: 2.3%); Fluid retention (severe/life-threatening: 1%)</td>
<td></td>
</tr>
</tbody>
</table>
Description of selected adverse reactions in gastric adenocarcinoma cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

Blood and lymphatic system disorders
Febrile neutropenia and neutropenic infection occurred in 17.2% and 13.5% of patients respectively, regardless of G-CSF use. G-CSF was used for secondary prophylaxis in 19.3% of patients (10.7% of the cycles). Febrile neutropenia and neutropenic infection occurred respectively in 12.1% and 3.4% of patients when patients received prophylactic G-CSF, in 15.6% and 12.9% of patients without prophylactic G-CSF (see section 4.2).

Tabulated list of adverse reactions in head and neck cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

- Induction chemotherapy followed by radiotherapy (TAX 323)

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 6.3%); Neutropenic infection</td>
<td>Cancer pain (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl cysts and polyps)</td>
<td>Neutropenia (G3/4: 76.3%); Anaemia (G3/4: 9.2%); Thrombocytopenia (G3/4: 5.2%)</td>
<td>Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 0.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia/Parosmia; Peripheral sensory neuropathy (G3/4: 0.6%)</td>
<td>Dizziness</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Myocardial ischemia (G3/4: 1.7%); Arrhythmia (G3/4: 0.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 0.6%); Stomatitis (G3/4: 4.0%); Diarrhoea (G3/4: 2.9%); Vomiting (G3/4: 0.6%)</td>
<td>Constipation; Esophagitis/dysphagia/ odynophagia (G3/4: 0.6%); Abdominal pain; Dyspepsia; Gastrointestinal haemorrhage (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 10.9%)</td>
<td>Rash pruritic; Dry skin; Skin exfoliative (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td>Myalgia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 3.4%); Pyrexia (G3/4: 0.6%); Fluid retention; Oedema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>Weight increased</td>
<td></td>
</tr>
</tbody>
</table>

- Induction chemotherapy followed by chemoradiotherapy (TAX 324)

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 3.6%)</td>
<td>Neutropenic infection</td>
<td></td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl cysts and polyps)</td>
<td>Neutropenia (G3/4: 83.5%); Anaemia (G3/4: 12.4%); Thrombocytopenia (G3/4: 4.0%); Febrile neutropenia</td>
<td>Cancer pain (G3/4: 1.2%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 12.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia/Parosmia (G3/4: 0.4%); Peripheral sensory neuropathy (G3/4: 1.2%)</td>
<td>Dizziness (G3/4: 2.0%); Peripheral motor neuropathy (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Lacrimation increased</td>
<td>Conjunctivitis</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Hearing impaired (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 2.0%)</td>
<td>Ischemia myocardial</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Venous disorder</td>
<td></td>
</tr>
</tbody>
</table>
### MedDRA system organ classes

<table>
<thead>
<tr>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Gastrointestinal disorders</strong></td>
<td>Nausea (G3/4: 13.9%); Stomatitis (G3/4: 20.7%); Vomiting (G3/4: 8.4%); Diarrhoea (G3/4: 6.8%); Esophagitis/dysphagia/odynophagia (G3/4: 12.0%); Constipation (G3/4: 0.4%)</td>
<td>Dyspepsia (G3/4: 0.8%); Gastrointestinal pain (G3/4: 1.2%); Gastrointestinal haemorrhage (G3/4: 0.4%)</td>
</tr>
<tr>
<td><strong>Skin and subcutaneous tissue disorders</strong></td>
<td>Alopecia (G3/4: 4.0%); Rash pruritic</td>
<td>Dry skin; Desquamation</td>
</tr>
<tr>
<td><strong>Musculoskeletal, connective tissue bone disorders</strong></td>
<td></td>
<td>Myalgia (G3/4: 0.4%)</td>
</tr>
<tr>
<td><strong>General disorders and administration site conditions</strong></td>
<td>Lethargy (G3/4: 4.0%); Pyrexia (G3/4: 3.6%); Fluid retention (G3/4: 1.2%); Oedema (G3/4: 1.2%)</td>
<td></td>
</tr>
<tr>
<td><strong>Investigations</strong></td>
<td>Weight decreased</td>
<td>Weight increased</td>
</tr>
</tbody>
</table>

### Post-marketing experience

**Neoplasms benign, malignant and unspecified (incl cysts and polyps)**
Second primary malignancies (frequency not known), including non-Hodgkin lymphoma have been reported in association with docetaxel when used in combination with other anticancer treatments known to be associated with second primary malignancies. Acute myeloid leukaemia and myelodysplastic syndrome have been reported (frequency uncommon) in pivotal clinical studies in breast cancer with TAC regimen.

**Blood and lymphatic system disorders**
Bone marrow suppression and other haematologic adverse reactions have been reported. Disseminated intravascular coagulation (DIC), often in association with sepsis or multiorgan failure, has been reported.

**Immune system disorders**
Some cases of anaphylactic shock, sometimes fatal, have been reported. Hypersensitivity reactions (frequency not known) have been reported with docetaxel in patients who previously experienced hypersensitivity reactions to paclitaxel.

**Nervous system disorders**
Rare cases of convulsion or transient loss of consciousness have been observed with docetaxel administration. These reactions sometimes appear during the infusion of the medicinal product.

**Eye disorders**
Very rare cases of transient visual disturbances (flashes, flashing lights, scotomata) typically occurring during infusion of the medicinal product and in association with hypersensitivity reactions have been reported. These were reversible upon discontinuation of the infusion. Cases of lacrimation with or without conjunctivitis, as cases of lacrimal duct obstruction resulting in excessive tearing have been rarely reported. Cases of cystoid macular oedema (CMO) have been reported in patients treated with docetaxel.
**Ear and labyrinth disorders**
Rare cases of ototoxicity, hearing impaired and/or hearing loss have been reported.

**Cardiac disorders**
Rare cases of myocardial infarction have been reported.
Ventricular arrhythmia including ventricular tachycardia (frequency not known), sometimes fatal, has been reported in patients treated with docetaxel in combination regimens including doxorubicin, 5-fluorouracil and/or cyclophosphamide.

**Vascular disorders**
Venous thromboembolic events have rarely been reported.

**Respiratory, thoracic and mediastinal disorders**
Acute respiratory distress syndrome and cases of interstitial pneumonia/pneumonitis, interstitial lung disease, pulmonary fibrosis and respiratory failure sometimes fatal have rarely been reported. Rare cases of radiation pneumonitis have been reported in patients receiving concomitant radiotherapy.

**Gastrointestinal disorders**
Rare cases of enterocolitis, including colitis, ischemic colitis, and neutropenic enterocolitis, have been reported with a potential fatal outcome (frequency not known).
Rare occurrences of dehydration have been reported as a consequence of gastrointestinal events including enterocolitis and gastrointestinal perforation.
Rare cases of ileus and intestinal obstruction have been reported.

**Hepatobiliary disorders**
Very rare cases of hepatitis, sometimes fatal primarily in patients with pre-existing liver disorders, have been reported.

**Skin and subcutaneous tissue disorders**
Cases of cutaneous lupus erythematosus, bullous eruptions such as erythema multiforme and severe cutaneous adverse reactions such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN) and Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with docetaxel. Scleroderma-like changes usually preceded by peripheral lymphoedema have been reported with docetaxel. Cases of permanent alopecia (frequency not known) have been reported.

**Renal and urinary disorders**
Renal insufficiency and renal failure have been reported. In about 20% of these cases there were no risk factors for acute renal failure such as concomitant nephrotoxic medicinal products and gastrointestinal disorders.

**General disorders and administration site conditions**
Radiation recall phenomena have rarely been reported.
Injection site recall reaction (recurrence of skin reaction at a site of previous extravasation following administration of docetaxel at a different site) has been observed at the site of previous extravasation (frequency not known).
Fluid retention has not been accompanied by acute episodes of oliguria or hypotension. Dehydration and pulmonary oedema have rarely been reported.

**Metabolism and nutrition disorders**
Cases of electrolyte imbalance have been reported. Cases of hyponatraemia have been reported, mostly associated with dehydration, vomiting and pneumonia. Hypokalaemia, hypomagnesaemia, and hypocalcaemia were observed, usually in association with gastrointestinal disorders and in particular with diarrhoea. Tumour lysis syndrome, potentially fatal, has been reported (frequency not known).
Musculoskeletal disorder
Myositis has been reported with docetaxel (frequency not known).

Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

There were a few reports of overdose. There is no known antidote for docetaxel overdose. In case of overdose, the patient should be kept in a specialised unit and vital functions closely monitored. In cases of overdose, exacerbation of adverse events may be expected. The primary anticipated complications of overdose would consist of bone marrow suppression, peripheral neurotoxicity and mucositis. Patients should receive therapeutic G-CSF as soon as possible after discovery of overdose. Other appropriate symptomatic measures should be taken, as needed.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Taxanes, ATC Code: L01CD 02

Mechanism of action

Docetaxel is an antineoplastic agent which acts by promoting the assembly of tubulin into stable microtubules and inhibits their disassembly which leads to a marked decrease of free tubulin. The binding of docetaxel to microtubules does not alter the number of protofilaments.

Docetaxel has been shown in vitro to disrupt the microtubular network in cells which is essential for vital mitotic and interphase cellular functions.

Pharmacodynamic effects

Docetaxel was found to be cytotoxic in vitro against various murine and human tumour cell lines and against freshly excised human tumour cells in clonogenic assays. Docetaxel achieves high intracellular concentrations with a long cell residence time. In addition, docetaxel was found to be active on some but not all cell lines over expressing the p-glycoprotein which is encoded by the multidrug resistance gene. In vivo, docetaxel is schedule independent and has a broad spectrum of experimental anti-tumour activity against advanced murine and human grafted tumours.

Clinical efficacy and safety

Breast cancer

TAXOTERE in combination with doxorubicin and cyclophosphamide: adjuvant therapy

Patients with operable node-positive breast cancer (TAX 316)

Data from a multi-centre open label randomised study support the use of docetaxel for the adjuvant treatment of patients with operable node-positive breast cancer and KPS ≥ 80%, between 18 and 70 years of age. After stratification according to the number of positive lymph nodes (1-3, 4+), 1491 patients were randomised to receive either docetaxel 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² (TAC arm), or doxorubicin 50 mg/m² followed by fluorouracil 500 mg/m² and cyclophosphamide 500 mg/m² (FAC arm). Both regimens
were administered once every 3 weeks for 6 cycles. Docetaxel was administered as a 1-hour infusion, all other medicinal products were given as intravenous bolus on day one. G-CSF was administered as secondary prophylaxis to patients who experienced complicated neutropenia (febrile neutropenia, prolonged neutropenia, or infection). Patients on the TAC arm received antibiotic prophylaxis with ciprofloxacin 500 mg orally twice daily for 10 days starting on day 5 of each cycle, or equivalent. In both arms, after the last cycle of chemotherapy, patients with positive estrogen and/or progesterone receptors received tamoxifen 20 mg daily for up to 5 years. Adjuvant radiation therapy was prescribed according to guidelines in place at participating institutions and was given to 69% of patients who received TAC and 72% of patients who received FAC. Two interim analyses and one final analysis were performed. The first interim analysis was planned 3 years after the date when half of study enrolment was done. The second interim analysis was done after 400 DFS events had been recorded overall, which led to a median follow-up of 55 months. The final analysis was performed when all patients had reached their 10-year follow-up visit (unless they had a DFS event or were lost to follow-up before). Disease-free survival (DFS) was the primary efficacy endpoint and Overall survival (OS) was the secondary efficacy endpoint.

A final analysis was performed with an actual median follow up of 96 months. Significantly longer disease-free survival for the TAC arm compared to the FAC arm was demonstrated. Incidence of relapses at 10 years was reduced in patients receiving TAC compared to those who received FAC (39% versus 45%, respectively) i.e. an absolute risk reduction by 6% (p = 0.0043). Overall survival at 10 years was also significantly increased with TAC compared to FAC (76% versus 69%, respectively) i.e. an absolute reduction of the risk of death by 7% (p = 0.002). As the benefit observed in patients with 4+ nodes was not statistically significant on DFS and OS, the positive benefit/risk ratio for TAC in patients with 4+ nodes was not fully demonstrated at the final analysis.

Overall, the study results demonstrate a positive benefit risk ratio for TAC compared to FAC.

TAC-treated patient subsets according to prospectively defined major prognostic factors were analysed:

<table>
<thead>
<tr>
<th>Patient subset</th>
<th>Number of patients</th>
<th>Disease free survival</th>
<th></th>
<th>Overall survival</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hazard ratio*</td>
<td>95% CI</td>
<td>p =</td>
<td>Hazard ratio*</td>
</tr>
<tr>
<td>No of positive nodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>745</td>
<td>0.80</td>
<td>0.68-0.93</td>
<td>0.0043</td>
<td>0.74</td>
</tr>
<tr>
<td>1-3</td>
<td>467</td>
<td>0.72</td>
<td>0.58-0.91</td>
<td>0.0047</td>
<td>0.62</td>
</tr>
<tr>
<td>4+</td>
<td>278</td>
<td>0.87</td>
<td>0.70-1.09</td>
<td>0.2290</td>
<td>0.87</td>
</tr>
</tbody>
</table>

*a hazard ratio of less than 1 indicates that TAC is associated with a longer disease-free survival and overall survival compared to FAC

Patients with operable node-negative breast cancer eligible to receive chemotherapy (GEICAM 9805)

Data from a multi-centre open label randomised trial support the use of TAXOTERE for the adjuvant treatment of patients with operable node-negative breast cancer eligible to receive chemotherapy. 1060 patients were randomised to receive either TAXOTERE 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² (539 patients in TAC arm), or doxorubicin 50 mg/m² followed by fluorouracil 500 mg/m² and cyclophosphamide 500 mg/m² (521 patients in FAC arm), as adjuvant treatment of operable node-negative breast cancer patients with high risk of relapse according to 1998 St. Gallen criteria (tumour size >2 cm and/or negative ER and PR and/or high histological/nuclear grade (grade 2 to 3) and/or age <35 years). Both regimens were administered once every 3 weeks for 6 cycles. TAXOTERE was administered as a 1-hour infusion, all other medicinal products were given as intraveinously on day 1 every three weeks. Primary prophylactic G-CSF was made mandatory in TAC arm after 230 patients were randomised. The incidence of Grade 4 neutropenia, febrile neutropenia and neutropenic infection was decreased in patients who received primary G-CSF prophylaxis (see section 4.8). In both arms, after the last cycle of
chemotherapy, patients with ER+ and/or PgR+ tumours received tamoxifen 20 mg once a day for up to 5 years. Adjuvant radiation therapy was administered according to guidelines in place at participating institutions and was given to 57.3% of patients who received TAC and 51.2% of patients who received FAC.

One primary analysis and one updated analysis were performed. The primary analysis was done when all patients had a follow-up of greater than 5 years (median follow-up time of 77 months). The updated analysis was performed when all patients had reached their 10-year (median follow up time of 10 years and 5 months) follow-up visit (unless they had a DFS event or were lost to follow-up previously). Disease-free survival (DFS) was the primary efficacy endpoint and Overall survival (OS) was the secondary efficacy endpoint.

At the median follow-up time of 77 months, significantly longer disease-free survival for the TAC arm compared to the FAC arm was demonstrated. TAC-treated patients had a 32% reduction in the risk of relapse compared to those treated with FAC (hazard ratio = 0.68, 95% CI (0.49-0.93), p = 0.01). At the median follow up time of 10 years and 5 months, TAC-treated patients had a 16.5% reduction in the risk of relapse compared to those treated with FAC (hazard ratio = 0.84, 95% CI (0.65-1.08), p=0.1646). DFS data were not statistically significant but were still associated with a positive trend in favour of TAC.

At the median follow-up time of 77 months, overall survival (OS) was longer in the TAC arm with TAC-treated patients having a 24% reduction in the risk of death compared to FAC (hazard ratio = 0.76, 95% CI (0.46-1.26, p = 0.29). However, the distribution of OS was not significantly different between the 2 groups. At the median follow up time of 10 years and 5 months, TAC-treated patients had a 9% reduction in the risk of death compared to FAC-treated patients (hazard ratio = 0.91, 95% CI (0.63-1.32)). The survival rate was 93.7% in the TAC arm and 91.4 % in the FAC arm, at the 8-year follow-up time point, and 91.3 % in the TAC arm and 89 % in the FAC arm, at the 10-year follow-up time point.

The positive benefit risk ratio for TAC compared to FAC remained unchanged.

TAC-treated patient subsets according to prospectively defined major prognostic factors were analysed in the primary analysis (at the median follow-up time of 77 months) (see table below):

Subset Analyses-Adjuvant Therapy in Patients with Node-negative Breast Cancer Study (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Patient subset</th>
<th>Number of patients in TAC group</th>
<th>Disease Free Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hazard ratio*</td>
</tr>
<tr>
<td>Overall</td>
<td>539</td>
<td>0.68</td>
</tr>
<tr>
<td>Age category 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;50 years</td>
<td>260</td>
<td>0.67</td>
</tr>
<tr>
<td>≥50 years</td>
<td>279</td>
<td>0.67</td>
</tr>
<tr>
<td>Age category 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;35 years</td>
<td>42</td>
<td>0.31</td>
</tr>
<tr>
<td>≥35 years</td>
<td>497</td>
<td>0.73</td>
</tr>
<tr>
<td>Hormonal receptor status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>195</td>
<td>0.7</td>
</tr>
<tr>
<td>Positive</td>
<td>344</td>
<td>0.62</td>
</tr>
<tr>
<td>Tumour size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤2 cm</td>
<td>285</td>
<td>0.69</td>
</tr>
<tr>
<td>&gt;2 cm</td>
<td>254</td>
<td>0.68</td>
</tr>
<tr>
<td>Histological grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade1 (includes grade not assessed)</td>
<td>64</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Exploratory subgroup analyses for disease-free survival for patients who meet the 2009 St. Gallen chemotherapy criteria – (ITT population) were performed and presented here below:

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>TAC</th>
<th>FAC</th>
<th>Hazard ratio (TAC/FAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=539</td>
<td>n=521</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>Meeting relative indication for chemotherapy a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>18/214 (8.4%)</td>
<td>26/227 (11.5%)</td>
<td>0.796 (0.434 - 1.459)</td>
</tr>
<tr>
<td>Yes</td>
<td>48/325 (14.8%)</td>
<td>69/294 (23.5%)</td>
<td>0.606 (0.42 - 0.877)</td>
</tr>
</tbody>
</table>

TAC = docetaxel, doxorubicin and cyclophosphamide
FAC = 5-fluorouracil, doxorubicin and cyclophosphamide
CI = confidence interval
ER = eostrogen receptor
PR = progesterone receptor
a ER/PR-negative or Grade 3 or tumour size >5 cm

The estimated hazard ratio was using Cox proportional hazard model with treatment group as the factor.

**TAXOTERE as single agent**

Two randomised phase III comparative studies, involving a total of 326 alkylating or 392 anthracycline failure metastatic breast cancer patients, have been performed with docetaxel at the recommended dose and regimen of 100 mg/m² every 3 weeks.

In alkylating-failure patients, docetaxel was compared to doxorubicin (75 mg/m² every 3 weeks). Without affecting overall survival time (docetaxel 15 months vs. doxorubicin 14 months, p = 0.38) or time to progression (docetaxel 27 weeks vs. doxorubicin 23 weeks, p = 0.54), docetaxel increased response rate (52% vs. 37%, p = 0.01) and shortened time to response (12 weeks vs. 23 weeks, p = 0.007). Three docetaxel patients (2%) discontinued the treatment due to fluid retention, whereas 15 doxorubicin patients (9%) discontinued due to cardiac toxicity (three cases of fatal congestive heart failure).

In anthracycline-failure patients, docetaxel was compared to the combination of mitomycin C and vinblastine (12 mg/m² every 6 weeks and 6 mg/m² every 3 weeks). Docetaxel increased response rate (33% vs. 12%, p < 0.0001), prolonged time to progression (19 weeks vs. 11 weeks, p = 0.0004) and prolonged overall survival (11 months vs. 9 months, p = 0.01).

During these two phase III studies, the safety profile of docetaxel was consistent with the safety profile observed in phase II studies (see section 4.8).

An open-label, multi-centre, randomised phase III study was conducted to compare docetaxel monotherapy and paclitaxel in the treatment of advanced breast cancer in patients whose previous
therapy should have included an anthracycline. A total of 449 patients were randomised to receive either docetaxel monotherapy 100 mg/m² as a 1 hour infusion or paclitaxel 175 mg/m² as a 3 hour infusion. Both regimens were administered every 3 weeks.

Without affecting the primary endpoint, overall response rate (32% vs 25%, p = 0.10), docetaxel prolonged median time to progression (24.6 weeks vs 15.6 weeks; p < 0.01) and median survival (15.3 months vs 12.7 months; p = 0.03).

More grade 3/4 adverse events were observed for docetaxel monotherapy (55.4%) compared to paclitaxel (23.0%).

**TAXOTERE in combination with doxorubicin**

One large randomised phase III study, involving 429 previously untreated patients with metastatic disease, has been performed with doxorubicin (50 mg/m²) in combination with docetaxel (75 mg/m²) (AT arm) versus doxorubicin (60 mg/m²) in combination with cyclophosphamide (600 mg/m²) (AC arm). Both regimens were administered on day 1 every 3 weeks.

- Time to progression (TTP) was significantly longer in the AT arm versus AC arm, p = 0.0138. The median TTP was 37.3 weeks (95% CI: 33.4 - 42.1) in AT arm and 31.9 weeks (95% CI: 27.4 - 36.0) in AC arm.
- Overall response rate (ORR) was significantly higher in the AT arm versus AC arm, p = 0.009. The ORR was 59.3% (95% CI: 52.8 - 65.9) in AT arm versus 46.5% (95% CI: 39.8 - 53.2) in AC arm.

In this study, AT arm showed a higher incidence of severe neutropenia (90% versus 68.6%), febrile neutropenia (33.3% versus 10%), infection (8% versus 2.4%), diarrhoea (7.5% versus 1.4%), asthenia (8.5% versus 2.4%), and pain (2.8% versus 0%) than AC arm. On the other hand, AC arm showed a higher incidence of severe anaemia (15.8% versus 8.5%) than AT arm, and, in addition, a higher incidence of severe cardiac toxicity: congestive heart failure (3.8% versus 2.8%), absolute LVEF decrease ≥ 20% (13.1% versus 6.1%), absolute LVEF decrease ≥ 30% (6.2% versus 1.1%). Toxic deaths occurred in 1 patient in the AT arm (congestive heart failure) and in 4 patients in the AC arm (1 due to septic shock and 3 due to congestive heart failure).

In both arms, quality of life measured by the EORTC questionnaire was comparable and stable during treatment and follow-up.

**TAXOTERE in combination with trastuzumab**

Docetaxel in combination with trastuzumab was studied for the treatment of patients with metastatic breast cancer whose tumours over express HER2, and who previously had not received chemotherapy for metastatic disease. One hundred eighty six patients were randomised to receive docetaxel (100 mg/m²) with or without trastuzumab; 60% of patients received prior anthracycline-based adjuvant chemotherapy. Docetaxel plus trastuzumab was efficacious in patients whether or not they had received prior adjuvant anthracyclines. The main test method used to determine HER2 positivity in this pivotal study was immunohistochemistry (IHC). A minority of patients were tested using fluorescence in-situ hybridization (FISH). In this study, 87% of patients had disease that was IHC 3+, and 95% of patients entered had disease that was IHC 3+ and/or FISH positive. Efficacy results are summarized in the following table:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Docetaxel plus trastuzumab(^1)</th>
<th>Docetaxel(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response rate (95% CI)</td>
<td>61% (50-71)</td>
<td>34% (25-45)</td>
</tr>
<tr>
<td>Median duration of response (months) (95% CI)</td>
<td>11.4 (9.2-15.0)</td>
<td>5.1 (4.4-6.2)</td>
</tr>
<tr>
<td>Median TTP (months) (95% CI)</td>
<td>10.6 (7.6-12.9)</td>
<td>5.7 (5.0-6.5)</td>
</tr>
<tr>
<td>Median survival (months) (95% CI)</td>
<td>30.5(^2) (26.8-ne)</td>
<td>22.1(^2) (17.6-28.9)</td>
</tr>
</tbody>
</table>

TTP = time to progression; “ne” indicates that it could not be estimated or it was not yet reached.

\(^1\)Full analysis set (intent-to-treat)

\(^2\) Estimated median survival

**TAXOTERE in combination with capecitabine**

Data from one multi-centre, randomised, controlled phase III clinical study support the use of docetaxel in combination with capecitabine for treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic chemotherapy, including an anthracycline. In this study, 255 patients were randomised to treatment with docetaxel (75 mg/m\(^2\) as a 1 hour intravenous infusion every 3 weeks) and capecitabine (1250 mg/m\(^2\) twice daily for 2 weeks followed by 1-week rest period). 256 patients were randomised to treatment with docetaxel alone (100 mg/m\(^2\) as a 1 hour intravenous infusion every 3 weeks). Survival was superior in the docetaxel + capecitabine combination arm (p = 0.0126). Median survival was 442 days (docetaxel + capecitabine) vs. 352 days (docetaxel alone). The overall objective response rates in the all-randomised population (investigator assessment) were 41.6% (docetaxel + capecitabine) vs. 29.7% (docetaxel alone); p = 0.0058. Time to progressive disease was superior in the docetaxel + capecitabine combination arm (p < 0.0001). The median time to progression was 186 days (docetaxel + capecitabine) vs. 128 days (docetaxel alone).

**Non-small cell lung cancer**

*Patients previously treated with chemotherapy with or without radiotherapy*

In a phase III study, in previously treated patients, time to progression (12.3 weeks versus 7 weeks) and overall survival were significantly longer for docetaxel at 75 mg/m\(^2\) compared to Best Supportive Care. The 1-year survival rate was also significantly longer in docetaxel (40%) versus BSC (16%). There was less use of morphinan analgesics (p < 0.01), non-morphinan analgesics (p < 0.01), other disease-related medications (p = 0.06) and radiotherapy (p < 0.01) in patients treated with docetaxel at 75 mg/m\(^2\) compared to those with BSC.

The overall response rate was 6.8% in the evaluable patients, and the median duration of response was 26.1 weeks.

**TAXOTERE in combination with platinum agents in chemotherapy-naïve patients**

In a phase III study, 1218 patients with unresectable stage IIIB or IV NSCLC, with KPS of 70% or greater, and who did not receive previous chemotherapy for this condition, were randomised to either docetaxel (T) 75 mg/m\(^2\) as a 1 hour infusion immediately followed by cisplatin (Cis) 75 mg/m\(^2\) over 30-60 minutes every 3 weeks (TCis), docetaxel 75 mg/m\(^2\) as a 1 hour infusion in combination with carboplatin (AUC 6 mg/ml.min) over 30-60 minutes every 3 weeks, or vinorelbine (V) 25 mg/m\(^2\) administered over 6-10 minutes on days 1, 8, 15, 22 followed by cisplatin 100 mg/m\(^2\) administered on day 1 of cycles repeated every 4 weeks (VCis).
Survival data, median time to progression and response rates for two arms of the study are illustrated in the following table:

<table>
<thead>
<tr>
<th></th>
<th>TCis n = 408</th>
<th>VCis n = 404</th>
<th>Statistical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Overall survival</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Primary end-point):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median survival (months)</td>
<td>11.3</td>
<td>10.1</td>
<td>Hazard ratio: 1.122 [97.2% CI: 0.937; 1.342]*</td>
</tr>
<tr>
<td>1-year Survival (%)</td>
<td>46</td>
<td>41</td>
<td>Treatment difference: 5.4% [95% CI: -1.1; 12.0]</td>
</tr>
<tr>
<td>2-year Survival (%)</td>
<td>21</td>
<td>14</td>
<td>Treatment difference: 6.2% [95% CI: 0.2; 12.3]</td>
</tr>
<tr>
<td><strong>Median time to progression</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(weeks):</td>
<td>22.0</td>
<td>23.0</td>
<td>Hazard ratio: 1.032 [95% CI: 0.876; 1.216]</td>
</tr>
<tr>
<td><strong>Overall response rate (%)</strong>:</td>
<td>31.6</td>
<td>24.5</td>
<td>Treatment difference: 7.1% [95% CI: 0.7; 13.5]</td>
</tr>
</tbody>
</table>

*: Corrected for multiple comparisons and adjusted for stratification factors (stage of disease and region of treatment), based on evaluable patient population.

Secondary end-points included change of pain, global rating of quality of life by EuroQoL-5D, Lung Cancer Symptom Scale, and changes in Karnofsky performance status. Results on these end-points were supportive of the primary end-points results.

For docetaxel/carboplatin combination, neither equivalent nor non-inferior efficacy could be proven compared to the reference treatment combination VCis.

**Prostate cancer**

**Metastatic castration-resistant prostate cancer**

The safety and efficacy of docetaxel in combination with prednisone or prednisolone in patients with metastatic castration-resistant prostate cancer were evaluated in a randomised multi-centre phase III study (TAX 327). A total of 1006 patients with KPS ≥ 60 were randomised to the following treatment groups:

- Docetaxel 75 mg/m² every 3 weeks for 10 cycles.
- Docetaxel 30 mg/m² administered weekly for the first 5 weeks in a 6 week cycle for 5 cycles.
- Mitoxantrone 12 mg/m² every 3 weeks for 10 cycles.

All 3 regimens were administered in combination with prednisone or prednisolone 5 mg twice daily, continuously.

Patients who received docetaxel every three weeks demonstrated significantly longer overall survival compared to those treated with mitoxantrone. The increase in survival seen in the docetaxel weekly arm was not statistically significant compared to the mitoxantrone control arm. Efficacy endpoints for the docetaxel arms versus the control arm are summarized in the following table:
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel every 3 weeks</th>
<th>Docetaxel every week</th>
<th>Mitoxantrone every 3 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td></td>
<td>335</td>
<td>334</td>
</tr>
<tr>
<td>Median survival (months)</td>
<td></td>
<td>18.9</td>
<td>17.4</td>
</tr>
<tr>
<td>95% CI</td>
<td></td>
<td>(17.0-21.2)</td>
<td>(15.7-19.0)</td>
</tr>
<tr>
<td>Hazard ratio</td>
<td></td>
<td>0.761</td>
<td>0.912</td>
</tr>
<tr>
<td>95% CI</td>
<td></td>
<td>(0.619-0.936)</td>
<td>(0.747-1.113)</td>
</tr>
<tr>
<td>p-value*</td>
<td></td>
<td>0.0094</td>
<td>0.3624</td>
</tr>
<tr>
<td>Number of patients</td>
<td></td>
<td>291</td>
<td>282</td>
</tr>
<tr>
<td>PSA** response rate (%)</td>
<td></td>
<td>45.4</td>
<td>47.9</td>
</tr>
<tr>
<td>95% CI</td>
<td></td>
<td>(39.5-51.3)</td>
<td>(41.9-53.9)</td>
</tr>
<tr>
<td>p-value*</td>
<td></td>
<td>0.0005</td>
<td>&lt;0.0001</td>
</tr>
<tr>
<td>Number of patients</td>
<td></td>
<td>153</td>
<td>154</td>
</tr>
<tr>
<td>Pain response rate (%)</td>
<td></td>
<td>34.6</td>
<td>31.2</td>
</tr>
<tr>
<td>95% CI</td>
<td></td>
<td>(27.1-42.7)</td>
<td>(24.0-39.1)</td>
</tr>
<tr>
<td>p-value*</td>
<td></td>
<td>0.0107</td>
<td>0.0798</td>
</tr>
<tr>
<td>Number of patients</td>
<td></td>
<td>141</td>
<td>134</td>
</tr>
<tr>
<td>Tumour response rate (%)</td>
<td></td>
<td>12.1</td>
<td>8.2</td>
</tr>
<tr>
<td>95% CI</td>
<td></td>
<td>(7.2-18.6)</td>
<td>(4.2-14.2)</td>
</tr>
<tr>
<td>p-value*</td>
<td></td>
<td>0.1112</td>
<td>0.5853</td>
</tr>
</tbody>
</table>

†Stratified log-rank test
*Threshold for statistical significance = 0.0175
**PSA: Prostate-Specific Antigen

Given the fact that docetaxel every week presented a slightly better safety profile than docetaxel every 3 weeks, it is possible that certain patients may benefit from docetaxel every week.

No statistical differences were observed between treatment groups for Global Quality of Life.

**Metastatic hormone-sensitive prostate cancer

**STAMPEDE study

The safety and efficacy of docetaxel administered concomitantly with standard of care (ADT) in patients with high-risk locally advanced or metastatic hormone-sensitive prostate cancer were evaluated in a randomised multi-centre, multi-arm multi-stage (MAMS) study with a seamless phase II/III design (STAMPEDE – MRC PR08). A total of 1776 male patients were allocated to the treatment arms of interest:

- Standard of care + docetaxel 75 mg/m², administered every 3 weeks for 6 cycles
- Standard of care alone

Docetaxel regimen was administered in combination with prednisone or prednisolone 5 mg twice daily continuously.

Among the 1776 randomised patients 1086 (61%) had metastatic disease, 362 were randomised to docetaxel in combination with standard of care, 724 received standard of care alone.

In these metastatic prostate cancer patients, the median overall survival was significantly longer in docetaxel treatment groups than in the standard of care alone group, with a median overall survival 19 months longer with the addition of docetaxel to standard of care (HR = 0.76, 95% CI = 0.62-0.92, p=0.005).

Efficacy results in metastatic prostate cancer patients for docetaxel arm versus control arm are summarized in the following table:
Efficacy of docetaxel in combination with prednisone or prednisolone and standard of care in the treatment of patients with metastatic hormone-sensitive prostate cancer (STAMPEDE)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + standard of care</th>
<th>Standard of care alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of metastatic prostate cancer patients</td>
<td>362</td>
<td>724</td>
</tr>
<tr>
<td>Median overall survival (months) 95% CI</td>
<td>62</td>
<td>43</td>
</tr>
<tr>
<td>Adjusted hazard ratio 95% CI</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Failure-Free survivalb Med (months) 95% CI</td>
<td>20.4</td>
<td>12</td>
</tr>
<tr>
<td>Adjusted hazard ratio 95% CI</td>
<td>0.66</td>
<td></td>
</tr>
</tbody>
</table>

*p-value calculated from the likelihood ratio test and adjusted for all stratification factors (except center and planned hormone therapy) and stratified by trial period

b Failure-free survival: time from randomization to first evidence of at least one of: biochemical failure (defined as a rise in PSA of 50% above the within-24-week nadir and above 4 ng/mL and confirmed by retest or treatment); progression either locally, in lymph nodes, or in distant metastases; skeletal-related event; or death from prostate cancer.

CHAARTED study

The safety and efficacy of docetaxel administered at the beginning of androgen-deprivation therapy (ADT) in patients with metastatic hormone-sensitive prostate cancer were evaluated in a randomised Phase III study (CHAARTED). A total of 790 male patients were allocated to the 2 treatment groups.

- ADT + docetaxel 75 mg/m² given at the beginning of ADT, administered every 3 weeks for 6 cycles
- ADT alone

The median overall survival was significantly longer in docetaxel treatment group than in the ADT alone group, with a median overall survival 13.6 months longer with the addition of docetaxel to ADT (hazard ratio (HR) = 0.61, 95% confidence interval (CI) = 0.47-0.80, p=0.0003).

Efficacy results or the docetaxel arm versus the control arm are summarized in the following table:

Efficacy of docetaxel and ADT in the treatment of patients with metastatic hormone-sensitive prostate cancer (CHAARTED)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel +ADT</th>
<th>ADT alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>397</td>
<td>393</td>
</tr>
<tr>
<td>Median overall survival (months) All patients</td>
<td>57.6</td>
<td>44.0</td>
</tr>
<tr>
<td>95% CI Adjusted hazard ratio</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.47-0.80)</td>
<td>--</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;d&lt;/sup&gt;</td>
<td>0.0003</td>
<td>--</td>
</tr>
</tbody>
</table>
**Progression Free Survival**

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel +ADT</th>
<th>ADT alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progression Free Survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>19.8</td>
<td>11.6</td>
</tr>
<tr>
<td>95% CI</td>
<td>16.7-22.8</td>
<td>10.8-14.3</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.60</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.51-0.72</td>
<td>--</td>
</tr>
<tr>
<td>p-value*</td>
<td>\textless 0.0001</td>
<td>--</td>
</tr>
<tr>
<td>PSA response** at 6 months – N(%)</td>
<td>127 (32.0)</td>
<td>77 (19.6)</td>
</tr>
<tr>
<td>p-value*</td>
<td>\textless 0.0001</td>
<td>--</td>
</tr>
<tr>
<td>PSA response** at 12 months – N(%)</td>
<td>110 (27.7)</td>
<td>66 (16.8)</td>
</tr>
<tr>
<td>p-value*</td>
<td>\textless 0.0001</td>
<td>--</td>
</tr>
</tbody>
</table>
| Time to castration-resistant prostate cancer
| Median (months)                 | 20.2           | 11.7      |
| 95% CI                          | (17.2-23.6)    | (10.8-14.7)|
| Adjusted hazard ratio           | 0.61           | --        |
| 95% CI                          | (0.51-0.72)    | --        |
| p-value*                        | \textless 0.0001 | --       |
| Time to clinical progression
| Median (months)                 | 33.0           | 19.8      |
| 95% CI                          | (27.3-41.2)    | (17.9-22.8)|
| Adjusted hazard ratio           | 0.61           | --        |
| 95% CI                          | (0.50-0.75)    | --        |
| p-value*                        | \textless 0.0001 | --       |

\(a\) Time to event variables: Stratified log-rank test.
Response rate variables: Fisher's Exact test
* p-value for descriptive purpose.

** PSA response: Prostate-Specific Antigen response: PSA level <0.2 ng/mL measured for two consecutive measurements at least 4 weeks apart.

\(b\) Time to castration-resistant prostate cancer = time from randomization to PSA progression or clinical progression (i.e., increasing symptomatic bone metastases, progression per Response Evaluation Criteria in Solid Tumours (RECIST) criteria, or clinical deterioration due to cancer per the Investigator’s opinion), whichever occurred first.

\(c\) The time to clinical progression = the time from randomization until clinical progression (i.e., increased symptoms of bone metastases; progression according to RECIST; or clinical deterioration due to cancer according to the investigator’s opinion).

**Gastric adenocarcinoma**

A multi-centre, open-label, randomised study was conducted to evaluate the safety and efficacy of docetaxel for the treatment of patients with metastatic gastric adenocarcinoma, including adenocarcinoma of the gastroesophageal junction, who had not received prior chemotherapy for metastatic disease. A total of 445 patients with KPS > 70 were treated with either docetaxel (T) (75 mg/m² on day 1) in combination with cisplatin (C) (75 mg/m² on day 1) and 5-fluorouracil (F) (750 mg/m² per day for 5 days) or cisplatin (100 mg/m² on day 1) and 5-fluorouracil (1000 mg/m² per day for 5 days). The length of a treatment cycle was 3 weeks for the TCF arm and 4 weeks for the CF arm. The median number of cycles administered per patient was 6 (with a range of 1-16) for the TCF arm compared to 4 (with a range of 1-12) for the CF arm. Time to progression (TTP) was the primary endpoint. The risk reduction of progression was 32.1% and was associated with a significantly longer TTP (\(p = 0.0004\)) in favour of the TCF arm. Overall survival was also significantly longer (\(p = 0.0201\)) in favour of the TCF arm with a risk reduction of mortality of 22.7%. Efficacy results are summarized in the following table:
Efficacy of docetaxel in the treatment of patients with gastric adenocarcinoma

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>TCF</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Median TTP (months)</strong></td>
<td>5.6</td>
<td>3.7</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(4.86-5.91)</td>
<td>(3.45-4.47)</td>
</tr>
<tr>
<td><strong>Hazard ratio</strong></td>
<td>1.473</td>
<td>0.0004</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(1.189-1.825)</td>
<td></td>
</tr>
<tr>
<td><strong>Median survival (months)</strong></td>
<td>9.2</td>
<td>8.6</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(8.38-10.58)</td>
<td>(7.16-9.46)</td>
</tr>
<tr>
<td><strong>2-year estimate (%)</strong></td>
<td>18.4</td>
<td>8.8</td>
</tr>
<tr>
<td><strong>Hazard ratio</strong></td>
<td>1.293</td>
<td>0.0201</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(1.041-1.606)</td>
<td></td>
</tr>
<tr>
<td><strong>Overall response rate (CR+PR) (%)</strong></td>
<td>36.7</td>
<td>25.4</td>
</tr>
<tr>
<td><strong>p-value</strong></td>
<td>0.0106</td>
<td></td>
</tr>
<tr>
<td><strong>Progressive disease as best overall</strong></td>
<td>16.7</td>
<td>25.9</td>
</tr>
<tr>
<td><strong>Response (%)</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Unstratified logrank test

Subgroup analyses across age, gender and race consistently favoured the TCF arm compared to the CF arm.

A survival update analysis conducted with a median follow-up time of 41.6 months no longer showed a statistically significant difference although always in favour of the TCF regimen and showed that the benefit of TCF over CF is clearly observed between 18 and 30 months of follow up.

Overall, quality of life (QoL) and clinical benefit results consistently indicated improvement in favour of the TCF arm. Patients treated with TCF had a longer time to 5% definitive deterioration of global health status on the QLQ-C30 questionnaire (p = 0.0121) and a longer time to definitive worsening of Karnofsky performance status (p = 0.0088) compared to patients treated with CF.

**Head and neck cancer**

- Induction chemotherapy followed by radiotherapy (TAX323)
The safety and efficacy of docetaxel in the induction treatment of patients with squamous cell carcinoma of the head and neck (SCCHN) was evaluated in a phase III, multicenter, open-label, randomised study (TAX323). In this study, 358 patients with inoperable locally advanced SCCHN, and WHO performance status 0 or 1, were randomised to one of two treatment arms. Patients on the docetaxel arm received docetaxel (T) 75 mg/m² followed by cisplatin (P) 75 mg/m² followed by 5-fluorouracil (F) 750 mg/m² per day as a continuous infusion for 5 days. This regimen was administered every three weeks for 4 cycles in case at least a minor response (≥ 25% reduction in bidimensionally measured tumour size) was observed after 2 cycles. At the end of chemotherapy, with a minimal interval of 4 weeks and a maximal interval of 7 weeks, patients whose disease did not progress received radiotherapy (RT) according to institutional guidelines for 7 weeks (TPF/RT). Patients on the comparator arm received cisplatin (P) 100 mg/m² followed by 5-fluorouracil (F) 1000 mg/m² per day for 5 days. This regimen was administered every three weeks for 4 cycles in case at least a minor response (≥ 25% reduction in bidimensionally measured tumour size) was observed after 2 cycles. At the end of chemotherapy, with a minimal interval of 4 weeks and a maximal interval of 7 weeks, patients whose disease did not progress received radiotherapy (RT) according to institutional guidelines for 7 weeks (PF/RT). Locoregional therapy with radiation was delivered either with a conventional fraction (1.8 Gy - 2.0 Gy once a day, 5 days per week for a total dose of 66 to 70 Gy), or accelerated/hyperfractionated regimens of radiation therapy (twice a day, with a minimum interfraction interval of 6 hours, 5 days per week). A total of 70 Gy was recommended for accelerated regimens and 74 Gy for hyperfractionated schemes. Surgical resection was allowed following chemotherapy, before or after radiotherapy. Patients on the TPF arm received antibiotic prophylaxis.
with ciprofloxacin 500 mg orally twice daily for 10 days starting on day 5 of each cycle, or equivalent. The primary endpoint in this study, progression-free survival (PFS), was significantly longer in the TPF arm compared to the PF arm, $p = 0.0042$ (median PFS: 11.4 vs. 8.3 months respectively) with an overall median follow-up time of 33.7 months. Median overall survival was also significantly longer in favour of the TPF arm compared to the PF arm (median OS: 18.6 vs. 14.5 months respectively) with a 28% risk reduction of mortality, $p = 0.0128$. Efficacy results are presented in the table below:

**Efficacy of docetaxel in the induction treatment of patients with inoperable locally advanced SCCHN (Intent-to-Treat Analysis)**

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + Cis + 5-FU</th>
<th>Cis + 5-FU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median progression free survival (months)</td>
<td>11.4 (10.1-14.0)</td>
<td>8.3 (7.4-9.1)</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.70 (0.55-0.89)</td>
<td>0.0042</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>p-value</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median survival (months)</td>
<td>18.6 (15.7-24.0)</td>
<td>14.5 (11.6-18.7)</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>0.72 (0.56-0.93)</td>
<td>0.0128</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*<strong>p-value</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best overall response to chemotherapy (%)</td>
<td>67.8 (60.4-74.6)</td>
<td>53.6 (46.0-61.0)</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*<strong>p-value</strong></td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Best overall response to study treatment</td>
<td>72.3 (65.1-78.8)</td>
<td>58.6 (51.0-65.8)</td>
</tr>
<tr>
<td>[chemotherapy +/- radiotherapy] (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*<strong>p-value</strong></td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Median duration of response to chemotherapy ±</td>
<td>n = 128</td>
<td>n = 106</td>
</tr>
<tr>
<td>radiotherapy (months)</td>
<td>15.7 (13.4-24.6)</td>
<td>11.7 (10.2-17.4)</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>0.72 (0.52-0.99)</td>
<td>0.0457</td>
</tr>
<tr>
<td>(95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*<strong>p-value</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A hazard ratio of less than 1 favours docetaxel + cisplatin + 5-FU  
*Cox model (adjustment for Primary tumour site, T and N clinical stages and PSWHO)  
**Logrank test  
*** Chi-square test

**Quality of life parameters**

Patients treated with TPF experienced significantly less deterioration of their Global health score compared to those treated with PF ($p = 0.01$, using the EORTC QLQ-C30 scale).

**Clinical benefit parameters**

The performance status scale, for head and neck (PSS-HN) subscales designed to measure understandability of speech, ability to eat in public, and normalcy of diet, was significantly in favour of TPF as compared to PF.

Median time to first deterioration of WHO performance status was significantly longer in the TPF arm compared to PF. Pain intensity score improved during treatment in both groups indicating adequate pain management.
• Induction chemotherapy followed by chemoradiotherapy (TAX324)
The safety and efficacy of docetaxel in the induction treatment of patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN) was evaluated in a randomised, multi-centre open-label, phase III study (TAX324). In this study, 501 patients, with locally advanced SCCHN, and a WHO performance status of 0 or 1, were randomised to one of two arms. The study population comprised patients with technically unresectable disease, patients with low probability of surgical cure and patients aiming at organ preservation. The efficacy and safety evaluation solely addressed survival endpoints and the success of organ preservation was not formally addressed. Patients on the docetaxel arm received docetaxel (T) 75 mg/m² by intravenous infusion on day 1 followed by cisplatin (P) 100 mg/m² administered as a 30-minute to three-hour intravenous infusion, followed by the continuous intravenous infusion of 5-fluorouracil (F) 1000 mg/m²/day from day 1 to day 4. The cycles were repeated every 3 weeks for 3 cycles. All patients who did not have progressive disease were to receive chemoradiotherapy (CRT) as per protocol (TPF/CRT). Patients on the comparator arm received cisplatin (P) 100 mg/m² as a 30-minute to three-hour intravenous infusion on day 1 followed by the continuous intravenous infusion of 5-fluorouracil (F) 1000 mg/m²/day from day 1 to day 5. The cycles were repeated every 3 weeks for 3 cycles. All patients who did not have progressive disease were to receive CRT as per protocol (PF/CRT).
Patients in both treatment arms were to receive 7 weeks of CRT following induction chemotherapy with a minimum interval of 3 weeks and no later than 8 weeks after start of the last cycle (day 22 to day 56 of last cycle). During radiotherapy, carboplatin (AUC 1.5) was given weekly as a one-hour intravenous infusion for a maximum of 7 doses. Radiation was delivered with megavoltage equipment using once daily fractionation (2 Gy per day, 5 days per week for 7 weeks, for a total dose of 70-72 Gy). Surgery on the primary site of disease and/or neck could be considered at any time following completion of CRT. All patients on the docetaxel-containing arm of the study received prophylactic antibiotics. The primary efficacy endpoint in this study, overall survival (OS) was significantly longer (log-rank test, p = 0.0058) with the docetaxel-containing regimen compared to PF (median OS: 70.6 versus 30.1 months respectively), with a 30% risk reduction in mortality compared to PF (hazard ratio (HR) = 0.70, 95% confidence interval (CI) = 0.54-0.90) with an overall median follow up time of 41.9 months. The secondary endpoint, PFS, demonstrated a 29% risk reduction of progression or death and a 22 month improvement in median PFS (35.5 months for TPF and 13.1 for PF). This was also statistically significant with an HR of 0.71; 95% CI 0.56-0.90; log-rank test p = 0.004. Efficacy results are presented in the table below:
Efficacy of docetaxel in the induction treatment of patients with locally advanced SCCHN (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + Cis + 5-FU n = 255</th>
<th>Cis + 5-FU n = 246</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median overall survival (months) (95% CI)</td>
<td>70.6 (49.0-NA)</td>
<td>30.1 (20.9-51.5)</td>
</tr>
<tr>
<td>Hazard ratio: *p-value</td>
<td>0.70 (0.54-0.90)</td>
<td>0.0058</td>
</tr>
<tr>
<td>Median PFS (months) (95% CI)</td>
<td>35.5 (19.3-NA)</td>
<td>13.1 (10.6-20.2)</td>
</tr>
<tr>
<td>Hazard ratio: **p-value</td>
<td>0.71 (0.56 - 0.90)</td>
<td>0.004</td>
</tr>
<tr>
<td>Best overall response (CR + PR) to chemotherapy (%) (95% CI) ***p-value</td>
<td>71.8 (65.8-77.2)</td>
<td>64.2 (57.9-70.2)</td>
</tr>
<tr>
<td>Best overall response (CR + PR) to study treatment [chemotherapy +/- chemoradiotherapy] (%) (95%CI) ***p-value</td>
<td>76.5 (70.8-81.5)</td>
<td>71.5 (65.5-77.1)</td>
</tr>
</tbody>
</table>
| A hazard ratio of less than 1 favours docetaxel + cisplatin + fluorouracil
*un-adjusted log-rank test
**un-adjusted log-rank test, not adjusted for multiple comparisons
***Chi square test, not adjusted for multiple comparisons
NA-not applicable

**Paediatric population**

The European Medicines Agency has waived the obligation to submit the results of studies with TAXOTERE in all subsets of the paediatric population in breast cancer, non-small cell lung cancer, prostate cancer, gastric carcinoma and head and neck cancer, not including type II and III less differentiated nasopharyngeal carcinoma (see section 4.2 for information on paediatric use).

**5.2 Pharmacokinetic properties**

**Absorption**

The pharmacokinetics of docetaxel have been evaluated in cancer patients after administration of 20-115 mg/m² in phase I studies. The kinetic profile of docetaxel is dose independent and consistent with a three-compartment pharmacokinetic model with half-lives for the α, β and γ (terminal) phases of 4 min, 36 min and between 11.1 h and 17.5 h, respectively, when sampled up to 24 hours. An additional study assessing the pharmacokinetics of docetaxel at similar doses (75 – 100 mg/m²) in patients, but over a longer time interval (over 22 days) found a longer mean terminal elimination half-life between 91 and 120 hours. The late phase is due, in part, to a relatively slow efflux of docetaxel from the peripheral compartment.

**Distribution**

Following the administration of a 100 mg/m² dose given as a one-hour infusion a mean peak plasma level of 3.7 µg/ml was obtained with a corresponding AUC of 4.6 h.µg/ml. Mean values for total body clearance and steady-state volume of distribution were 21 l/h/m² and 113 l, respectively. Inter
individual variation in total body clearance was approximately 50%. Docetaxel is more than 95% bound to plasma proteins.

Elimination

A study of $^{14}$C-docetaxel has been conducted in three cancer patients. Docetaxel was eliminated in both the urine and faeces following cytochrome P450-mediated oxidative metabolism of the tert-butyl ester group, within seven days, the urinary and faecal excretion accounted for about 6% and 75% of the administered radioactivity, respectively. About 80% of the radioactivity recovered in faeces is excreted during the first 48 hours as one major inactive metabolite and 3 minor inactive metabolites and very low amounts of unchanged medicinal product.

Special populations

Age and gender

A population pharmacokinetic analysis has been performed with docetaxel in 577 patients. Pharmacokinetic parameters estimated by the model were very close to those estimated from phase I studies. The pharmacokinetics of docetaxel were not altered by the age or sex of the patient.

Hepatic impairment

In a small number of patients (n = 23) with clinical chemistry data suggestive of mild to moderate liver function impairment (ALT, AST $\geq$ 1.5 times the ULN associated with alkaline phosphatase $\geq$ 2.5 times the ULN), total clearance was lowered by 27% on average (see section 4.2).

Fluid retention

Docetaxel clearance was not modified in patients with mild to moderate fluid retention and there are no data available in patients with severe fluid retention.

Combination therapy

Doxorubicin

When used in combination, docetaxel does not influence the clearance of doxorubicin and the plasma levels of doxorubicinol (a doxorubicin metabolite). The pharmacokinetics of docetaxel, doxorubicin and cyclophosphamide were not influenced by their coadministration.

Capecitabine

Phase I study evaluating the effect of capecitabine on the pharmacokinetics of docetaxel and vice versa showed no effect by capecitabine on the pharmacokinetics of docetaxel ($C_{\text{max}}$ and AUC) and no effect by docetaxel on the pharmacokinetics of a relevant capecitabine metabolite 5’-DFUR.

Cisplatin

Clearance of docetaxel in combination therapy with cisplatin was similar to that observed following monotherapy. The pharmacokinetic profile of cisplatin administered shortly after docetaxel infusion is similar to that observed with cisplatin alone.

Cisplatin and 5-fluorouracil

The combined administration of docetaxel, cisplatin and 5-fluorouracil in 12 patients with solid tumours had no influence on the pharmacokinetics of each individual medicinal product.

Prednisone and dexamethasone

The effect of prednisone on the pharmacokinetics of docetaxel administered with standard dexamethasone premedication has been studied in 42 patients.

Prednisone

No effect of prednisone on the pharmacokinetics of docetaxel was observed.
5.3 Preclinical safety data

The carcinogenic potential of docetaxel has not been studied.

Docetaxel has been shown to be genotoxic by an aneugenic mechanism in the *in vitro* micronucleus and chromosome aberration test in CHO-K1 cells and in the *in vivo* micronucleus test in the mouse. However, it did not induce mutagenicity in the Ames test or the CHO/HGPRT gene mutation assay. These results are consistent with the pharmacological activity of docetaxel.

Undesirable effects on the testis observed in rodent toxicity studies suggest that docetaxel may impair male fertility.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Concentrate vial:
Polysorbate 80
Citric acid.

Solvent vial:
Ethanol 95%
Water for injections.

6.2 Incompatibilities

This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.

6.3 Shelf-life

- 3 years.
- Premix solution: The premix solution contains 10 mg/ml docetaxel and should be used immediately after preparation. However the chemical and physical stability of the premix solution has been demonstrated for 8 hours when stored either between 2°C and 8°C or at room temperature (below 25°C).
- Infusion solution: the infusion solution should be used within 4 hours at room temperature (below 25°C).

6.4 Special precautions for storage

Do not store above 25°C or below 2°C.
Store in the original package in order to protect from light.
For storage conditions of the diluted medicinal product, see section 6.3.

6.5 Nature and contents of container

Each blister pack contains:
- one single-dose vial of concentrate and,
- one single-dose vial of solvent.

TAXOTERE 80 mg/2 ml concentrate for solution for infusion vial

15 ml clear glass Type I vial with a red flip-off cap.
This vial contains 2 ml of a 40 mg/ml solution of docetaxel in polysorbate 80 (fill volume: 94.4 mg/2.36 ml). This fill volume has been established during the development of TAXOTERE to compensate for liquid loss during preparation of the premix due to foaming, adhesion to the walls of the vial and "dead-volume". This overfill ensures that after dilution with the entire contents of the accompanying solvent for TAXOTERE vial, there is a minimal extractable premix volume of 8 ml containing 10 mg/ml docetaxel which corresponds to the labelled amount of 80 mg/2 ml per vial.

**Solvent vial**

15 ml clear glass Type I vial with a transparent colourless flip-off cap.

Solvent vial contains 6 ml of a 13% w/w solution of ethanol 95% in water for injections (fill volume: 7.33 ml). The addition of the entire contents of the solvent vial to the contents of the TAXOTERE 80 mg/2 ml concentrate for solution for infusion vial ensures a premix concentration of 10 mg/ml docetaxel.

### 6.6 Special precautions for disposal and other handling

TAXOTERE is an antineoplastic agent and, as with other potentially toxic compounds, caution should be exercised when handling it and preparing TAXOTERE solutions. The use of gloves is recommended.

If TAXOTERE concentrate, premix solution or infusion solution should come into contact with skin, wash immediately and thoroughly with soap and water. If TAXOTERE concentrate, premix solution or infusion solution should come into contact with mucous membranes, wash immediately and thoroughly with water.

**Preparation for the intravenous administration**

#### a) Preparation of the TAXOTERE premix solution (10 mg docetaxel/ml)

If the vials are stored under refrigeration, allow the required number of TAXOTERE boxes to stand at room temperature (below 25°C) for 5 minutes.

Using a syringe fitted with a needle, aseptically withdraw the entire contents of the solvent for TAXOTERE vial by partially inverting the vial.

Inject the entire contents of the syringe into the corresponding TAXOTERE vial.

Remove the syringe and needle and mix manually by repeated inversions for at least 45 seconds. Do not shake.

Allow the premix vial to stand for 5 minutes at room temperature (below 25°C) and then check that the solution is homogenous and clear (foaming is normal even after 5 minutes due to the presence of polysorbate 80 in the formulation).

The premix solution contains 10 mg/ml docetaxel and should be used immediately after preparation. However the chemical and physical stability of the premix solution has been demonstrated for 8 hours when stored either between 2°C and 8°C or at room temperature (below 25°C).

#### b) Preparation of the infusion solution

More than one premix vial may be necessary to obtain the required dose for the patient. Based on the required dose for the patient expressed in mg, aseptically withdraw the corresponding premix volume containing 10 mg/ml docetaxel from the appropriate number of premix vials using graduated syringes fitted with a needle. For example, a dose of 140 mg docetaxel would require 14 ml docetaxel premix solution.
Inject the required premix volume into a 250 ml infusion bag or bottle containing either 5% glucose solution or sodium chloride 9 mg/ml (0.9%) solution for infusion.

If a dose greater than 200 mg of docetaxel is required, use a larger volume of the infusion vehicle so that a concentration of 0.74 mg/ml docetaxel is not exceeded.

Mix the infusion bag or bottle manually using a rocking motion.

The TAXOTERE infusion solution should be used within 4 hours and should be aseptically administered as a 1-hour infusion under room temperature (below 25°C) and normal lighting conditions.

As with all parenteral products, TAXOTERE premix solution and infusion solution should be visually inspected prior to use, solutions containing a precipitate should be discarded.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

Sanofi Mature IP, 54 rue La Boétie, 75008 Paris, France

8. MARKETING AUTHORISATION NUMBER

EU/1/95/002/002

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 27 November 1995
Date of latest renewal: 27 November 2005

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
1. **NAME OF THE MEDICINAL PRODUCT**

TAXOTERE 20 mg/1 ml concentrate for solution for infusion

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**

Each ml of concentrate contains 20 mg docetaxel (as trihydrate).

One vial of 1 ml of concentrate contains 20 mg of docetaxel.

**Excipient with known effect:**
Each vial of concentrate contains 0.5 ml of ethanol anhydrous (395 mg).

For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**

Concentrate for solution for infusion (sterile concentrate).

The concentrate is a pale yellow to brownish-yellow solution.

4. **CLINICAL PARTICULARS**

4.1 **Therapeutic indications**

**Breast cancer**

TAXOTERE in combination with doxorubicin and cyclophosphamide is indicated for the adjuvant treatment of patients with:
- operable node-positive breast cancer
- operable node-negative breast cancer.

For patients with operable node-negative breast cancer, adjuvant treatment should be restricted to patients eligible to receive chemotherapy according to internationally established criteria for primary therapy of early breast cancer (see section 5.1).

TAXOTERE in combination with doxorubicin is indicated for the treatment of patients with locally advanced or metastatic breast cancer who have not previously received cytotoxic therapy for this condition.

TAXOTERE monotherapy is indicated for the treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic therapy. Previous chemotherapy should have included an anthracycline or an alkylating agent.

TAXOTERE in combination with trastuzumab is indicated for the treatment of patients with metastatic breast cancer whose tumours over express HER2 and who previously have not received chemotherapy for metastatic disease.

TAXOTERE in combination with capecitabine is indicated for the treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic chemotherapy. Previous therapy should have included an anthracycline.
Non-small cell lung cancer

TAXOTERE is indicated for the treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of prior chemotherapy.

TAXOTERE in combination with cisplatin is indicated for the treatment of patients with unresectable, locally advanced or metastatic non-small cell lung cancer, in patients who have not previously received chemotherapy for this condition.

Prostate cancer

TAXOTERE in combination with prednisone or prednisolone is indicated for the treatment of patients with metastatic castration-resistant prostate cancer.

TAXOTERE in combination with androgen-deprivation therapy (ADT), with or without prednisone or prednisolone, is indicated for the treatment of patients with metastatic hormone-sensitive prostate cancer.

Gastric adenocarcinoma

TAXOTERE in combination with cisplatin and 5-fluorouracil is indicated for the treatment of patients with metastatic gastric adenocarcinoma, including adenocarcinoma of the gastroesophageal junction, who have not received prior chemotherapy for metastatic disease.

Head and neck cancer

TAXOTERE in combination with cisplatin and 5-fluorouracil is indicated for the induction treatment of patients with locally advanced squamous cell carcinoma of the head and neck.

4.2 Posology and method of administration

The use of docetaxel should be confined to units specialised in the administration of cytotoxic chemotherapy and it should only be administered under the supervision of a physician qualified in the use of anticancer chemotherapy (see section 6.6).

Posology

For breast, non-small cell lung, gastric, and head and neck cancers, premedication consisting of an oral corticosteroid, such as dexamethasone 16 mg per day (e.g. 8 mg BID) for 3 days starting 1 day prior to docetaxel administration, unless contraindicated, can be used (see section 4.4).

For metastatic castration-resistant prostate cancer, given the concurrent use of prednisone or prednisolone the recommended premedication regimen is oral dexamethasone 8 mg, 12 hours, 3 hours and 1 hour before the docetaxel infusion (see section 4.4).

For metastatic hormone-sensitive prostate cancer, irrespective of the concurrent use of prednisone or prednisolone, the recommended premedication regimen is oral dexamethasone 8 mg 12 hours, 3 hours, and 1 hour before docetaxel infusion (see section 4.4).

Prophylactic G-CSF may be used to mitigate the risk of haematological toxicities.

Docetaxel is administered as a one-hour infusion every three weeks.

Breast cancer

In the adjuvant treatment of operable node-positive and node-negative breast cancer, the recommended dose of docetaxel is 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² every 3 weeks for 6 cycles (TAC regimen) (see also Dose adjustments during treatment).
For the treatment of patients with locally advanced or metastatic breast cancer, the recommended dose of docetaxel is 100 mg/m² in monotherapy. In first-line treatment, docetaxel 75 mg/m² is given in combination therapy with doxorubicin (50 mg/m²).

In combination with trastuzumab the recommended dose of docetaxel is 100 mg/m² every three weeks, with trastuzumab administered weekly. In the pivotal study the initial docetaxel infusion was started the day following the first dose of trastuzumab. The subsequent docetaxel doses were administered immediately after completion of the trastuzumab infusion, if the preceding dose of trastuzumab was well tolerated. For trastuzumab dose and administration, see trastuzumab summary of product characteristics.

In combination with capecitabine, the recommended dose of docetaxel is 75 mg/m² every three weeks, combined with capecitabine at 1250 mg/m² twice daily (within 30 minutes after a meal) for 2 weeks followed by a 1-week rest period. For capecitabine dose calculation according to body surface area, see capecitabine summary of product characteristics.

Non-small cell lung cancer
In chemotherapy naïve patients treated for non-small cell lung cancer, the recommended dose regimen is docetaxel 75 mg/m² immediately followed by cisplatin 75 mg/m² over 30-60 minutes. For treatment after failure of prior platinum-based chemotherapy, the recommended dose is 75 mg/m² as a single agent.

Prostate cancer
Metastatic castration-resistant prostate cancer
The recommended dose of docetaxel is 75 mg/m². Prednisone or prednisolone 5 mg orally twice daily is administered continuously (see section 5.1).

Metastatic hormone-sensitive prostate cancer
The recommended dose of docetaxel is 75 mg/m² every 3 weeks for 6 cycles. Prednisone or prednisolone 5 mg orally twice daily may be administered continuously.

Gastric adenocarcinoma
The recommended dose of docetaxel is 75 mg/m² as a 1-hour infusion, followed by cisplatin 75 mg/m², as a 1- to 3-hour infusion (both on day 1 only), followed by 5-fluorouracil 750 mg/m² per day given as a 24-hour continuous infusion for 5 days, starting at the end of the cisplatin infusion. Treatment is repeated every three weeks. Patients must receive premedication with antiemetics and appropriate hydration for cisplatin administration. Prophylactic G-CSF should be used to mitigate the risk of haematological toxicities (see also Dose adjustments during treatment).

Head and neck cancer
Patients must receive premedication with antiemetics and appropriate hydration (prior to and after cisplatin administration). Prophylactic G-CSF may be used to mitigate the risk of haematological toxicities. All patients on the docetaxel-containing arm of the TAX 323 and TAX 324 studies, received prophylactic antibiotics.

- Induction chemotherapy followed by radiotherapy (TAX 323)
  For the induction treatment of inoperable locally advanced squamous cell carcinoma of the head and neck (SCCHN), the recommended dose of docetaxel is 75 mg/m² as a 1 hour infusion followed by cisplatin 75 mg/m² over 1 hour, on day one, followed by 5-fluorouracil as a continuous infusion at 750 mg/m² per day for five days. This regimen is administered every 3 weeks for 4 cycles. Following chemotherapy, patients should receive radiotherapy.

- Induction chemotherapy followed by chemoradiotherapy (TAX 324)
  For the induction treatment of patients with locally advanced (technically unresectable, low probability of surgical cure, and aiming at organ preservation) squamous cell carcinoma of the head and neck (SCCHN), the recommended dose of docetaxel is 75 mg/m² as a 1 hour intravenous infusion on day 1, followed by cisplatin 100 mg/m² administered as a 30-minute to 3-hour
infusion, followed by 5-fluorouracil 1000 mg/m²/day as a continuous infusion from day 1 to day 4. This regimen is administered every 3 weeks for 3 cycles. Following chemotherapy, patients should receive chemoradiotherapy.

For cisplatin and 5-fluorouracil dose modifications, see the corresponding summary of product characteristics.

Dose adjustments during treatment

**General**

Docetaxel should be administered when the neutrophil count is ≥ 1,500 cells/mm³.

In patients who experienced either febrile neutropenia, neutrophil count < 500 cells/mm³ for more than one week, severe or cumulative cutaneous reactions or severe peripheral neuropathy during docetaxel therapy, the dose of docetaxel should be reduced from 100 mg/m² to 75 mg/m² and/or from 75 to 60 mg/m². If the patient continues to experience these reactions at 60 mg/m², the treatment should be discontinued.

**Adjuvant therapy for breast cancer**

Primary G-CSF prophylaxis should be considered in patients who receive docetaxel, doxorubicin and cyclophosphamide (TAC) adjuvant therapy for breast cancer. Patients who experience febrile neutropenia and/or neutropenic infection should have their docetaxel dose reduced to 60 mg/m² in all subsequent cycles (see sections 4.4 and 4.8). Patients who experience Grade 3 or 4 stomatitis should have their dose decreased to 60 mg/m².

**In combination with cisplatin**

For patients who are dosed initially at docetaxel 75 mg/m² in combination with cisplatin and whose nadir of platelet count during the previous course of therapy is < 25,000 cells/mm³, or in patients who experience febrile neutropenia, or in patients with serious non-haematologic toxicities, the docetaxel dose in subsequent cycles should be reduced to 65 mg/m². For cisplatin dose adjustments, see the corresponding summary of product characteristics.

**In combination with capecitabine**

- For capecitabine dose modifications, see capecitabine summary of product characteristics.
- For patients developing the first appearance of Grade 2 toxicity, which persists at the time of the next docetaxel/capecitabine treatment, delay treatment until resolved to Grade 0-1, and resume at 100% of the original dose.
- For patients developing the second appearance of Grade 2 toxicity, or the first appearance of Grade 3 toxicity, at any time during the treatment cycle, delay treatment until resolved to Grade 0-1 and then resume treatment with docetaxel 55 mg/m².
- For any subsequent appearances of toxicities, or any Grade 4 toxicities, discontinue the docetaxel dose.

For trastuzumab dose modifications, see trastuzumab summary of product characteristics.

**In combination with cisplatin and 5-fluorouracil**

If an episode of febrile neutropenia, prolonged neutropenia or neutropenic infection occurs despite G-CSF use, the docetaxel dose should be reduced from 75 to 60 mg/m². If subsequent episodes of complicated neutropenia occur the docetaxel dose should be reduced from 60 to 45 mg/m². In case of Grade 4 thrombocytopenia the docetaxel dose should be reduced from 75 to 60 mg/m². Patients should not be retreated with subsequent cycles of docetaxel until neutrophils recover to a level > 1,500 cells/mm³ and platelets recover to a level > 100,000 cells/mm³. Discontinue treatment if these toxicities persist (see section 4.4).

Recommended dose modifications for toxicities in patients treated with docetaxel in combination with cisplatin and 5-fluorouracil (5-FU):
Toxicity Dose adjustment

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Dose adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea grade 3</td>
<td>First episode: reduce 5-FU dose by 20%.</td>
</tr>
<tr>
<td></td>
<td>Second episode: then reduce docetaxel dose by 20%.</td>
</tr>
<tr>
<td>Diarrhoea grade 4</td>
<td>First episode: reduce docetaxel and 5-FU doses by 20%</td>
</tr>
<tr>
<td>Stomatitis/mucositis grade 3</td>
<td>First episode: reduce 5-FU dose by 20%.</td>
</tr>
<tr>
<td></td>
<td>Second episode: stop 5-FU only, at all subsequent cycles.</td>
</tr>
<tr>
<td></td>
<td>Third episode: reduce docetaxel dose by 20%.</td>
</tr>
<tr>
<td>Stomatitis/mucositis grade 4</td>
<td>First episode: stop 5-FU only, at all subsequent cycles.</td>
</tr>
<tr>
<td></td>
<td>Second episode: reduce docetaxel dose by 20%.</td>
</tr>
</tbody>
</table>

For cisplatin and 5-fluorouracil dose adjustments, see the corresponding summary of product characteristics.

In the pivotal SCCHN studies patients who experienced complicated neutropenia (including prolonged neutropenia, febrile neutropenia, or infection), it was recommended to use G-CSF to provide prophylactic coverage (eg, day 6-15) in all subsequent cycles.

**Special populations**

*Patients with hepatic impairment*

Based on pharmacokinetic data with docetaxel at 100 mg/m² as single agent, patients who have both elevations of transaminase (ALT and/or AST) greater than 1.5 times the upper limit of the normal range (ULN) and alkaline phosphatase greater than 2.5 times the ULN, the recommended dose of docetaxel is 75 mg/m² (see sections 4.4 and 5.2). For those patients with serum bilirubin > ULN and/or ALT and AST > 3.5 times the ULN associated with alkaline phosphatase > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated.

In combination with cisplatin and 5-fluorouracil for the treatment of patients with gastric adenocarcinoma, the pivotal clinical study excluded patients with ALT and/or AST > 1.5 × ULN associated with alkaline phosphatase > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated. No data are available in patients with hepatic impairment treated by docetaxel in combination in the other indications.

*Paediatric population*

The safety and efficacy of TAXOTERE in nasopharyngeal carcinoma in children aged 1 month to less than 18 years have not yet been established.

There is no relevant use of TAXOTERE in the paediatric population in the indications breast cancer, non-small cell lung cancer, prostate cancer, gastric carcinoma and head and neck cancer, not including type II and III less differentiated nasopharyngeal carcinoma.

*Older people*

Based on a population pharmacokinetic analysis, there are no special instructions for use in the older people.

In combination with capecitabine, for patients 60 years of age or more, a starting dose reduction of capecitabine to 75% is recommended (see capecitabine summary of product characteristics).

**Method of administration**

For instructions on preparation and administration of the product, see section 6.6.

**4.3 Contraindications**

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

Patients with baseline neutrophil count of < 1,500 cells/mm³.

Patients with severe liver impairment (see sections 4.2 and 4.4).
Contraindications for other medicinal products also apply, when combined with docetaxel.

4.4 Special warnings and precautions for use

For breast and non-small cell lung cancers, premedication consisting of an oral corticosteroid, such as dexamethasone 16 mg per day (e.g. 8 mg BID) for 3 days starting 1 day prior to docetaxel administration, unless contraindicated, can reduce the incidence and severity of fluid retention as well as the severity of hypersensitivity reactions. For prostate cancer, the premedication is oral dexamethasone 8 mg, 12 hours, 3 hours and 1 hour before the docetaxel infusion (see section 4.2).

Haematology

Neutropenia is the most frequent adverse reaction of docetaxel. Neutrophil nadirs occurred at a median of 7 days but this interval may be shorter in heavily pre-treated patients. Frequent monitoring of complete blood counts should be conducted on all patients receiving docetaxel. Patients should be retreated with docetaxel when neutrophils recover to a level \( \geq 1,500 \text{ cells/mm}^3 \) (see section 4.2).

In the case of severe neutropenia (< 500 cells/mm\(^3\) for seven days or more) during a course of docetaxel therapy, a reduction in dose for subsequent courses of therapy or the use of appropriate symptomatic measures are recommended (see section 4.2).

In patients treated with docetaxel in combination with cisplatin and 5-fluorouracil (TCF), febrile neutropenia and neutropenic infection occurred at lower rates when patients received prophylactic G-CSF. Patients treated with TCF should receive prophylactic G-CSF to mitigate the risk of complicated neutropenia (febrile neutropenia, prolonged neutropenia or neutropenic infection). Patients receiving TCF should be closely monitored (see sections 4.2 and 4.8).

In patients treated with docetaxel in combination with doxorubicin and cyclophosphamide (TAC), febrile neutropenia and/or neutropenic infection occurred at lower rates when patients received primary G-CSF prophylaxis. Primary G-CSF prophylaxis should be considered in patients who receive adjuvant therapy with TAC for breast cancer to mitigate the risk of complicated neutropenia (febrile neutropenia, prolonged neutropenia or neutropenic infection). Patients receiving TAC should be closely monitored (see sections 4.2 and 4.8).

Gastrointestinal reactions

Caution is recommended for patients with neutropenia, particularly at risk for developing gastrointestinal complications. Although majority of cases occurred during the first or second cycle of docetaxel containing regimen, enterocolitis could develop at any time, and could lead to death as early as on the first day of onset. Patients should be closely monitored for early manifestations of serious gastrointestinal toxicity (see sections 4.2, 4.4 Haematology, and 4.8).

Hypersensitivity reactions

Patients should be observed closely for hypersensitivity reactions especially during the first and second infusions. Hypersensitivity reactions may occur within a few minutes following the initiation of the infusion of docetaxel, thus facilities for the treatment of hypotension and bronchospasm should be available. If hypersensitivity reactions occur, minor symptoms such as flushing or localised cutaneous reactions do not require interruption of therapy. However, severe reactions, such as severe hypotension, bronchospasm or generalised rash/erythema require immediate discontinuation of docetaxel and appropriate therapy. Patients who have developed severe hypersensitivity reactions should not be re-challenged with docetaxel. Patients who have previously experienced a hypersensitivity reaction to paclitaxel may be at risk to develop hypersensitivity reaction to docetaxel, including more severe hypersensitivity reaction. These patients should be closely monitored during initiation of docetaxel therapy.
Cutaneous reactions

Localised skin erythema of the extremities (palms of the hands and soles of the feet) with oedema followed by desquamation has been observed. Severe symptoms such as eruptions followed by desquamation which lead to interruption or discontinuation of docetaxel treatment were reported (see section 4.2).

Severe Cutaneous Adverse Reactions (SCARs) such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN) and Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with docetaxel treatment. Patients should be informed about the signs and symptoms of serious skin manifestations and closely monitored. If signs and symptoms suggestive of these reactions appear discontinuation of docetaxel should be considered.

Fluid retention

Patients with severe fluid retention such as pleural effusion, pericardial effusion and ascites should be monitored closely.

Respiratory disorders

Acute respiratory distress syndrome, interstitial pneumonia/pneumonitis, interstitial lung disease, pulmonary fibrosis and respiratory failure have been reported and may be associated with fatal outcome. Cases of radiation pneumonitis have been reported in patients receiving concomitant radiotherapy.

If new or worsening pulmonary symptoms develop, patients should be closely monitored, promptly investigated, and appropriately treated. Interruption of docetaxel therapy is recommended until diagnosis is available. Early use of supportive care measures may help improve the condition. The benefit of resuming docetaxel treatment must be carefully evaluated.

Patients with liver impairment

In patients treated with docetaxel at 100 mg/m² as single agent who have serum transaminase levels (ALT and/or AST) greater than 1.5 times the ULN concurrent with serum alkaline phosphatase levels greater than 2.5 times the ULN, there is a higher risk of developing severe adverse reactions such as toxic deaths including sepsis and gastrointestinal haemorrhage which can be fatal, febrile neutropenia, infections, thrombocytopenia, stomatitis and asthenia. Therefore, the recommended dose of docetaxel in those patients with elevated liver function test (LFTs) is 75 mg/m² and LFTs should be measured at baseline and before each cycle (see section 4.2).

For patients with serum bilirubin levels > ULN and/or ALT and AST > 3.5 times the ULN concurrent with serum alkaline phosphatase levels > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated.

In combination with cisplatin and 5-fluorouracil for the treatment of patients with gastric adenocarcinoma, the pivotal clinical study excluded patients with ALT and/or AST > 1.5 × ULN associated with alkaline phosphatase > 2.5 × ULN, and bilirubin > 1 x ULN; for these patients, no dose-reductions can be recommended and docetaxel should not be used unless strictly indicated. No data are available in patients with hepatic impairment treated by docetaxel in combination in the other indications.

Patients with renal impairment

There are no data available in patients with severely impaired renal function treated with docetaxel.

Nervous system

The development of severe peripheral neurotoxicity requires a reduction of dose (see section 4.2).
Cardiac toxicity

Heart failure has been observed in patients receiving docetaxel in combination with trastuzumab, particularly following anthracycline (doxorubicin or epirubicin)-containing chemotherapy. This may be moderate to severe and has been associated with death (see section 4.8).

When patients are candidates for treatment with docetaxel in combination with trastuzumab, they should undergo baseline cardiac assessment. Cardiac function should be further monitored during treatment (e.g. every three months) to help identify patients who may develop cardiac dysfunction. For more details see summary of product characteristics of trastuzumab.

Ventricular arrhythmia including ventricular tachycardia (sometimes fatal) has been reported in patients treated with docetaxel in combination regimens including doxorubicin, 5-fluorouracil and/or cyclophosphamide (see section 4.8). Baseline cardiac assessment is recommended.

Eye disorders

Cystoid macular oedema (CMO) has been reported in patients treated with docetaxel. Patients with impaired vision should undergo a prompt and complete ophthalmologic examination. In case CMO is diagnosed, docetaxel treatment should be discontinued and appropriate treatment initiated (see section 4.8).

Second primary malignancies

Second primary malignancies have been reported when docetaxel was given in combination with anticancer treatments known to be associated with second primary malignancies. Second primary malignancies (including acute myeloid leukaemia, myelodysplastic syndrome and non-Hodgkin lymphoma) may occur several months or years after docetaxel-containing therapy. Patients should be monitored for second primary malignancies (see section 4.8).

Tumour Lysis Syndrome

Tumour lysis syndrome has been reported with docetaxel after the first or the second cycle (see section 4.8). Patients at risk of tumour lysis syndrome (e.g. with renal impairment, hyperuricemia, bulky tumour, rapid progression) should be closely monitored. Correction of dehydration and treatment of high uric acid levels are recommended prior to initiation of treatment.

Others

Women of childbearing potential must use contraceptive measures during treatment and for 2 months after cessation of treatment with docetaxel. Men must use contraceptive measures during treatment and for 4 months after cessation of treatment with docetaxel (see section 4.6).

The concomitant use of docetaxel with strong CYP3A4 inhibitors (e.g., ketoconazole, itraconazole, clarithromycin, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin and voriconazole) should be avoided (see section 4.5).

Additional cautions for use in adjuvant treatment of breast cancer

Complicated neutropenia

For patients who experience complicated neutropenia (prolonged neutropenia, febrile neutropenia or infection), G-CSF and dose reduction should be considered (see section 4.2).
**Gastrointestinal reactions**
Symptoms such as early abdominal pain and tenderness, fever, diarrhoea, with or without neutropenia, may be early manifestations of serious gastrointestinal toxicity and should be evaluated and treated promptly.

**Congestive heart failure (CHF)**
Patients should be monitored for symptoms of congestive heart failure during therapy and during the follow up period. In patients treated with the TAC regimen for node positive breast cancer, the risk of CHF has been shown to be higher during the first year after treatment (see sections 4.8 and 5.1).

**Patients with 4+ nodes**
As the benefit observed in patient with 4+ nodes was not statistically significant on disease-free survival (DFS) and overall survival (OS), the positive benefit/risk ratio for TAC in patients with 4+ nodes was not fully demonstrated at the final analysis (see section 5.1).

**Elderly**

**Cautions for use in adjuvant treatment of breast cancer**
There are limited data available in patients > 70 years of age on docetaxel use in combination with doxorubicin and cyclophosphamide.

**Cautions for use in castration-resistant prostate cancer**
Of the 333 patients treated with docetaxel every three weeks in a prostate cancer study(TAX 327), 209 patients were 65 years of age or greater and 68 patients were older than 75 years. In patients treated with docetaxel every three weeks, the incidence of related nail changes occurred at a rate ≥ 10% higher in patients who were 65 years of age or greater compared to younger patients. The incidence of related fever, diarrhoea, anorexia, and peripheral oedema occurred at rates ≥ 10% higher in patients who were 75 years of age or greater versus less than 65 years.

**Cautions for use in hormone-sensitive prostate cancer**
Of the 545 patients treated with docetaxel every 3 weeks in a hormone-sensitive prostate cancer study (STAMPEDE), 296 patients were 65 years of age or older, and 48 patients were 75 years of age or older. More patients aged ≥65 years in the docetaxel arm reported hypersensitivity reaction, neutropenia, anaemia, fluid retention, dyspnea, and nail changes when compared to the patients aged less than 65 years. None of these increases in frequency reached 10% difference with the control arm. In patients who were 75 years of age or older, when compared to younger patients, neutropenia, anaemia, diarrhea, dyspnea and upper respiratory tract infection were reported with a greater incidence (at least 10% higher).

**Cautions for use in gastric adenocarcinoma cancer**
Among the 300 (221 patients in the phase III part of the study and 79 patients in the phase II part) patients treated with docetaxel in combination with cisplatin and 5-fluorouracil in the gastric cancer study, 74 were 65 years of age or older and 4 patients were 75 years of age or older. The incidence of serious adverse events was higher in older people compared to younger patients. The incidence of the following adverse events (all grades): lethargy, stomatitis, neutropenic infection occurred at rates ≥ 10% higher in patients who were 65 years of age or older compared to younger patients. Older people treated with TCF should be closely monitored.

**Excipients**
This medicinal product contains 50 vol % ethanol anhydrous (alcohol), i.e. up to 395 mg ethanol anhydrous per vial, equivalent to 10 ml of beer or 4 ml wine.
Harmful for those suffering from alcoholism.
To be taken into account in pregnant or breast-feeding women, children and high-risk groups such as patients with liver disease, or epilepsy.

Consideration should be given to possible effects on the central nervous system.
4.5 Interaction with other medicinal products and other forms of interaction

The amount of alcohol in this medicinal product may alter the effects of other medicinal products.

*In vitro* studies have shown that the metabolism of docetaxel may be modified by the concomitant administration of compounds which induce, inhibit or are metabolised by (and thus may inhibit the enzyme competitively) cytochrome P450-3A such as ciclosporine, ketoconazole and erythromycin. As a result, caution should be exercised when treating patients with these medicinal products as concomitant therapy since there is a potential for a significant interaction.

In case of combination with CYP3A4 inhibitors, the occurrence of docetaxel adverse reactions may increase, as a result of reduced metabolism. If the concomitant use of a strong CYP3A4 inhibitor (e.g., ketoconazole, itraconazole, clarithromycin, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin and voriconazole) cannot be avoided, a close clinical surveillance is warranted and a dose-adjustment of docetaxel may be suitable during the treatment with the strong CYP3A4 inhibitor (see section 4.4). In a pharmacokinetic study with 7 patients, the co-administration of docetaxel with the strong CYP3A4 inhibitor ketoconazole leads to a significant decrease in docetaxel clearance by 49%.

Docetaxel pharmacokinetics in the presence of prednisone was studied in patients with metastatic prostate cancer. Docetaxel is metabolised by CYP3A4 and prednisone is known to induce CYP3A4. No statistically significant effect of prednisone on the pharmacokinetics of docetaxel was observed.

Docetaxel is highly protein bound (> 95%). Although the possible *in vivo* interaction of docetaxel with concomitantly administered medicinal product has not been investigated formally, *in vitro* interactions with tightly protein-bound agents such as erythromycin, diphenhydramine, propranolol, propafenone, phenytoin, salicylate, sulfamethoxazole and sodium valproate did not affect protein binding of docetaxel. In addition, dexamethasone did not affect protein binding of docetaxel. Docetaxel did not influence the binding of digitoxin.

The pharmacokinetics of docetaxel, doxorubicin and cyclophosphamide were not influenced by their co-administration. Limited data from a single uncontrolled study were suggestive of an interaction between docetaxel and carboplatin. When combined to docetaxel, the clearance of carboplatin was about 50% higher than values previously reported for carboplatin monotherapy.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential/ Contraception in males and females

Women of childbearing potential and men receiving docetaxel should be advised to avoid becoming pregnant, and not to father a child and to inform the treating physician immediately should this occur.

Due to the genotoxic risk of docetaxel (see section 5.3), women of childbearing potential must use effective method of contraception during treatment and for 2 months after cessation of treatment with docetaxel. Men must use effective method of contraception during treatment and for 4 months after cessation of treatment with docetaxel.

Pregnancy

There is no information on the use of docetaxel in pregnant women. Docetaxel has been shown to be both embryotoxic and foetotoxic in rabbits and rats. As with other cytotoxic medicinal products, docetaxel may cause foetal harm when administered to pregnant women. Therefore, docetaxel must not be used during pregnancy unless clearly indicated.

Breast-feeding
Docetaxel is a lipophilic substance but it is not known whether it is excreted in human milk. Consequently, because of the potential for adverse reactions in nursing infants, breast feeding must be discontinued for the duration of docetaxel therapy.

Fertility

Studies in animals have shown that docetaxel may alter male fertility (see section 5.3). Therefore, males being treated with docetaxel must seek advice on conservation of sperm prior to treatment.

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. The amount of alcohol in this medicinal product and the side effects of the product may impair the ability to drive or use machines (see sections 4.4 and 4.8). Therefore, patients should be warned of the potential impact of the amount of alcohol and the side effects of this medicinal product on the ability to drive or use machines, and be advised not to drive or use machines if they experience these side effects during treatment.

4.8 Undesirable effects

Summary of the safety profile for all indications

The adverse reactions considered to be possibly or probably related to the administration of docetaxel have been obtained in:

- 1312 and 121 patients who received 100 mg/m² and 75 mg/m² of docetaxel as a single agent respectively.
- 258 patients who received docetaxel in combination with doxorubicin.
- 406 patients who received docetaxel in combination with cisplatin.
- 92 patients treated with docetaxel in combination with trastuzumab.
- 255 patients who received docetaxel in combination with capcitabine.
- 332 patients (TAX327) who received docetaxel in combination with prednisone or prednisolone (clinically important treatment related adverse events are presented).
- 1276 patients (744 and 532 in TAX 316 and GEICAM 9805 respectively) who received docetaxel in combination with doxorubicin and cyclophosphamide (clinically important treatment related adverse events are presented).
- 300 gastric adenocarcinoma patients (221 patients in the phase III part of the study and 79 patients in the phase II part) who received docetaxel in combination with cisplatin and 5-fluorouracil (clinically important treatment related adverse events are presented).
- 174 and 251 head and neck cancer patients who received docetaxel in combination with cisplatin and 5-fluorouracil (clinically important treatment related adverse events are presented).
- 545 patients (STAMPEDE study) who received docetaxel in combination with prednisone or prednisolone and ADT.

These reactions were described using the NCI Common Toxicity Criteria (grade 3 = G3; grade 3-4 = G3/4; grade 4 = G4), the COSTART and the MedDRA terms. Frequencies are defined as: very common (≥ 1/10), common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1,000); very rare (< 1/10,000); not known (cannot be estimated from available data).

Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

The most commonly reported adverse reactions of docetaxel alone are: neutropenia (which was reversible and not cumulative; the median day to nadir was 7 days and the median duration of severe neutropenia (< 500 cells/mm³) was 7 days), anaemia, alopecia, nausea, vomiting, stomatitis, diarrhoea and asthenia. The severity of adverse events of docetaxel may be increased when docetaxel is given in combination with other chemotherapeutic agents.
For combination with trastuzumab, adverse events (all grades) reported in ≥ 10% are displayed. There was an increased incidence of SAEs (40% vs. 31%) and Grade 4 AEs (34% vs. 23%) in the trastuzumab combination arm compared to docetaxel monotherapy.

For combination with capecitabine, the most frequent treatment-related undesirable effects (≥ 5%) reported in a phase III study in breast cancer patients failing anthracycline treatment are presented (see capecitabine summary of product characteristics).

For combination with ADT and with prednisone or prednisolone (STAMPEDE study), adverse events occurring over the 6 cycles of treatment with docetaxel and having at least 2% higher incidence in the docetaxel treatment arm by comparison to the control arm, are presented, using the CTCAE grading scale.

The following adverse reactions are frequently observed with docetaxel:

**Immune system disorders**

Hypersensitivity reactions have generally occurred within a few minutes following the start of the infusion of docetaxel and were usually mild to moderate. The most frequently reported symptoms were flushing, rash with or without pruritus, chest tightness, back pain, dyspnoea and fever or chills. Severe reactions were characterised by hypotension and/or bronchospasm or generalized rash/erythema (see section 4.4).

**Nervous system disorders**

The development of severe peripheral neurotoxicity requires a reduction of dose (see sections 4.2 and 4.4). Mild to moderate neuro-sensory signs are characterised by paresthesia, dysesthesia or pain including burning. Neuro-motor events are mainly characterised by weakness.

**Skin and subcutaneous tissue disorders**

Reversible cutaneous reactions have been observed and were generally considered as mild to moderate. Reactions were characterised by a rash including localised eruptions mainly on the feet and hands (including severe hand and foot syndrome), but also on the arms, face or thorax, and frequently associated with pruritus. Eruptions generally occurred within one week after the docetaxel infusion. Less frequently, severe symptoms such as eruptions followed by desquamation which rarely lead to interruption or discontinuation of docetaxel treatment were reported (see sections 4.2 and 4.4). Severe nail disorders are characterised by hypo- or hyperpigmentation and sometimes pain and onycholysis.

**General disorders and administration site conditions**

Infusion site reactions were generally mild and consisted of hyper pigmentation, inflammation, redness or dryness of the skin, phlebitis or extravasation and swelling of the vein. Fluid retention includes events such as peripheral oedema and less frequently pleural effusion, pericardial effusion, ascites and weight gain. The peripheral oedema usually starts at the lower extremities and may become generalised with a weight gain of 3 kg or more. Fluid retention is cumulative in incidence and severity (see section 4.4).

Tabulated list of adverse reactions in breast cancer for TAXOTERE 100 mg/m² single agent

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infections (G3/4: 5.7%; including sepsis and pneumonia, fatal in</td>
<td>Infection associated with G4 neutropenia (G3/4: 4.6%)</td>
<td></td>
</tr>
</tbody>
</table>

105
<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.7%</td>
<td>Neutropenia (G4: 76.4%); Anemia (G3/4: 8.9%); Febrile neutropenia</td>
<td>Thrombocytopenia (G4: 0.2%)</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 5.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 4.1%); Peripheral motor neuropathy (G3/4: 4%); Dysgeusia (severe: 0.07%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 0.7%)</td>
<td></td>
<td>Cardiac failure</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypotension; Hypertension; Haemorrhage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnoea (severe: 2.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Stomatitis (G3/4: 5.3%); Diarrhoea (G3/4: 4%); Nausea (G3/4: 4%); Vomiting (G3/4: 3%)</td>
<td>Constipation (severe: 0.2%); Abdominal pain (severe: 1%); Gastrointestinal haemorrhage (severe: 0.3%)</td>
<td>Oesophagitis (severe: 0.4%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Skin reaction (G3/4: 5.9%); Nail disorders (severe: 2.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (severe: 1.4%)</td>
<td></td>
<td>Arthralgia</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Fluid retention (severe: 6.5%); Asthenia (severe: 11.2%); Pain</td>
<td>Infusion site reaction; Non-cardiac chest pain (severe: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (&lt; 5%); G3/4 Blood alkaline phosphatase increased (&lt; 4%); G3/4 AST increased (&lt; 3%); G3/4 ALT increased (&lt; 2%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Description of selected adverse reactions in breast cancer for Taxotere 100 mg/m² single agent

**Blood and lymphatic system disorders**
Rare: bleeding episodes associated with grade 3/4 thrombocytopenia.

**Nervous system disorders**
Reversibility data are available among 35.3% of patients who developed neurotoxicity following docetaxel treatment at 100 mg/m² as single agent. The events were spontaneously reversible within 3 months.

**Skin and subcutaneous tissue disorders**
Very rare: one case of alopecia non-reversible at the end of the study. 73% of the cutaneous reactions were reversible within 21 days.

**General disorders and administration site conditions**
The median cumulative dose to treatment discontinuation was more than 1,000 mg/m² and the median time to fluid retention reversibility was 16.4 weeks (range 0 to 42 weeks). The onset of moderate and severe retention is delayed (median cumulative dose: 818.9 mg/m²) in patients with premedication compared with patients without premedication (median cumulative dose: 489.7 mg/m²); however, it has been reported in some patients during the early courses of therapy.

Tabulated list of adverse reactions in non-small cell lung cancer for TAXOTERE 75 mg/m² single agent

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infections (G3/4: 5%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 54.2%); Anaemia (G3/4: 10.8%); Thrombocytopenia (G4: 1.7%)</td>
<td>Febrile neutropenia</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (no severe)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 0.8%)</td>
<td>Peripheral motor neuropathy (G3/4: 2.5%)</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Arrhythmia (no severe)</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Hypotension</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 3.3%); Stomatitis (G3/4: 1.7%); Vomiting (G3/4: 0.8%); Diarrhoea (G3/4: 1.7%)</td>
<td>Constipation</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Skin reaction (G3/4: 0.8%)</td>
<td>Nail disorders (severe: 0.8%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 12.4%); Fluid retention (severe: 0.8%); Pain</td>
<td>G3/4 Blood bilirubin increased (&lt; 2%)</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in breast cancer for TAXOTERE 75 mg/m² in combination with doxorubicin
<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 7.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 91.7%); Anaemia (G3/4: 9.4%); Febrile neutropenia; Thrombocytopenia (G4: 0.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 0.4%)</td>
<td>Peripheral motor neuropathy (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Cardiac failure; Arrhythmia (no severe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypotension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 5%); Stomatitis (G3/4: 7.8%); Diarrhoea (G3/4: 6.2%); Vomiting (G3/4: 5%); Constipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (severe: 0.4%); Skin reaction (no severe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 8.1%); Fluid retention (severe: 1.2%); Pain</td>
<td>Infusion site reaction</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (&lt; 2.5%); G3/4 Blood alkaline phosphatase increased (&lt; 2.5%)</td>
<td>G3/4 AST increased (&lt; 1%); G3/4 ALT increased (&lt; 1%)</td>
<td></td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in non-small cell lung cancer for TAXOTERE 75 mg/m² in combination with cisplatin

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 5.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 51.5%); Febrile neutropenia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions in breast cancer for TAXOTERE 100 mg/m² in combination with trastuzumab

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 32%); Febrile neutropenia (includes neutropenia associated with fever and antibiotic use) or neutropenic sepsis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 32%); Febrile neutropenia (includes neutropenia associated with fever and antibiotic use) or neutropenic sepsis</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
</tr>
<tr>
<td>-----------------------------------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Paresthesia; Headache; Dysgeusia; Hypoesthesia</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased; Conjunctivitis</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Cardiac failure</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Lymphoedema</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Epistaxis; Pharyngolaryngeal pain; Nasopharyngitis; Dyspnoea; Cough; Rhinorhoea</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea; Diarrhoea; Vomiting; Constipation; Stomatitis; Dyspepsia; Abdominal pain</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Erythema; Rash; Nail disorders</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia; Arthralgia; Pain in extremity; Bone pain; Back pain</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia; Oedema peripheral; Pyrexia; Fatigue; Mucosal inflammation; Pain; Influenza like illness; Chest pain; Chills</td>
<td>Lethargy</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight increased</td>
<td></td>
</tr>
</tbody>
</table>

**Description of selected adverse reactions in breast cancer for Taxotere 100 mg/m² in combination with trastuzumab**

*Blood and lymphatic system disorders*

Very common: Haematological toxicity was increased in patients receiving trastuzumab and docetaxel, compared with docetaxel alone (32% grade 3/4 neutropenia versus 22%, using NCI-CTC criteria). Note that this is likely to be an underestimate since docetaxel alone at a dose of 100 mg/m² is known to result in neutropenia in 97% of patients, 76% grade 4, based on nadir blood counts. The incidence of febrile neutropenia/neutropenic sepsis was also increased in patients treated with Herceptin plus docetaxel (23% versus 17% for patients treated with docetaxel alone).

*Cardiac disorders*

Symptomatic cardiac failure was reported in 2.2% of the patients who received docetaxel plus trastuzumab compared to 0% of patients given docetaxel alone. In the docetaxel plus trastuzumab arm, 64% had received a prior anthracycline as adjuvant therapy compared with 55% in the docetaxel arm alone.
Tabulated list of adverse reactions in breast cancer for TAXOTERE 75 mg/m² in combination with capecitabine

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Oral candidiasis (G3/4: &lt; 1%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 63%); Anaemia (G3/4: 10%)</td>
<td>Thrombocytopenia (G3/4: 3%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 1%); Decreased appetite</td>
<td>Dehydration (G3/4: 2%)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia (G3/4: &lt; 1%); Paresthesia (G3/4: &lt; 1%)</td>
<td>Dizziness; Headache (G3/4: &lt; 1%); Neuropathy peripheral</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Pharyngolaryngeal pain (G3/4: 2%)</td>
<td>Dyspnoea (G3/4: 1%); Cough (G3/4: &lt; 1%); Epistaxis (G3/4: &lt; 1%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Stomatitis (G3/4: 18%); Diarrhoea (G3/4: 14%); Nausea (G3/4: 6%); Vomiting (G3/4: 4%); Constipation (G3/4: 1%); Abdominal pain (G3/4: 2%); Dyspepsia</td>
<td>Abdominal pain upper; Dry mouth</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Hand-foot syndrome (G3/4: 24%); Alopecia (G3/4: 6%); Nail disorders (G3/4: 2%)</td>
<td>Dermatitis; Rash erythematous (G3/4: &lt; 1%); Nail discolouration; Onycholysis (G3/4: 1%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (G3/4: 2%); Arthralgia (G3/4: 1%)</td>
<td>Pain in extremity (G3/4: &lt; 1%); Back pain (G3/4: 1%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (G3/4: 3%); Pyrexia (G3/4: 1%); Fatigue/weakness (G3/4: 5%); Oedema peripheral (G3/4: 1%)</td>
<td>Lethargy; Pain</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight decreased; G3/4 Blood bilirubin increased (9%)</td>
<td></td>
</tr>
</tbody>
</table>
**Tabulated list of adverse reactions in metastatic castration-resistant prostate cancer for TAXOTERE 75 mg/m² in combination with prednisone or prednisolone**

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 3.3%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 32%); Anaemia (G3/4: 4.9%)</td>
<td>Thrombocytopenia (G3/4: 0.6%); Febrile neutropenia</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (G3/4: 0.6%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 1.2%); Dysgeusia (G3/4: 0%)</td>
<td>Peripheral motor neuropathy (G3/4: 0%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Cardiac left ventricular function decrease (G3/4: 0.3%)</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Epistaxis (G3/4: 0%); Dyspnoea (G3/4: 0.6%); Cough (G3/4: 0%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 2.4%); Diarrhoea (G3/4: 1.2%); Stomatitis/Pharyngitis (G3/4: 0.9%); Vomiting (G3/4: 1.2%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (no severe)</td>
<td>Exfoliative rash (G3/4: 0.3%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective bone disorders</td>
<td>Arthralgia (G3/4: 0.3%); Myalgia (G3/4: 0.3%)</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Fatigue (G3/4: 3.9%); Fluid retention (severe: 0.6%)</td>
<td></td>
</tr>
</tbody>
</table>

**Tabulated list of adverse reactions in high-risk locally advanced or metastatic hormone-sensitive prostate cancer for TAXOTERE 75 mg/m² in combination with prednisone or prednisolone and ADT (STAMPEDE study)**

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3-4: 12 %) Anaemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (G3-4: 1%)</td>
</tr>
<tr>
<td>Endocrine disorders</td>
<td></td>
<td>Diabetes (G3-4: 1%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td>Anorexia</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td></td>
<td>Insomnia (G3: 1%)</td>
</tr>
</tbody>
</table>
### MedDRA system organ classes

<table>
<thead>
<tr>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Nervous system disorders</strong></td>
<td>Dizziness</td>
</tr>
<tr>
<td>Peripheral sensory neuropathy (≥G3: 2%)&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td></td>
</tr>
<tr>
<td><strong>Eye disorders</strong></td>
<td>Blurred vision</td>
</tr>
<tr>
<td><strong>Cardiac disorders</strong></td>
<td>Hypotension (G3: 0%)</td>
</tr>
<tr>
<td><strong>Respiratory, thoracic and mediastinal disorders</strong></td>
<td>Pharyngitis (G3: 0%)</td>
</tr>
<tr>
<td>Dyspnea (G3: 1%)</td>
<td></td>
</tr>
<tr>
<td>Coughing (G3: 0%)</td>
<td></td>
</tr>
<tr>
<td>Upper respiratory tract infection (G3: 1%)</td>
<td></td>
</tr>
<tr>
<td><strong>Gastrointestinal disorders</strong></td>
<td>Vomiting (G3: 1%)</td>
</tr>
<tr>
<td>Diarrhea (G3: 3%)</td>
<td></td>
</tr>
<tr>
<td>Stomatitis (G3: 0%)</td>
<td></td>
</tr>
<tr>
<td>Constipation (G3: 0%)</td>
<td></td>
</tr>
<tr>
<td>Nausea (G3: 1%)</td>
<td></td>
</tr>
<tr>
<td>Dyspepsia</td>
<td></td>
</tr>
<tr>
<td>Abdominal pain (G3: 0%)</td>
<td></td>
</tr>
<tr>
<td>Flatulence</td>
<td></td>
</tr>
<tr>
<td><strong>Skin and subcutaneous tissue disorders</strong></td>
<td>Rash</td>
</tr>
<tr>
<td>Alopecia (G3: 3%)&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Nail changes (G3: 1%)</td>
<td></td>
</tr>
<tr>
<td><strong>Musculoskeletal and connective tissue disorders</strong></td>
<td>Myalgia</td>
</tr>
<tr>
<td><strong>General disorders and administration site conditions</strong></td>
<td>Fever (G3: 1%)</td>
</tr>
<tr>
<td>Lethargy (G3-4: 2%)</td>
<td></td>
</tr>
<tr>
<td>Flu-like symptoms (G3: 0%)</td>
<td></td>
</tr>
<tr>
<td>Asthenia (G3: 0%)</td>
<td></td>
</tr>
<tr>
<td>Fluid retention</td>
<td></td>
</tr>
<tr>
<td><strong>Infections and infestations</strong></td>
<td></td>
</tr>
<tr>
<td>Infection (G3/4: 2.4%); Neutropenic infection (G3/4: 2.6%)</td>
<td></td>
</tr>
<tr>
<td><strong>Blood and lymphatic system disorders</strong></td>
<td></td>
</tr>
<tr>
<td>Anaemia (G3/4: 3%); Neutropenia (G3/4: 59.2%); Thrombocytopenia (G3/4: 1.6%); Febrile neutropenia (G3/4: NA)</td>
<td></td>
</tr>
<tr>
<td><strong>Immune system disorders</strong></td>
<td>Hypersensitivity (G3/4: 0.6%)</td>
</tr>
</tbody>
</table>

<sup>a</sup> From the GETUG AFU15 study

Tabulated list of adverse reactions in breast cancer for adjuvant therapy with TAXOTERE 75 mg/m² in combination with doxorubicin and cyclophosphamide in patients with node-positive (TAX 316) and node-negative (GEICAM 9805) breast cancer - pooled data
<table>
<thead>
<tr>
<th>Metabolism and nutrition disorders</th>
<th>Anorexia (G3/4: 1.5%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia (G3/4: 0.6%); Peripheral sensory neuropathy (G3/4: &lt;0.1%); Peripheral motor neuropathy (G3/4: 0%); Syncope (G3/4: 0%); Neurotoxicity (G3/4: 0%); Somnolence (G3/4: 0%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Conjunctivitis (G3/4: &lt;0.1%); Lacrimation increased (G3/4: &lt;0.1%);</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 0.2%);</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hot flush (G3/4: 0.5%); Hypotension (G3/4: 0%); Phlebitis (G3/4: 0%); Lymphoedema (G3/4: 0%);</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Cough (G3/4: 0%);</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 5.0%); Stomatitis (G3/4: 6.0%); Vomiting (G3/4: 4.2%); Diarrhoea (G3/4: 3.4%); Constipation (G3/4: 0.5%); Abdominal pain (G3/4: 0.4%);</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (persisting: &lt;3%); Skin disorder (G3/4: 0.6%); Nail disorders (G3/4: 0.4%);</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (G3/4: 0.7%); Arthralgia (G3/4: 0.2%);</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td>Amenorrhoea (G3/4: NA);</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (G3/4: 10.0%); Pyrexia (G3/4: NA); Oedema peripheral (G3/4: 0.2%);</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight increased (G3/4: 0%); Weight decreased (G3/4: 0.2%);</td>
</tr>
</tbody>
</table>

Description of selected adverse reactions for adjuvant therapy with TAXOTERE 75 mg/m² in combination with doxorubicin and cyclophosphamide in patients with node-positive (TAX 316) and node-negative (GEICAM 9805) breast cancer

**Nervous system disorders**

In study TAX316 peripheral sensory neuropathy started during the treatment period and persisted into the follow-up period in 84 patients (11.3%) in TAC arm and 15 patients (2%) in FAC arm. At the end of the follow-up period (median follow-up time of 8 years), peripheral sensory neuropathy was observed to be ongoing in 10 patients (1.3%) in TAC arm, and in 2 patients (0.3%) in FAC arm.
In GEICAM 9805 study peripheral sensory neuropathy that started during the treatment period persisted into the follow-up period in 10 patients (1.9%) in TAC arm and 4 patients (0.8%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), peripheral sensory neuropathy was observed to be ongoing in 3 patients (0.6%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

**Cardiac disorders**

In study TAX316, 26 patients (3.5%) in the TAC arm and 17 patients (2.3%) in the FAC arm experienced congestive heart failure. All except one patient in each arm were diagnosed with CHF more than 30 days after the treatment period. Two patients in the TAC arm and 4 patients in the FAC arm died because of cardiac failure.

In GEICAM 9805 study, 3 patients (0.6%) in TAC arm and 3 patients (0.6%) in FAC arm developed congestive heart failure during the follow-up period. At the end of the follow-up period (actual median follow-up time of 10 years and 5 months), no patients had CHF in TAC arm and 1 patient in TAC arm died because of dilated cardiomyopathy, and CHF was observed to be ongoing in 1 patient (0.2%) in FAC arm.

**Skin and subcutaneous tissue disorders**

In study TAX316 alopecia persisting into the follow-up period after the end of chemotherapy was reported in 687 of 744 TAC patients (92.3%) and 645 of 736 FAC patients (87.6%). At the end of the follow-up period (actual median follow-up time of 8 years), alopecia was observed to be ongoing in 29 TAC patients (3.9%) and 16 FAC patients (2.2%).

In GEICAM 9805 study alopecia that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 49 patients (9.2%) in TAC arm and 35 patients (6.7%) in FAC arm. Alopecia related to study drug started or worsened during the follow-up period in 42 patients (7.9%) in TAC arm and 30 patients (5.8%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), alopecia was observed to be ongoing in 3 patients (0.6%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

**Reproductive system and breast disorders**

In TAX316 amenorrhoea that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 202 of 744 TAC patients (27.2%) and 125 of 736 FAC patients (17.0%). Amenorrhoea was observed to be ongoing at the end of the follow-up period (median follow-up time of 8 years) in 121 of 744 TAC patients (16.3%) and 86 FAC patients (11.7%).

In GEICAM 9805 study amenorrhoea that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 18 patients (3.4%) in TAC arm and 5 patients (1.0%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), amenorrhoea was observed to be ongoing in 7 patients (1.3%) in TAC arm, and in 4 patients (0.8%) in FAC arm.

**General disorders and administration site conditions**

In study TAX316 peripheral oedema that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was observed in 119 of 744 TAC patients (16.0%) and 23 of 736 FAC patients (3.1%). At the end of the follow-up period (actual median follow-up time of 8 years), peripheral oedema was ongoing in 19 TAC patients (2.6%) and 4 FAC patients (0.5%).

In study TAX316 lymphoedema that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 11 of 744 TAC patients (1.5%) and 1 of 736 FAC patients (0.1%). At the end of the follow-up period (actual median follow-up time of 8 years), lymphoedema was observed to be ongoing in 6 TAC patients (0.8%) and 1 FAC patient (0.1%).

In study TAX316 asthenia that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 236 of 744 TAC patients (31.7%) and 180 of 736 FAC patients (24.5%). At the end of the follow-up period (actual median follow-up time of 8 years), asthenia was observed to be ongoing in 29 TAC patients (3.9%) and 16 FAC patients (2.2%).

In study GEICAM 9805 peripheral oedema that started during the treatment period persisted into the follow-up period in 4 patients (0.8%) in TAC arm and in 2 patients (0.4%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), no patients (0%) in TAC arm...
had peripheral oedema and it was observed to be ongoing in 1 patient (0.2%) in FAC arm. Lymphoedema that started during the treatment period persisted into the follow-up period in 5 patients (0.9%) in TAC arm and 2 patients (0.4%) in FAC arm. At the end of the follow-up period, lymphoedema was observed to be ongoing in 4 patients (0.8%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

Asthenia that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 12 patients (2.3%) in TAC arm and 4 patients (0.8%) in FAC arm. At the end of the follow-up period, asthenia was observed to be ongoing in 2 patients (0.4%) in TAC arm, and in 2 patients (0.4%) in FAC arm.

Acute leukaemia / Myelodysplastic syndrome.
After 10 years of follow up in study TAX316, acute leukaemia was reported in 3 of 744 TAC patients (0.4%) and in 1 of 736 FAC patients (0.1%). One TAC patient (0.1%) and 1 FAC patient (0.1%) died due to AML during the follow-up period (median follow-up time of 8 years). Myelodysplastic syndrome was reported in 2 of 744 TAC patients (0.3%) and in 1 of 736 FAC patients (0.1%). After 10 years of follow-up in GEICAM 9805 study, acute leukaemia occurred in 1 of 532 (0.2%) patients in TAC arm. No cases were reported in patients in FAC arm. No patient was diagnosed with myelodysplastic syndrome in either treatment groups.

Neutropenic complications
Table below shows that the incidence of Grade 4 neutropenia, febrile neutropenia and neutropenic infection was decreased in patients who received primary G-CSF prophylaxis after it was made mandatory in the TAC arm – GEICAM study.

<table>
<thead>
<tr>
<th>Neutropenic complications in patients receiving TAC with or without primary G-CSF prophylaxis (GEICAM 9805)</th>
<th>Without primary G-CSF prophylaxis (n = 111)</th>
<th>With primary G-CSF prophylaxis (n = 421)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia (Grade 4)</td>
<td>104 (93.7)</td>
<td>135 (32.1)</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>28 (25.2)</td>
<td>23 (5.5)</td>
</tr>
<tr>
<td>Neutropenic infection</td>
<td>14 (12.6)</td>
<td>21 (5.0)</td>
</tr>
<tr>
<td>Neutropenic infection (Grade 3-4)</td>
<td>2 (1.8)</td>
<td>5 (1.2)</td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in gastric adenocarcinoma cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Neutropenic infection; Infection (G3/4: 11.7%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Anaemia (G3/4: 20.9%); Neutropenia (G3/4: 83.2%); Thrombocytopenia (G3/4: 8.8%); Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 1.7%)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition</td>
<td>Anorexia (G3/4: 11.7%)</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>------------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 8.7%)</td>
<td>Dizziness (G3/4: 2.3%); Peripheral motor neuropathy (G3/4: 1.3%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Lacrimation increased (G3/4: 0%)</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td>Hearing impaired (G3/4: 0%)</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Arrhythmia (G3/4: 1.0%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhoea (G3/4: 19.7%); Nausea (G3/4: 16%); Stomatitis (G3/4: 23.7%); Vomiting (G3/4: 14.3%)</td>
<td>Constipation (G3/4: 1.0%); Gastrointestinal pain (G3/4: 1.0%); Oesophagitis/dysphagia/odynophagia (G3/4: 0.7%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 4.0%)</td>
<td>Rash pruritus (G3/4: 0.7%); Nail disorders (G3/4: 0.7%); Skin exfoliation (G3/4: 0%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 19.0%); Fever (G3/4: 2.3%); Fluid retention (severe/life-threatening: 1%)</td>
<td></td>
</tr>
</tbody>
</table>

Description of selected adverse reactions in gastric adenocarcinoma cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

**Blood and lymphatic system disorders**
Febrile neutropenia and neutropenic infection occurred in 17.2% and 13.5% of patients respectively, regardless of G-CSF use. G-CSF was used for secondary prophylaxis in 19.3% of patients (10.7% of the cycles). Febrile neutropenia and neutropenic infection occurred respectively in 12.1% and 3.4% of patients when patients received prophylactic G-CSF, in 15.6% and 12.9% of patients without prophylactic G-CSF (see section 4.2).
Tabulated list of adverse reactions in head and neck cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

- Induction chemotherapy followed by radiotherapy (TAX 323)

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 6.3%); Neutropenic infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl cysts and polyps)</td>
<td>Cancer pain (G3/4: 0.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 76.3%); Anaemia (G3/4: 9.2%); Thrombocytopenia (G3/4: 5.2%)</td>
<td>Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 0.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia/Parosmia; Peripheral sensory neuropathy (G3/4: 0.6%)</td>
<td>Dizziness</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td>Hearing impaired</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Myocardial ischemia (G3/4: 1.7%); Arrhythmia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Venous disorder (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 0.6%); Stomatitis (G3/4: 4.0%); Diarrhoea (G3/4: 2.9%); Vomiting (G3/4: 0.6%)</td>
<td>Constipation; Esophagitis/dysphagia/odynophagia (G3/4: 0.6%); Abdominal pain; Dyspepsia; Gastrointestinal haemorrhage (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 10.9%)</td>
<td>Rash pruritic; Dry skin; Skin exfoliative (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td>Myalgia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 3.4%); Pyrexia (G3/4: 0.6%); Fluid retention; Oedema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>Weight increased</td>
<td></td>
</tr>
</tbody>
</table>
- Induction chemotherapy followed by chemoradiotherapy (TAX 324)

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 3.6%)</td>
<td>Neutropenic infection</td>
<td></td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl cysts and polyps)</td>
<td>Neutropenia (G3/4: 83.5%); Anaemia (G3/4: 12.4%); Thrombocytopenia (G3/4: 4.0%); Febrile neutropenia</td>
<td>Cancer pain (G3/4: 1.2%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Anorexia (G3/4: 12.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Dysgeusia/Parosmia (G3/4: 0.4%); Peripheral sensory neuropathy (G3/4: 1.2%)</td>
<td>Dizziness (G3/4: 2.0%); Peripheral motor neuropathy (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Lacrimation increased</td>
<td>Conjunctivitis</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Hearing impaired (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Arrhythmia (G3/4: 2.0%)</td>
<td>Ischemia myocardial</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td></td>
<td>Venous disorder</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 13.9%); Stomatitis (G3/4: 20.7%); Vomiting (G3/4: 8.4%); Diarrhoea (G3/4: 6.8%); Esophagitis/dysphagia/odynophagia (G3/4: 12.0%); Constipation (G3/4: 0.4%)</td>
<td>Dyspepsia (G3/4: 0.8%); Gastrointestinal pain (G3/4: 1.2%); Gastrointestinal haemorrhage (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 4.0%); Rash pruritic</td>
<td>Dry skin ; Desquamation</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal, connective tissue bone disorders</td>
<td></td>
<td></td>
<td>Myalgia (G3/4: 0.4%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 4.0%); Pyrexia (G3/4: 3.6%); Fluid retention (G3/4: 1.2%); Oedema (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight decreased</td>
<td></td>
<td>Weight increased</td>
</tr>
</tbody>
</table>

**Post-marketing experience**

**Neoplasms benign, malignant and unspecified (incl cysts and polyps)**
Second primary malignancies (frequency not known), including non-Hodgkin lymphoma have been reported in association with docetaxel when used in combination with other anticancer treatments known to be associated with second primary malignancies. Acute myeloid leukaemia and myelodysplastic syndrome have been reported (frequency uncommon) in pivotal clinical studies in breast cancer with TAC regimen.

**Blood and lymphatic system disorders**
Bone marrow suppression and other haematologic adverse reactions have been reported. Disseminated intravascular coagulation (DIC), often in association with sepsis or multiorgan failure, has been reported.

**Immune system disorders**
Some cases of anaphylactic shock, sometimes fatal, have been reported. Hypersensitivity reactions (frequency not known) have been reported with docetaxel in patients who previously experienced hypersensitivity reactions to paclitaxel.

**Nervous system disorders**
Rare cases of convulsion or transient loss of consciousness have been observed with docetaxel administration. These reactions sometimes appear during the infusion of the medicinal product.

**Eye disorders**
Very rare cases of transient visual disturbances (flashes, flashing lights, scotomata) typically occurring during infusion of the medicinal product and in association with hypersensitivity reactions have been reported. These were reversible upon discontinuation of the infusion. Cases of lacrimation with or without conjunctivitis, as cases of lacrimal duct obstruction resulting in excessive tearing have been rarely reported. Cases of cystoid macular oedema (CMO) have been reported in patients treated with docetaxel.

**Ear and labyrinth disorders**
Rare cases of ototoxicity, hearing impaired and/or hearing loss have been reported.

**Cardiac disorders**
Rare cases of myocardial infarction have been reported. Ventricular arrhythmia including ventricular tachycardia (frequency not known), sometimes fatal, has been reported in patients treated with docetaxel in combination regimens including doxorubicin, 5-fluorouracil and/or cyclophosphamide.

**Vascular disorders**
Venous thromboembolic events have rarely been reported.

**Respiratory, thoracic and mediastinal disorders**
Acute respiratory distress syndrome and cases of interstitial pneumonia/ pneumonitis, interstitial lung disease, pulmonary fibrosis and respiratory failure sometimes fatal have rarely been reported. Rare cases of radiation pneumonitis have been reported in patients receiving concomitant radiotherapy.

**Gastrointestinal disorders**
Rare cases of enterocolitis, including colitis, ischemic colitis, and neutropenic enterocolitis, have been reported with a potential fatal outcome (frequency not known).
Rare occurrences of dehydration have been reported as a consequence of gastrointestinal events including enterocolitis and gastrointestinal perforation. Rare cases of ileus and intestinal obstruction have been reported.

**Hepatobiliary disorders**
Very rare cases of hepatitis, sometimes fatal primarily in patients with pre-existing liver disorders, have been reported.

**Skin and subcutaneous tissue disorders**
Cases of cutaneous lupus erythematosus, bullous eruptions such as erythema multiforme and severe cutaneous adverse reactions such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN) and Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with docetaxel. Scleroderma-like changes usually preceded by peripheral lymphoedema have been reported with docetaxel. Cases of permanent alopecia (frequency not known) have been reported.

**Renal and urinary disorders**
Renal insufficiency and renal failure have been reported. In about 20% of these cases there were no risk factors for acute renal failure such as concomitant nephrotoxic medicinal products and gastrointestinal disorders.

**General disorders and administration site conditions**
Radiation recall phenomena have rarely been reported. Injection site recall reaction (recurrence of skin reaction at a site of previous extravasation following administration of docetaxel at a different site) has been observed at the site of previous extravasation (frequency not known). Fluid retention has not been accompanied by acute episodes of oliguria or hypotension. Dehydration and pulmonary oedema have rarely been reported.

**Metabolism and nutrition disorders**
Cases of electrolyte imbalance have been reported. Cases of hyponatraemia have been reported, mostly associated with dehydration, vomiting and pneumonia. Hypokalaemia, hypomagnesaemia, and hypocalcaemia were observed, usually in association with gastrointestinal disorders and in particular with diarrhoea. Tumour lysis syndrome, potentially fatal, has been reported (frequency not known).

**Musculoskeletal disorder**
Myositis has been reported with docetaxel (frequency not known).

**Reporting of suspected adverse reactions**
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 **Overdose**

There were a few reports of overdose. There is no known antidote for docetaxel overdose. In case of overdose, the patient should be kept in a specialised unit and vital functions closely monitored. In cases of overdose, exacerbation of adverse events may be expected. The primary anticipated complications of overdose would consist of bone marrow suppression, peripheral neurotoxicity and mucositis. Patients should receive therapeutic G-CSF as soon as possible after discovery of overdose. Other appropriate symptomatic measures should be taken, as needed.

5. **PHARMACOLOGICAL PROPERTIES**
5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Taxanes, ATC Code: L01CD02

Mechanism of action

Docetaxel is an antineoplastic agent which acts by promoting the assembly of tubulin into stable microtubules and inhibits their disassembly which leads to a marked decrease of free tubulin. The binding of docetaxel to microtubules does not alter the number of protofilaments.

Docetaxel has been shown in vitro to disrupt the microtubular network in cells which is essential for vital mitotic and interphase cellular functions.

Pharmacodynamic effects

Docetaxel was found to be cytotoxic in vitro against various murine and human tumour cell lines and against freshly excised human tumour cells in clonogenic assays. Docetaxel achieves high intracellular concentrations with a long cell residence time. In addition, docetaxel was found to be active on some but not all cell lines over expressing the p-glycoprotein which is encoded by the multidrug resistance gene. In vivo, docetaxel is schedule independent and has a broad spectrum of experimental anti-tumour activity against advanced murine and human grafted tumours.

Clinical efficacy and safety

Breast cancer

TAXOTERE in combination with doxorubicin and cyclophosphamide: adjuvant therapy

Patients with operable node-positive breast cancer (TAX 316)

Data from a multi-centre open label randomised study support the use of docetaxel for the adjuvant treatment of patients with operable node-positive breast cancer and KPS ≥ 80%, between 18 and 70 years of age. After stratification according to the number of positive lymph nodes (1-3, 4+), 1491 patients were randomised to receive either docetaxel 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² (TAC arm), or doxorubicin 50 mg/m² followed by fluorouracil 500 mg/m² and cyclophosphamide 500 mg/m² (FAC arm). Both regimens were administered once every 3 weeks for 6 cycles. Docetaxel was administered as a 1-hour infusion, all other medicinal products were given as intravenous bolus on day one. G-CSF was administered as secondary prophylaxis to patients who experienced complicated neutropenia (febrile neutropenia, prolonged neutropenia, or infection). Patients on the TAC arm received antibiotic prophylaxis with ciprofloxacin 500 mg orally twice daily for 10 days starting on day 5 of each cycle, or equivalent. In both arms, after the last cycle of chemotherapy, patients with positive oestrogen and/or progesterone receptors received tamoxifen 20 mg daily for up to 5 years. Adjuvant radiation therapy was prescribed according to guidelines in place at participating institutions and was given to 69% of patients who received TAC and 72% of patients who received FAC. Two interim analyses and one final analysis were performed. The first interim analysis was planned 3 years after the date when half of study enrolment was done. The second interim analysis was done after 400 DFS events had been recorded overall, which led to a median follow-up of 55 months. The final analysis was performed when all patients had reached their 10-year follow-up visit (unless they had a DFS event or were lost to follow-up before). Disease-free survival (DFS) was the primary efficacy endpoint and Overall survival (OS) was the secondary efficacy endpoint.

A final analysis was performed with an actual median follow up of 96 months. Significantly longer disease-free survival for the TAC arm compared to the FAC arm was demonstrated. Incidence of relapses at 10 years was reduced in patients receiving TAC compared to those who received FAC (39% versus 45%, respectively) i.e. an absolute risk reduction by 6% (p = 0.0043). Overall survival at 10 years was also significantly increased with TAC compared to FAC (76% versus 69%, respectively)
i.e. an absolute reduction of the risk of death by 7% (p = 0.002). As the benefit observed in patients with 4+ nodes was not statistically significant on DFS and OS, the positive benefit/risk ratio for TAC in patients with 4+ nodes was not fully demonstrated at the final analysis.

Overall, the study results demonstrate a positive benefit risk ratio for TAC compared to FAC.

TAC-treated patient subsets according to prospectively defined major prognostic factors were analysed:

<table>
<thead>
<tr>
<th>Patient subset</th>
<th>Number of patients</th>
<th>Disease free survival</th>
<th>Overall survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hazard ratio*</td>
<td>95% CI</td>
</tr>
<tr>
<td>No of positive nodes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>745</td>
<td>0.80</td>
<td>0.68-0.93</td>
</tr>
<tr>
<td>1-3</td>
<td>467</td>
<td>0.72</td>
<td>0.58-0.91</td>
</tr>
<tr>
<td>4+</td>
<td>278</td>
<td>0.87</td>
<td>0.70-1.09</td>
</tr>
</tbody>
</table>

*a hazard ratio of less than 1 indicates that TAC is associated with a longer disease-free survival and overall survival compared to FAC

Patients with operable node-negative breast cancer eligible to receive chemotherapy (GEICAM 9805)

Data from a multi-centre open label randomised trial support the use of TAXOTERE for the adjuvant treatment of patients with operable node-negative breast cancer eligible to receive chemotherapy. 1060 patients were randomised to receive either TAXOTERE 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² (539 patients in TAC arm), or doxorubicin 50 mg/m² followed by fluorouracil 500 mg/m² and cyclophosphamide 500 mg/m² (521 patients in FAC arm), as adjuvant treatment of operable node-negative breast cancer patients with high risk of relapse according to 1998 St. Gallen criteria (tumour size >2 cm and/or negative ER and PR and/or high histological/nuclear grade (grade 2 to 3) and/or age <35 years). Both regimens were administered once every 3 weeks for 6 cycles. TAXOTERE was administered as a 1-hour infusion, all other medicinal products were given intravenously on day 1 every three weeks. Primary prophylactic G-CSF was made mandatory in TAC arm after 230 patients were randomised. The incidence of Grade 4 neutropenia, febrile neutropenia and neutropenic infection was decreased in patients who received primary G-CSF prophylaxis (see section 4.8). In both arms, after the last cycle of chemotherapy, patients with ER+ and/or PgR+ tumours received tamoxifen 20 mg once a day for up to 5 years. Adjuvant radiation therapy was administered according to guidelines in place at participating institutions and was given to 57.3% of patients who received TAC and 51.2% of patients who received FAC.

One primary analysis and one updated analysis were performed. The primary analysis was done when all patients had a follow-up of greater than 5 years (median follow-up time of 77 months). The updated analysis was performed when all patients had reached their 10-year (median follow up time of 10 years and 5 months) follow-up visit (unless they had a DFS event or were lost to follow-up previously). Disease-free survival (DFS) was the primary efficacy endpoint and Overall survival (OS) was the secondary efficacy endpoint.

At the median follow-up time of 77 months, significantly longer disease-free survival for the TAC arm compared to the FAC arm was demonstrated. TAC-treated patients had a 32% reduction in the risk of relapse compared to those treated with FAC (hazard ratio = 0.68, 95% CI (0.49-0.93), p = 0.01). At the median follow up time of 10 years and 5 months, TAC-treated patients had a 16.5% reduction in the risk of relapse compared to those treated with FAC (hazard ratio = 0.84, 95% CI (0.65-1.08), p=0.1646). DFS data were not statistically significant but were still associated with a positive trend in favour of TAC.
At the median follow-up time of 77 months, overall survival (OS) was longer in the TAC arm with TAC-treated patients having a 24% reduction in the risk of death compared to FAC (hazard ratio = 0.76, 95% CI (0.46-1.26, p = 0.29). However, the distribution of OS was not significantly different between the 2 groups.

At the median follow up time of 10 years and 5 months, TAC-treated patients had a 9% reduction in the risk of death compared to FAC-treated patients (hazard ratio = 0.91, 95% CI (0.63-1.32)). The survival rate was 93.7% in the TAC arm and 91.4% in the FAC arm, at the 8-year follow-up time point, and 91.3% in the TAC arm and 89% in the FAC arm, at the 10-year follow-up time point.

The positive benefit risk ratio for TAC compared to FAC remained unchanged.

TAC-treated patient subsets according to prospectively defined major prognostic factors were analysed in the primary analysis (at the median follow-up time of 77 months) (see table below):

Subset Analyses-Adjuvant Therapy in Patients with Node-negative Breast Cancer Study (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Patient subset</th>
<th>Number of patients in TAC group</th>
<th>Disease Free Survival</th>
<th>Hazard ratio*</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Overall</strong></td>
<td>539</td>
<td></td>
<td>0.68</td>
<td>0.49-0.93</td>
</tr>
<tr>
<td><strong>Age category 1</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;50 years</td>
<td>260</td>
<td>0.67</td>
<td></td>
<td>0.43-1.05</td>
</tr>
<tr>
<td>≥50 years</td>
<td>279</td>
<td>0.67</td>
<td></td>
<td>0.43-1.05</td>
</tr>
<tr>
<td><strong>Age category 2</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;35 years</td>
<td>42</td>
<td>0.31</td>
<td></td>
<td>0.11-0.89</td>
</tr>
<tr>
<td>≥35 years</td>
<td>497</td>
<td>0.73</td>
<td></td>
<td>0.52-1.01</td>
</tr>
<tr>
<td><strong>Hormonal receptor status</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>195</td>
<td>0.7</td>
<td></td>
<td>0.45-1.1</td>
</tr>
<tr>
<td>Positive</td>
<td>344</td>
<td>0.62</td>
<td></td>
<td>0.4-0.97</td>
</tr>
<tr>
<td><strong>Tumour size</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤2 cm</td>
<td>285</td>
<td>0.69</td>
<td></td>
<td>0.43-1.1</td>
</tr>
<tr>
<td>&gt;2 cm</td>
<td>254</td>
<td>0.68</td>
<td></td>
<td>0.45-1.04</td>
</tr>
<tr>
<td><strong>Histological grade</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1 (includes grade not assessed)</td>
<td>64</td>
<td>0.79</td>
<td></td>
<td>0.24-2.6</td>
</tr>
<tr>
<td>Grade 2</td>
<td>216</td>
<td>0.77</td>
<td></td>
<td>0.46-1.3</td>
</tr>
<tr>
<td>Grade 3</td>
<td>259</td>
<td>0.59</td>
<td></td>
<td>0.39-0.9</td>
</tr>
<tr>
<td><strong>Menopausal status</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Menopausal</td>
<td>285</td>
<td>0.64</td>
<td></td>
<td>0.40-1</td>
</tr>
<tr>
<td>Post-Menopausal</td>
<td>254</td>
<td>0.72</td>
<td></td>
<td>0.47-1.12</td>
</tr>
</tbody>
</table>

*a hazard ratio (TAC/FAC) of less than 1 indicates that TAC is associated with a longer disease free survival compared to FAC.
Exploratory subgroup analyses for disease-free survival for patients who meet the 2009 St. Gallen chemotherapy criteria – (ITT population) were performed and presented here below:

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>TAC (n=539)</th>
<th>FAC (n=521)</th>
<th>Hazard ratio (TAC/FAC)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting relative indication for chemotherapy *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>18/214 (8.4%)</td>
<td>26/227 (11.5%)</td>
<td>0.796 (0.434 - 1.459)</td>
<td>0.4593</td>
</tr>
<tr>
<td>Yes</td>
<td>48/325 (14.8%)</td>
<td>69/294 (23.5%)</td>
<td>0.606 (0.42 - 0.877)</td>
<td>0.0072</td>
</tr>
</tbody>
</table>

TAC = docetaxel, doxorubicin and cyclophosphamide
FAC = 5-fluorouracil, doxorubicin and cyclophosphamide
CI = confidence interval; ER = eostrogen receptor
PR = progesterone receptor
* ER/PR-negative or Grade 3 or tumour size >5 cm

The estimated hazard ratio was using Cox proportional hazard model with treatment group as the factor.

TAXOTERE as single agent

Two randomised phase III comparative studies, involving a total of 326 alkylating or 392 anthracycline failure metastatic breast cancer patients, have been performed with docetaxel at the recommended dose and regimen of 100 mg/m² every 3 weeks.

In alkylating-failure patients, docetaxel was compared to doxorubicin (75 mg/m² every 3 weeks). Without affecting overall survival time (docetaxel 15 months vs. doxorubicin 14 months, p = 0.38) or time to progression (docetaxel 27 weeks vs. doxorubicin 23 weeks, p = 0.54), docetaxel increased response rate (52% vs. 37%, p = 0.01) and shortened time to response (12 weeks vs. 23 weeks, p = 0.007). Three docetaxel patients (2%) discontinued the treatment due to fluid retention, whereas 15 doxorubicin patients (9%) discontinued due to cardiac toxicity (three cases of fatal congestive heart failure).

In anthracycline-failure patients, docetaxel was compared to the combination of mitomycin C and vinblastine (12 mg/m² every 6 weeks and 6 mg/m² every 3 weeks). Docetaxel increased response rate (33% vs. 12%, p < 0.0001), prolonged time to progression (19 weeks vs. 11 weeks, p = 0.0004) and prolonged overall survival (11 months vs. 9 months, p = 0.01).

During these two phase III studies, the safety profile of docetaxel was consistent with the safety profile observed in phase II studies (see section 4.8).

An open-label, multi-centre, randomised phase III study was conducted to compare docetaxel monotherapy and paclitaxel in the treatment of advanced breast cancer in patients whose previous therapy should have included an anthracycline. A total of 449 patients were randomised to receive either docetaxel monotherapy 100 mg/m² as a 1 hour infusion or paclitaxel 175 mg/m² as a 3 hour infusion. Both regimens were administered every 3 weeks.

Without affecting the primary endpoint, overall response rate (32% vs 25%, p = 0.10), docetaxel prolonged median time to progression (24.6 weeks vs 15.6 weeks; p < 0.01) and median survival (15.3 months vs 12.7 months; p = 0.03).

More grade 3/4 adverse events were observed for docetaxel monotherapy (55.4%) compared to paclitaxel (23.0%).
**TAXOTERE in combination with doxorubicin**

One large randomised phase III study, involving 429 previously untreated patients with metastatic disease, has been performed with doxorubicin (50 mg/m²) in combination with docetaxel (75 mg/m²) (AT arm) versus doxorubicin (60 mg/m²) in combination with cyclophosphamide (600 mg/m²) (AC arm). Both regimens were administered on day 1 every 3 weeks.

- Time to progression (TTP) was significantly longer in the AT arm versus AC arm, \( p = 0.0138 \). The median TTP was 37.3 weeks (95% CI: 33.4 - 42.1) in AT arm and 31.9 weeks (95% CI: 27.4 - 36.0) in AC arm.
- Overall response rate (ORR) was significantly higher in the AT arm versus AC arm, \( p = 0.009 \). The ORR was 59.3% (95% CI: 52.8 - 65.9) in AT arm versus 46.5% (95% CI: 39.8 - 53.2) in AC arm.

In this study, AT arm showed a higher incidence of severe neutropenia (90% versus 68.6%), febrile neutropenia (33.3% versus 10%), infection (8% versus 2.4%), diarrhoea (7.5% versus 1.4%), asthenia (8.5% versus 2.4%), and pain (2.8% versus 0%) than AC arm. On the other hand, AC arm showed a higher incidence of severe anaemia (15.8% versus 8.5%) than AT arm, and, in addition, a higher incidence of severe cardiac toxicity: congestive heart failure (3.8% versus 2.8%), absolute LVEF decrease \( \geq 20\% \) (13.1% versus 6.1%), absolute LVEF decrease \( \geq 30\% \) (6.2% versus 1.1%). Toxic deaths occurred in 1 patient in the AT arm (congestive heart failure) and in 4 patients in the AC arm (1 due to septic shock and 3 due to congestive heart failure).

In both arms, quality of life measured by the EORTC questionnaire was comparable and stable during treatment and follow-up.

**TAXOTERE in combination with trastuzumab**

Docetaxel in combination with trastuzumab was studied for the treatment of patients with metastatic breast cancer whose tumours overexpress HER2, and who previously had not received chemotherapy for metastatic disease. One hundred eighty six patients were randomised to receive docetaxel (100 mg/m²) with or without trastuzumab; 60% of patients received prior anthracycline-based adjuvant chemotherapy. Docetaxel plus trastuzumab was efficacious in patients whether or not they had received prior adjuvant anthracyclines. The main test method used to determine HER2 positivity in this pivotal study was immunohistochemistry (IHC). A minority of patients were tested using fluorescence in-situ hybridization (FISH). In this study, 87% of patients had disease that was IHC 3+, and 95% of patients entered had disease that was IHC 3+ and/or FISH positive. Efficacy results are summarized in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Docetaxel plus trastuzumab(^1)</th>
<th>Docetaxel(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( n = 92 )</td>
<td>( n = 94 )</td>
</tr>
<tr>
<td>Response rate (95% CI)</td>
<td>61% (50-71)</td>
<td>34% (25-45)</td>
</tr>
<tr>
<td>Median duration of response (months) (95% CI)</td>
<td>11.4 (9.2-15.0)</td>
<td>5.1 (4.4-6.2)</td>
</tr>
<tr>
<td>Median TTP (months) (95% CI)</td>
<td>10.6 (7.6-12.9)</td>
<td>5.7 (5.0-6.5)</td>
</tr>
<tr>
<td>Median survival (months) (95% CI)</td>
<td>30.5 (26.8-ne)</td>
<td>22.1 (17.6-28.9)</td>
</tr>
</tbody>
</table>

TTP = time to progression; “ne” indicates that it could not be estimated or it was not yet reached.

\(^1\)Full analysis set (intent-to-treat)

\(^2\)Estimated median survival
TAXOTERE in combination with capecitabine

Data from one multi-centre, randomised, controlled phase III clinical study support the use of docetaxel in combination with capecitabine for treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic chemotherapy, including an anthracycline. In this study, 255 patients were randomised to treatment with docetaxel (75 mg/m² as a 1 hour intravenous infusion every 3 weeks) and capecitabine (1250 mg/m² twice daily for 2 weeks followed by 1-week rest period). 256 patients were randomised to treatment with docetaxel alone (100 mg/m² as a 1 hour intravenous infusion every 3 weeks). Survival was superior in the docetaxel + capecitabine combination arm (p = 0.0126). Median survival was 442 days (docetaxel + capecitabine) vs. 352 days (docetaxel alone). The overall objective response rates in the all-randomised population (investigator assessment) were 41.6% (docetaxel + capecitabine) vs. 29.7% (docetaxel alone); p = 0.0058. Time to progressive disease was superior in the docetaxel + capecitabine combination arm (p < 0.0001). The median time to progression was 186 days (docetaxel + capecitabine) vs. 128 days (docetaxel alone).

Non-small cell lung cancer

Patients previously treated with chemotherapy with or without radiotherapy

In a phase III study, in previously treated patients, time to progression (12.3 weeks versus 7 weeks) and overall survival were significantly longer for docetaxel at 75 mg/m² compared to Best Supportive Care. The 1-year survival rate was also significantly longer in docetaxel (40%) versus BSC (16%). There was less use of morphinic analgesic (p < 0.01), non-morphinic analgesics (p < 0.01), other disease-related medicinal products (p = 0.06) and radiotherapy (p < 0.01) in patients treated with docetaxel at 75 mg/m² compared to those with BSC. The overall response rate was 6.8% in the evaluable patients, and the median duration of response was 26.1 weeks.

TAXOTERE in combination with platinum agents in chemotherapy-naive patients

In a phase III study, 1218 patients with unresectable stage IIIIB or IV NSCLC, with KPS of 70% or greater, and who did not receive previous chemotherapy for this condition, were randomised to either docetaxel (T) 75 mg/m² as a 1 hour infusion immediately followed by cisplatin (Cis) 75 mg/m² over 30-60 minutes every 3 weeks (TCis), docetaxel 75 mg/m² as a 1 hour infusion in combination with carboplatin (AUC 6 mg/ml.min) over 30-60 minutes every 3 weeks, or vinorelbine (V) 25 mg/m² administered over 6-10 minutes on days 1, 8, 15, 22 followed by cisplatin 100 mg/m² administered on day 1 of cycles repeated every 4 weeks (VCis).
Survival data, median time to progression and response rates for two arms of the study are illustrated in the following table:

<table>
<thead>
<tr>
<th></th>
<th>TCis n = 408</th>
<th>VCis n = 404</th>
<th>Statistical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Primary end-point)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median survival (months)</td>
<td>11.3</td>
<td>10.1</td>
<td>Hazard Ratio: 1.122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[97.2% CI: 0.937; 1.342]*</td>
</tr>
<tr>
<td>1-year Survival (%)</td>
<td>46</td>
<td>41</td>
<td>Treatment difference: 5.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[95% CI: -1.1; 12.0]</td>
</tr>
<tr>
<td>2-year Survival (%)</td>
<td>21</td>
<td>14</td>
<td>Treatment difference: 6.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[95% CI: 0.2; 12.3]</td>
</tr>
<tr>
<td>Median time to progression (weeks):</td>
<td>22.0</td>
<td>23.0</td>
<td>Hazard Ratio: 1.032</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[95% CI: 0.876; 1.216]</td>
</tr>
<tr>
<td>Overall response rate (%)</td>
<td>31.6</td>
<td>24.5</td>
<td>Treatment difference: 7.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[95% CI: 0.7; 13.5]</td>
</tr>
</tbody>
</table>

*: Corrected for multiple comparisons and adjusted for stratification factors (stage of disease and region of treatment), based on evaluable patient population.

Secondary end-points included change of pain, global rating of quality of life by EuroQoL-5D, Lung Cancer Symptom Scale, and changes in Karnosfly performance status. Results on these end-points were supportive of the primary end-points results.

For docetaxel/carboplatin combination, neither equivalent nor non-inferior efficacy could be proven compared to the reference treatment combination VCis.

*Prostate cancer*

*Metastatic castration-resistant prostate cancer*

The safety and efficacy of docetaxel in combination with prednisone or prednisolone in patients with metastatic castration-resistant prostate cancer were evaluated in a randomised multi-centre phase III study (TAX 327). A total of 1006 patients with KPS ≥ 60 were randomised to the following treatment groups:

- Docetaxel 75 mg/m² every 3 weeks for 10 cycles.
- Docetaxel 30 mg/m² administered weekly for the first 5 weeks in a 6 week cycle for 5 cycles.
- Mitoxantrone 12 mg/m² every 3 weeks for 10 cycles.

All 3 regimens were administered in combination with prednisone or prednisolone 5 mg twice daily, continuously.

Patients who received docetaxel every three weeks demonstrated significantly longer overall survival compared to those treated with mitoxantrone. The increase in survival seen in the docetaxel weekly arm was not statistically significant compared to the mitoxantrone control arm. Efficacy endpoints for the docetaxel arms versus the control arm are summarized in the following table:
Given the fact that docetaxel every week presented a slightly better safety profile than docetaxel every 3 weeks, it is possible that certain patients may benefit from docetaxel every week.

No statistical differences were observed between treatment groups for Global Quality of Life.

**Metastatic hormone-sensitive prostate cancer**

**STAMPEDE study**

The safety and efficacy of docetaxel administered concomitantly with standard of care (ADT) in patients with high-risk locally advanced or metastatic hormone-sensitive prostate cancer were evaluated in a randomised multi-centre, multi-arm multi-stage (MAMS) study with a seamless phase II/III design (STAMPEDE – MRC PR08). A total of 1776 male patients were allocated to the treatment arms of interest:

- Standard of care + docetaxel 75 mg/m², administered every 3 weeks for 6 cycles
- Standard of care alone

Docetaxel regimen was administered in combination with prednisone or prednisolone 5 mg twice daily continuously.

Among the 1776 randomised patients 1086 (61%) had metastatic disease, 362 were randomised to docetaxel in combination with standard of care, 724 received standard of care alone.

In these metastatic prostate cancer patients, the median overall survival was significantly longer in docetaxel treatment groups than in the standard of care alone group, with a median overall survival 19 months longer with the addition of docetaxel to standard of care (HR = 0.76, 95% CI = 0.62-0.92, p=0.005).

Efficacy results in metastatic prostate cancer patients for docetaxel arm versus control arm are summarized in the following table:
Efficacy of docetaxel in combination with prednisone or prednisolone and standard of care in the treatment of patients with metastatic hormone-sensitive prostate cancer (STAMPEDE)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + standard of care</th>
<th>Standard of care alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of metastatic prostate cancer patients</td>
<td>362</td>
<td>724</td>
</tr>
<tr>
<td>Median overall survival (months)</td>
<td>62</td>
<td>43</td>
</tr>
<tr>
<td>95% CI</td>
<td>51-73</td>
<td>40-48</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.76</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.62-0.92)</td>
<td>--</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;d&lt;/sup&gt;</td>
<td>0.005</td>
<td>--</td>
</tr>
<tr>
<td>Failure-Free survival&lt;sup&gt;b&lt;/sup&gt;</td>
<td>20.4</td>
<td>12</td>
</tr>
<tr>
<td>Median (months)</td>
<td>16.8-25.2</td>
<td>9.6-12</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.66</td>
<td>--</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>(0.57-0.76)</td>
<td>--</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;d&lt;/sup&gt;</td>
<td>&lt; 0.001</td>
<td>--</td>
</tr>
</tbody>
</table>

<sup>a</sup>p-value calculated from the likelihood ratio test and adjusted for all stratification factors (except center and planned hormone therapy) and stratified by trial period

<sup>b</sup> Failure-free survival: time from randomization to first evidence of at least one of: biochemical failure (defined as a rise in PSA of 50% above the within-24-week nadir and above 4 ng/mL and confirmed by retest or treatment); progression either locally, in lymph nodes, or in distant metastases; skeletal-related event; or death from prostate cancer.

CHAARTED study

The safety and efficacy of docetaxel administered at the beginning of androgen-deprivation therapy (ADT) in patients with metastatic hormone-sensitive prostate cancer were evaluated in a randomised Phase III multi-centre study (CHAARTED). A total of 790 male patients were allocated to the 2 treatment groups.

- ADT + docetaxel 75 mg/m² given at the beginning of ADT, administered every 3 weeks for 6 cycles
- ADT alone

The median overall survival was significantly longer in docetaxel treatment group than in the ADT alone group, with a median overall survival 13.6 months longer with the addition of docetaxel to ADT (hazard ratio (HR) = 0.61, 95% confidence interval (CI) = 0.47-0.80, p=0.0003).

Efficacy results or the docetaxel arm versus the control arm are summarized in the following table:

Efficacy of docetaxel and ADT in the treatment of patients with metastatic hormone-sensitive prostate cancer (CHAARTED)
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel +ADT</th>
<th>ADT alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;</td>
<td>0.0003</td>
<td>--</td>
</tr>
<tr>
<td>Progression Free Survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>19.8</td>
<td>11.6</td>
</tr>
<tr>
<td>95% CI</td>
<td>16.7-22.8</td>
<td>10.8-14.3</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.60</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.51-0.72</td>
<td>--</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;*</td>
<td>P&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>PSA response** at 6 months – N(%)</td>
<td>127 (32.0)</td>
<td>77 (19.6)</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;*</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>PSA response** at 12 months – N(%)</td>
<td>110 (27.7)</td>
<td>66 (16.8)</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;*</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>Time to castration-resistant prostate cancer&lt;sup&gt;b&lt;/sup&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>20.2</td>
<td>11.7</td>
</tr>
<tr>
<td>95% CI</td>
<td>(17.2-23.6)</td>
<td>(10.8-14.7)</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.51-0.72)</td>
<td>--</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;*</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>Time to clinical progression&lt;sup&gt;c&lt;/sup&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>33.0</td>
<td>19.8</td>
</tr>
<tr>
<td>95% CI</td>
<td>(27.3-41.2)</td>
<td>(17.9-22.8)</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.50-0.75)</td>
<td>--</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;*</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
</tbody>
</table>

<sup>a</sup> Time to event variables: Stratified log-rank test.
Response rate variables: Fisher’s Exact test
* p-value for descriptive purpose.
** PSA response: Prostate-Specific Antigen response: PSA level <0.2 ng/mL measured for two consecutive measurements at least 4 weeks apart.
<sup>b</sup> Time to castration-resistant prostate cancer = time from randomization to PSA progression or clinical progression (i.e., increasing symptomatic bone metastases, progression per Response Evaluation Criteria in Solid Tumours (RECIST) criteria, or clinical deterioration due to cancer per the Investigator’s opinion), whichever occurred first.
<sup>c</sup> The time to clinical progression = the time from randomization until clinical progression (i.e., increased symptoms of bone metastases; progression according to RECIST; or clinical deterioration due to cancer according to the investigator’s opinion).

**Gastric adenocarcinoma**

A multi-centre, open-label, randomised study was conducted to evaluate the safety and efficacy of docetaxel for the treatment of patients with metastatic gastric adenocarcinoma, including adenocarcinoma of the gastroesophageal junction, who had not received prior chemotherapy for metastatic disease. A total of 445 patients with KPS > 70 were treated with either docetaxel (T) (75 mg/m² on day 1) in combination with cisplatin (C) (75 mg/m² on day 1) and 5-fluorouracil (F) (750 mg/m² per day for 5 days) or cisplatin (100 mg/m² on day 1) and 5-fluorouracil (1000 mg/m² per day for 5 days). The length of a treatment cycle was 3 weeks for the TCF arm and 4 weeks for the CF arm. The median number of cycles administered per patient was 6 (with a range of 1-16) for the TCF arm compared to 4 (with a range of 1-12) for the CF arm. Time to progression (TTP) was the primary endpoint. The risk reduction of progression was 32.1% and was associated with a significantly longer TTP (p = 0.0004) in favour of the TCF arm. Overall survival was also significantly longer.
(p = 0.0201) in favour of the TCF arm with a risk reduction of mortality of 22.7%. Efficacy results are summarized in the following table:

### Efficacy of docetaxel in the treatment of patients with gastric adenocarcinoma

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>TCF</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median TTP (months) (95% CI)</td>
<td>5.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>1.473</td>
<td>1.825</td>
</tr>
<tr>
<td>*p-value</td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td>Median survival (months) (95% CI)</td>
<td>9.2</td>
<td>8.6</td>
</tr>
<tr>
<td>2-year estimate (%)</td>
<td>18.4</td>
<td>8.8</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>1.293</td>
<td>1.606</td>
</tr>
<tr>
<td>*p-value</td>
<td>0.0201</td>
<td></td>
</tr>
<tr>
<td>Overall response rate (CR+PR) (%)</td>
<td>36.7</td>
<td>25.4</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0106</td>
<td></td>
</tr>
<tr>
<td>Progressive disease as best overall response (%)</td>
<td>16.7</td>
<td>25.9</td>
</tr>
</tbody>
</table>

*Unstratified logrank test

Subgroup analyses across age, gender and race consistently favoured the TCF arm compared to the CF arm.

A survival update analysis conducted with a median follow-up time of 41.6 months no longer showed a statistically significant difference although always in favour of the TCF regimen and showed that the benefit of TCF over CF is clearly observed between 18 and 30 months of follow up.

Overall, quality of life (QoL) and clinical benefit results consistently indicated improvement in favour of the TCF arm. Patients treated with TCF had a longer time to 5% definitive deterioration of global health status on the QLQ-C30 questionnaire (p = 0.0121) and a longer time to definitive worsening of Karnofsky performance status (p = 0.0088) compared to patients treated with CF.

### Head and neck cancer

- Induction chemotherapy followed by radiotherapy (TAX323)
  
The safety and efficacy of docetaxel in the induction treatment of patients with squamous cell carcinoma of the head and neck (SCCHN) was evaluated in a phase III, multi-centre, open-label, randomised study (TAX323). In this study, 358 patients with inoperable locally advanced SCCHN, and WHO performance status 0 or 1, were randomised to one of two treatment arms. Patients on the docetaxel arm received docetaxel (T) 75 mg/m² followed by cisplatin (P) 75 mg/m² followed by 5-fluorouracil (F) 750 mg/m² per day as a continuous infusion for 5 days. This regimen was administered every three weeks for 4 cycles in case at least a minor response (≥ 25% reduction in bidimensionally measured tumour size) was observed after 2 cycles. At the end of chemotherapy, with a minimal interval of 4 weeks and a maximal interval of 7 weeks, patients whose disease did not progress received radiotherapy (RT) according to institutional guidelines for 7 weeks (TPF/RT). Patients on the comparator arm received cisplatin (P) 100 mg/m² followed by 5-fluorouracil (F) 1000 mg/m² per day for 5 days. This regimen was administered every three weeks for 4 cycles in case at least a minor response (≥ 25% reduction in bidimensionally measured tumour size) was observed after 2 cycles. At the end of chemotherapy, with a minimal interval of 4 weeks and a maximal interval of 7 weeks, patients whose disease did not progress received radiotherapy (RT) according to institutional guidelines for 7 weeks (PF/RT). Locoregional therapy with radiation was delivered either with a conventional fraction (1.8 Gy - 2.0 Gy once a day, 5 days per week for a total dose of 66 to 70 Gy), or accelerated/hyperfractionated regimens of radiation therapy (twice a day, with a minimum interfraction interval of 6 hours, 5 days per week). A total of 70 Gy was recommended for accelerated
regimens and 74 Gy for hyperfractionated schemes. Surgical resection was allowed following chemotherapy, before or after radiotherapy. Patients on the TPF arm received antibiotic prophylaxis with ciprofloxacin 500 mg orally twice daily for 10 days starting on day 5 of each cycle, or equivalent. The primary endpoint in this study, progression-free survival (PFS), was significantly longer in the TPF arm compared to the PF arm, \( p = 0.0042 \) (median PFS: 11.4 vs. 8.3 months respectively) with an overall median follow up time of 33.7 months. Median overall survival was also significantly longer in favour of the TPF arm compared to the PF arm (median OS: 18.6 vs. 14.5 months respectively) with a 28% risk reduction of mortality, \( p = 0.0128 \). Efficacy results are presented in the table below:

### Efficacy of docetaxel in the induction treatment of patients with inoperable locally advanced SCCHN (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + Cis + 5-FU</th>
<th>Cis + 5-FU</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>n</strong></td>
<td>177</td>
<td>181</td>
</tr>
<tr>
<td><strong>Median progression free survival (months)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td>11.4</td>
<td>8.3</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.70</td>
<td>(0.55-0.89)</td>
</tr>
<tr>
<td>(<em>p</em> - value)</td>
<td>0.0042</td>
<td></td>
</tr>
<tr>
<td><strong>Median survival (months)</strong></td>
<td>18.6</td>
<td>14.5</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(15.7-24.0)</td>
<td>(11.6-18.7)</td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>0.72</td>
<td>(0.56-0.93)</td>
</tr>
<tr>
<td>(*<em>p</em> - value)</td>
<td>0.0128</td>
<td></td>
</tr>
<tr>
<td><strong>Best overall response to chemotherapy (%)</strong></td>
<td>67.8</td>
<td>53.6</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(60.4-74.6)</td>
<td>(46.0-61.0)</td>
</tr>
<tr>
<td>(**<em>p</em> - value)</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td><strong>Best overall response to study treatment</strong></td>
<td>72.3</td>
<td>58.6</td>
</tr>
<tr>
<td>[chemotherapy +/- radiotherapy] (%)</td>
<td>(65.1-78.8)</td>
<td>(51.0-65.8)</td>
</tr>
<tr>
<td>(**<em>p</em> - value)</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td><strong>Median duration of response to chemotherapy ± radiotherapy (months)</strong></td>
<td>n = 128</td>
<td>n = 106</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>15.7</td>
<td>11.7</td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>0.72</td>
<td>(0.52-0.99)</td>
</tr>
<tr>
<td>(*<em>p</em> - value)</td>
<td>0.0457</td>
<td></td>
</tr>
</tbody>
</table>

A hazard ratio of less than 1 favours docetaxel + cisplatin + 5-FU

* Cox model (adjustment for Primary tumour site, T and N clinical stages and PSWHO)

** Logrank test

*** Chi-square test

**Quality of life parameters**

Patients treated with TPF experienced significantly less deterioration of their Global health score compared to those treated with PF (\( p = 0.01 \), using the EORTC QLQ-C30 scale).

**Clinical benefit parameters**

The performance status scale, for head and neck (PSS-HN) subscales designed to measure understandability of speech, ability to eat in public, and normalcy of diet, was significantly in favour of TPF as compared to PF.

Median time to first deterioration of WHO performance status was significantly longer in the TPF arm compared to PF. Pain intensity score improved during treatment in both groups indicating adequate pain management.
Induction chemotherapy followed by chemoradiotherapy (TAX324)
The safety and efficacy of docetaxel in the induction treatment of patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN) was evaluated in a randomised, multi-centre open-label, phase III study (TAX324). In this study, 501 patients, with locally advanced SCCHN, and a WHO performance status of 0 or 1, were randomised to one of two arms. The study population comprised patients with technically unresectable disease, patients with low probability of surgical cure and patients aiming at organ preservation. The efficacy and safety evaluation solely addressed survival endpoints and the success of organ preservation was not formally addressed. Patients on the docetaxel arm received docetaxel (T) 75 mg/m² by intravenous infusion on day 1 followed by cisplatin (P) 100 mg/m² administered as a 30-minute to three-hour intravenous infusion, followed by the continuous intravenous infusion of 5-fluorouracil (F) 1000 mg/m²/day from day 1 to day 4. The cycles were repeated every 3 weeks for 3 cycles. All patients who did not have progressive disease were to receive chemoradiotherapy (CRT) as per protocol (TPF/CRT). Patients on the comparator arm received cisplatin (P) 100 mg/m² as a 30-minute to three-hour intravenous infusion on day 1 followed by the continuous intravenous infusion of 5-fluorouracil (F) 1000 mg/m²/day from day 1 to day 5. The cycles were repeated every 3 weeks for 3 cycles. All patients who did not have progressive disease were to receive CRT as per protocol (PF/CRT).

Patients in both treatment arms were to receive 7 weeks of CRT following induction chemotherapy with a minimum interval of 3 weeks and no later than 8 weeks after start of the last cycle (day 22 to day 56 of last cycle). During radiotherapy, carboplatin (AUC 1.5) was given weekly as a one-hour intravenous infusion for a maximum of 7 doses. Radiation was delivered with megavoltage equipment using once daily fractionation (2 Gy per day, 5 days per week for 7 weeks, for a total dose of 70-72 Gy). Surgery on the primary site of disease and/or neck could be considered at any time following completion of CRT. All patients on the docetaxel-containing arm of the study received prophylactic antibiotics. The primary efficacy endpoint in this study, overall survival (OS) was significantly longer (log-rank test, p = 0.0058) with the docetaxel-containing regimen compared to PF (median OS: 70.6 versus 30.1 months respectively), with a 30% risk reduction in mortality compared to PF (hazard ratio (HR) = 0.70, 95% confidence interval (CI) = 0.54-0.90) with an overall median follow up time of 41.9 months. The secondary endpoint, PFS, demonstrated a 29% risk reduction of progression or death and a 22 month improvement in median PFS (35.5 months for TPF and 13.1 for PF). This was also statistically significant with an HR of 0.71; 95% CI 0.56-0.90; log-rank test p = 0.004. Efficacy results are presented in the table below:
Efficacy of docetaxel in the induction treatment of patients with locally advanced SCCHN (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + Cis + 5-FU n = 255</th>
<th>Cis + 5-FU n = 246</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median overall survival (months)</td>
<td>70.6 (49.0-NA)</td>
<td>30.1 (20.9-51.5)</td>
</tr>
<tr>
<td>Hazard ratio:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td>0.70 (0.54-0.90)</td>
<td></td>
</tr>
<tr>
<td>*p-value</td>
<td>0.0058</td>
<td></td>
</tr>
<tr>
<td>Median PFS (months)</td>
<td>35.5 (19.3-NA)</td>
<td>13.1 (10.6-20.2)</td>
</tr>
<tr>
<td>Hazard ratio:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td>0.71 (0.56 - 0.90)</td>
<td></td>
</tr>
<tr>
<td>**p-value</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Best overall response (CR + PR) to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chemotherapy (%) (95% CI)</td>
<td>71.8 (65.8-77.2)</td>
<td>64.2 (57.9-70.2)</td>
</tr>
<tr>
<td>***p-value</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>Best overall response (CR + PR) to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>study treatment [chemotherapy +/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chemoradiotherapy] (%) (95%CI)</td>
<td>76.5 (70.8-81.5)</td>
<td>71.5 (65.5-77.1)</td>
</tr>
<tr>
<td>***p-value</td>
<td>0.209</td>
<td></td>
</tr>
</tbody>
</table>

A hazard ratio of less than 1 favours docetaxel + cisplatin + fluorouracil

*un-adjusted log-rank test

**un-adjusted log-rank test, not adjusted for multiple comparisons

***Chi square test, not adjusted for multiple comparisons

NA-not applicable

Paediatric population

The European Medicines Agency has waived the obligation to submit the results of studies with TAXOTERE in all subsets of the paediatric population in breast cancer, non-small cell lung cancer, prostate cancer, gastric carcinoma and head and neck cancer, not including type II and III less differentiated nasopharyngeal carcinoma (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

Absorption

The pharmacokinetics of docetaxel have been evaluated in cancer patients after administration of 20-115 mg/m² in phase I studies. The kinetic profile of docetaxel is dose independent and consistent with a three-compartment pharmacokinetic model with half-lives for the α, β and γ (terminal) phases of 4 min, 36 min and between 11.1 h and 17.5 h, respectively, when sampled up to 24 hours. An additional study assessing the pharmacokinetics of docetaxel at similar doses (75 – 100 mg/m²) in patients, but over a longer time interval (over 22 days) found a longer mean terminal elimination half-life between 91 and 120 hours. The late phase is due, in part, to a relatively slow efflux of docetaxel from the peripheral compartment.

Distribution

Following the administration of a 100 mg/m² dose given as a one-hour infusion a mean peak plasma level of 3.7 µg/ml was obtained with a corresponding AUC of 4.6 h.µg/ml. Mean values for total body clearance and steady-state volume of distribution were 21 l/h/m² and 113 l, respectively. Inter
individual variation in total body clearance was approximately 50%. Docetaxel is more than 95% bound to plasma proteins.

Elimination

A study of $^{14}$C-docetaxel has been conducted in three cancer patients. Docetaxel was eliminated in both the urine and faeces following cytochrome P450-mediated oxidative metabolism of the tert-butyl ester group, within seven days, the urinary and faecal excretion accounted for about 6% and 75% of the administered radioactivity, respectively. About 80% of the radioactivity recovered in faeces is excreted during the first 48 hours as one major inactive metabolite and 3 minor inactive metabolites and very low amounts of unchanged medicinal product.

Special populations

Age and gender

A population pharmacokinetic analysis has been performed with docetaxel in 577 patients. Pharmacokinetic parameters estimated by the model were very close to those estimated from phase I studies. The pharmacokinetics of docetaxel were not altered by the age or sex of the patient.

Hepatic impairment

In a small number of patients ($n = 23$) with clinical chemistry data suggestive of mild to moderate liver function impairment (ALT, AST $\geq 1.5$ times the ULN associated with alkaline phosphatase $\geq 2.5$ times the ULN), total clearance was lowered by 27% on average (see section 4.2).

Fluid retention

Docetaxel clearance was not modified in patients with mild to moderate fluid retention and there are no data available in patients with severe fluid retention.

Combination therapy

Doxorubicin

When used in combination, docetaxel does not influence the clearance of doxorubicin and the plasma levels of doxorubicinol (a doxorubicin metabolite). The pharmacokinetics of docetaxel, doxorubicin and cyclophosphamide were not influenced by their co-administration.

Capecitabine

Phase I study evaluating the effect of capecitabine on the pharmacokinetics of docetaxel and vice versa showed no effect by capecitabine on the pharmacokinetics of docetaxel (Cmax and AUC) and no effect by docetaxel on the pharmacokinetics of a relevant capecitabine metabolite 5'-DFUR.

Cisplatin

Clearance of docetaxel in combination therapy with cisplatin was similar to that observed following monotherapy. The pharmacokinetic profile of cisplatin administered shortly after docetaxel infusion is similar to that observed with cisplatin alone.

Cisplatin and 5-fluorouracil

The combined administration of docetaxel, cisplatin and 5-fluorouracil in 12 patients with solid tumours had no influence on the pharmacokinetics of each individual medicinal product.

Prednisone and dexamethasone

The effect of prednisone on the pharmacokinetics of docetaxel administered with standard dexamethasone premedication has been studied in 42 patients.

Prednisone

No effect of prednisone on the pharmacokinetics of docetaxel was observed.
5.3 Preclinical safety data

The carcinogenic potential of docetaxel has not been studied.

Docetaxel has been shown to be genotoxic by an aneugenic mechanism in the *in vitro* micronucleus and chromosome aberration test in CHO-K1 cells and in the *in vivo* micronucleus test in the mouse. However, it did not induce mutagenicity in the Ames test or the CHO/HGPRT gene mutation assay. These results are consistent with the pharmacological activity of docetaxel.

Undesirable effects on the testis observed in rodent toxicity studies suggest that docetaxel may impair male fertility.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Polysorbate 80
Ethanol anhydrous
Citric acid

6.2 Incompatibilities

This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.

6.3 Shelf-life

Unopened vial
2 years

After opening of the vial
Each vial is for single use and should be used immediately after opening. If not used immediately, in-use storage times and conditions are the responsibility of the user.

Once added to the infusion bag
From a microbiological point of view, reconstitution/dilution must take place in controlled and aseptic conditions and the medicinal product should be used immediately. If not used immediately, in-use storage times and conditions are the responsibility of the user.

Once added as recommended into the infusion bag, the docetaxel infusion solution, if stored below 25°C, is stable for 6 hours. It should be used within 6 hours (including the one hour infusion intravenous administration).

In addition, physical and chemical in-use stability of the infusion solution prepared as recommended has been demonstrated in non-PVC bags up to 48 hours when stored between 2 to 8°C.

Docetaxel infusion solution is supersaturated, therefore may crystallize over time. If crystals appear, the solution must no longer be used and shall be discarded.

6.4 Special precautions for storage

Do not store above 25°C.
Store in the original package in order to protect from light.

For storage conditions of the diluted medicinal product, see section 6.3.
6.5 Nature and contents of container

7 ml clear glass (type I) vial with a green aluminium seal and a green plastic flip-off cap containing 1 ml of concentrate.

Each box contains one vial.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

TAXOTERE is an antineoplastic agent and, as with other potentially toxic compounds, caution should be exercised when handling it and preparing TAXOTERE solutions. The use of gloves is recommended.

If TAXOTERE concentrate or infusion solution should come into contact with skin, wash immediately and thoroughly with soap and water. If TAXOTERE concentrate or infusion solution should come into contact with mucous membranes, wash immediately and thoroughly with water.

Preparation for the intravenous administration

Preparation of the infusion solution

DO NOT use other docetaxel medicinal products consisting of 2 vials (concentrate and solvent) with this medicinal product (TAXOTERE 20 mg/1 ml concentrate for solution for infusion, which contains only 1 vial).

TAXOTERE 20 mg/1 ml concentrate for solution for infusion requires NO prior dilution with a solvent and is ready to add to the infusion solution.

Each vial is of single use and should be used immediately.

If the vials are stored under refrigeration, allow the required number of boxes of TAXOTERE concentrate for solution for infusion to stand below 25°C for 5 minutes before use.

More than one vial of TAXOTERE concentrate for solution for infusion may be necessary to obtain the required dose for the patient. Aseptically withdraw the required amount of TAXOTERE concentrate for solution for infusion using a calibrated syringe fitted with a 21G needle.

In TAXOTERE 20 mg /1 ml vial the concentration of docetaxel is 20 mg/ml.

The required volume of TAXOTERE concentrate for solution for infusion must be injected via a single injection (one shot) into a 250 ml infusion bag or bottle containing either 5% glucose solution or sodium chloride 9 mg/ml (0.9%) solution for infusion.

If a dose greater than 190 mg of docetaxel is required, use a larger volume of the infusion vehicle so that a concentration of 0.74 mg/ml docetaxel is not exceeded.

Mix the infusion bag or bottle manually using a rocking motion.

The infusion bag solution should be used within 6 hours below 25°C including the one hour infusion to the patient.

As with all parenteral products, TAXOTERE infusion solution should be visually inspected prior to use, solutions containing a precipitate should be discarded.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.
7. MARKETING AUTHORISATION HOLDER
Sanofi Mature IP, 54 rue La Boétie, 75008 Paris, France

8. MARKETING AUTHORISATION NUMBER
EU/1/95/002/003

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION
Date of first authorisation: 27 November 1995
Date of latest renewal: 27 November 2005

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu
1. **NAME OF THE MEDICINAL PRODUCT**

TAXOTERE 80 mg/4 ml concentrate for solution for infusion

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**

Each ml of concentrate contains 20 mg docetaxel (as trihydrate).

One vial of 4 ml of concentrate contains 80 mg of docetaxel.

**Excipient with known effect:**
Each vial of concentrate contains 2 ml of ethanol anhydrous (1.58 g).

For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**

Concentrate for solution for infusion (sterile concentrate).

The concentrate is a pale yellow to brownish-yellow solution.

4. **CLINICAL PARTICULARS**

4.1 **Therapeutic indications**

**Breast cancer**

TAXOTERE in combination with doxorubicin and cyclophosphamide is indicated for the adjuvant treatment of patients with:
- operable node- positive breast cancer
- operable node-negative breast cancer.

For patients with operable node-negative breast cancer, adjuvant treatment should be restricted to patients eligible to receive chemotherapy according to internationally established criteria for primary therapy of early breast cancer (see section 5.1).

TAXOTERE in combination with doxorubicin is indicated for the treatment of patients with locally advanced or metastatic breast cancer who have not previously received cytotoxic therapy for this condition.

TAXOTERE monotherapy is indicated for the treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic therapy. Previous chemotherapy should have included an anthracycline or an alkylating agent.

TAXOTERE in combination with trastuzumab is indicated for the treatment of patients with metastatic breast cancer whose tumours over express HER2 and who previously have not received chemotherapy for metastatic disease.

TAXOTERE in combination with capecitabine is indicated for the treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic chemotherapy. Previous therapy should have included an anthracycline.
Non-small cell lung cancer

TAXOTERE is indicated for the treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of prior chemotherapy.

TAXOTERE in combination with cisplatin is indicated for the treatment of patients with unresectable, locally advanced or metastatic non-small cell lung cancer, in patients who have not previously received chemotherapy for this condition.

Prostate cancer

TAXOTERE in combination with prednisone or prednisolone is indicated for the treatment of patients with metastatic castration-resistant prostate cancer.

TAXOTERE in combination with androgen-deprivation therapy (ADT), with or without prednisone or prednisolone, is indicated for the treatment of patients with metastatic hormone-sensitive prostate cancer.

Gastric adenocarcinoma

TAXOTERE in combination with cisplatin and 5-fluorouracil is indicated for the treatment of patients with metastatic gastric adenocarcinoma, including adenocarcinoma of the gastroesophageal junction, who have not received prior chemotherapy for metastatic disease.

Head and neck cancer

TAXOTERE in combination with cisplatin and 5-fluorouracil is indicated for the induction treatment of patients with locally advanced squamous cell carcinoma of the head and neck.

4.2 Posology and method of administration

The use of docetaxel should be confined to units specialised in the administration of cytotoxic chemotherapy and it should only be administered under the supervision of a physician qualified in the use of anticancer chemotherapy (see section 6.6).

Posology

For breast, non-small cell lung, gastric, and head and neck cancers, premedication consisting of an oral corticosteroid, such as dexamethasone 16 mg per day (e.g. 8 mg BID) for 3 days starting 1 day prior to docetaxel administration, unless contraindicated, can be used (see section 4.4).

For metastatic castration-resistant prostate cancer, given the concurrent use of prednisone or prednisolone the recommended premedication regimen is oral dexamethasone 8 mg, 12 hours, 3 hours and 1 hour before the docetaxel infusion (see section 4.4).

For metastatic hormone-sensitive prostate cancer, irrespective of the concurrent use of prednisone or prednisolone, the recommended premedication regimen is oral dexamethasone 8 mg 12 hours, 3 hours, and 1 hour before docetaxel infusion (see section 4.4).

Prophylactic G-CSF may be used to mitigate the risk of haematological toxicities.

Docetaxel is administered as a one-hour infusion every three weeks.

Breast cancer

In the adjuvant treatment of operable node-positive and node-negative breast cancer, the recommended dose of docetaxel is 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² every 3 weeks for 6 cycles (TAC regimen) (see also Dose adjustments during treatment).
For the treatment of patients with locally advanced or metastatic breast cancer, the recommended dose of docetaxel is 100 mg/m² in monotherapy. In first-line treatment, docetaxel 75 mg/m² is given in combination therapy with doxorubicin (50 mg/m²).

In combination with trastuzumab the recommended dose of docetaxel is 100 mg/m² every three weeks, with trastuzumab administered weekly. In the pivotal study the initial docetaxel infusion was started the day following the first dose of trastuzumab. The subsequent docetaxel doses were administered immediately after completion of the trastuzumab infusion, if the preceding dose of trastuzumab was well tolerated. For trastuzumab dose and administration, see trastuzumab summary of product characteristics.

In combination with capecitabine, the recommended dose of docetaxel is 75 mg/m² every three weeks, combined with capecitabine at 1250 mg/m² twice daily (within 30 minutes after a meal) for 2 weeks followed by a 1-week rest period. For capecitabine dose calculation according to body surface area, see capecitabine summary of product characteristics.

Non-small cell lung cancer
In chemotherapy naïve patients treated for non-small cell lung cancer, the recommended dose regimen is docetaxel 75 mg/m² immediately followed by cisplatin 75 mg/m² over 30-60 minutes. For treatment after failure of prior platinum-based chemotherapy, the recommended dose is 75 mg/m² as a single agent.

Prostate cancer
Metastatic castration-resistant prostate cancer
The recommended dose of docetaxel is 75 mg/m². Prednisone or prednisolone 5 mg orally twice daily is administered continuously (see section 5.1).

Metastatic hormone-sensitive prostate cancer
The recommended dose of docetaxel is 75 mg/m² every 3 weeks for 6 cycles. Prednisone or prednisolone 5 mg orally twice daily may be administered continuously.

Gastric adenocarcinoma
The recommended dose of docetaxel is 75 mg/m² as a 1-hour infusion, followed by cisplatin 75 mg/m², as a 1- to 3-hour infusion (both on day 1 only), followed by 5-fluorouracil 750 mg/m² per day given as a 24-hour continuous infusion for 5 days, starting at the end of the cisplatin infusion. Treatment is repeated every three weeks. Patients must receive premedication with antiemetics and appropriate hydration for cisplatin administration. Prophylactic G-CSF should be used to mitigate the risk of haematological toxicities (see also Dose adjustments during treatment).

Head and neck cancer
Patients must receive premedication with antiemetics and appropriate hydration (prior to and after cisplatin administration). Prophylactic G-CSF may be used to mitigate the risk of haematological toxicities. All patients on the docetaxel-containing arm of the TAX 323 and TAX 324 studies, received prophylactic antibiotics.

- Induction chemotherapy followed by radiotherapy (TAX 323)
  For the induction treatment of inoperable locally advanced squamous cell carcinoma of the head and neck (SCCHN), the recommended dose of docetaxel is 75 mg/m² as a 1 hour infusion followed by cisplatin 75 mg/m² over 1 hour, on day one, followed by 5-fluorouracil as a continuous infusion at 750 mg/m² per day for five days. This regimen is administered every 3 weeks for 4 cycles. Following chemotherapy, patients should receive radiotherapy.

- Induction chemotherapy followed by chemoradiotherapy (TAX 324)
  For the induction treatment of patients with locally advanced (technically unresectable, low probability of surgical cure, and aiming at organ preservation) squamous cell carcinoma of the head and neck (SCCHN), the recommended dose of docetaxel is 75 mg/m² as a 1 hour intravenous infusion on day 1, followed by cisplatin 100 mg/m² administered as a 30-minute to 3-hour
infusion, followed by 5-fluorouracil 1000 mg/m²/day as a continuous infusion from day 1 to day 4. This regimen is administered every 3 weeks for 3 cycles. Following chemotherapy, patients should receive chemoradiotherapy.

For cisplatin and 5-fluorouracil dose modifications, see the corresponding summary of product characteristics.

**Dose adjustments during treatment**

**General**
Docetaxel should be administered when the neutrophil count is ≥ 1,500 cells/mm³. In patients who experienced either febrile neutropenia, neutrophil count < 500 cells/mm³ for more than one week, severe or cumulative cutaneous reactions or severe peripheral neuropathy during docetaxel therapy, the dose of docetaxel should be reduced from 100 mg/m² to 75 mg/m² and/or from 75 to 60 mg/m². If the patient continues to experience these reactions at 60 mg/m², the treatment should be discontinued.

**Adjuvant therapy for breast cancer**
Primary G-CSF prophylaxis should be considered in patients who receive docetaxel, doxorubicin and cyclophosphamide (TAC) adjuvant therapy for breast cancer. Patients who experience febrile neutropenia and/or neutropenic infection should have their docetaxel dose reduced to 60 mg/m² in all subsequent cycles (see sections 4.4 and 4.8). Patients who experience Grade 3 or 4 stomatitis should have their dose decreased to 60 mg/m².

**In combination with cisplatin**
For patients who are dosed initially at docetaxel 75 mg/m² in combination with cisplatin and whose nadir of platelet count during the previous course of therapy is < 25,000 cells/mm³, or in patients who experience febrile neutropenia, or in patients with serious non-haematologic toxicities, the docetaxel dose in subsequent cycles should be reduced to 65 mg/m². For cisplatin dose adjustments, see the corresponding summary of product characteristics.

**In combination with capecitabine**
- For capecitabine dose modifications, see capecitabine summary of product characteristics.
- For patients developing the first appearance of Grade 2 toxicity, which persists at the time of the next docetaxel/capecitabine treatment, delay treatment until resolved to Grade 0-1, and resume at 100% of the original dose.
- For patients developing the second appearance of Grade 2 toxicity, or the first appearance of Grade 3 toxicity, at any time during the treatment cycle, delay treatment until resolved to Grade 0-1 and then resume treatment with docetaxel 55 mg/m².
- For any subsequent appearances of toxicities, or any Grade 4 toxicities, discontinue the docetaxel dose.

For trastuzumab dose modifications, see trastuzumab summary of product characteristics.

**In combination with cisplatin and 5-fluorouracil**
If an episode of febrile neutropenia, prolonged neutropenia or neutropenic infection occurs despite G-CSF use, the docetaxel dose should be reduced from 75 to 60 mg/m². If subsequent episodes of complicated neutropenia occur the docetaxel dose should be reduced from 60 to 45 mg/m². In case of Grade 4 thrombocytopenia the docetaxel dose should be reduced from 75 to 60 mg/m². Patients should not be retreated with subsequent cycles of docetaxel until neutrophils recover to a level > 1,500 cells/mm³ and platelets recover to a level > 100,000 cells/mm³. Discontinue treatment if these toxicities persist (see section 4.4).

Recommended dose modifications for toxicities in patients treated with docetaxel in combination with cisplatin and 5-fluorouracil (5-FU):
<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Dose adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea grade 3</td>
<td>First episode: reduce 5-FU dose by 20%.</td>
</tr>
<tr>
<td></td>
<td>Second episode: then reduce docetaxel dose by 20%.</td>
</tr>
<tr>
<td>Diarrhoea grade 4</td>
<td>First episode: reduce docetaxel and 5-FU doses by 20%</td>
</tr>
<tr>
<td>Stomatitis/mucositis</td>
<td>First episode: reduce 5-FU dose by 20%.</td>
</tr>
<tr>
<td>grade 3</td>
<td>Second episode: stop 5-FU only, at all subsequent cycles.</td>
</tr>
<tr>
<td></td>
<td>Third episode: reduce docetaxel dose by 20%.</td>
</tr>
<tr>
<td>Stomatitis/mucositis</td>
<td>First episode: stop 5-FU only, at all subsequent cycles.</td>
</tr>
<tr>
<td>grade 4</td>
<td>Second episode: reduce docetaxel dose by 20%.</td>
</tr>
</tbody>
</table>

For cisplatin and 5-fluorouracil dose adjustments, see the corresponding summary of product characteristics.

In the pivotal SCCHN studies patients who experienced complicated neutropenia (including prolonged neutropenia, febrile neutropenia, or infection), it was recommended to use G-CSF to provide prophylactic coverage (eg, day 6-15) in all subsequent cycles.

Special populations

**Patients with hepatic impairment**

Based on pharmacokinetic data with docetaxel at 100 mg/m² as single agent, patients who have both elevations of transaminase (ALT and/or AST) greater than 1.5 times the upper limit of the normal range (ULN) and alkaline phosphatase greater than 2.5 times the ULN, the recommended dose of docetaxel is 75 mg/m² (see sections 4.4 and 5.2). For those patients with serum bilirubin > ULN and/or ALT and AST > 3.5 times the ULN associated with alkaline phosphatase > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated.

In combination with cisplatin and 5-fluorouracil for the treatment of patients with gastric adenocarcinoma, the pivotal clinical study excluded patients with ALT and/or AST > 1.5 × ULN associated with alkaline phosphatase > 6 times the ULN, no dose-reductions can be recommended and docetaxel should not be used unless strictly indicated. No data are available in patients with hepatic impairment treated by docetaxel in combination in the other indications.

**Paediatric population**

The safety and efficacy of TAXOTERE in nasopharyngeal carcinoma in children aged 1 month to less than 18 years have not yet been established.

There is no relevant use of TAXOTERE in the paediatric population in the indications breast cancer, non-small cell lung cancer, prostate cancer, gastric carcinoma and head and neck cancer, not including type II and III less differentiated nasopharyngeal carcinoma.

**Older people**

Based on a population pharmacokinetic analysis, there are no special instructions for use in the older people.

In combination with capecitabine, for patients 60 years of age or more, a starting dose reduction of capecitabine to 75% is recommended (see capecitabine summary of product characteristics).

**Method of administration**

For instructions on preparation and administration of the product, see section 6.6.

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

Patients with baseline neutrophil count of < 1,500 cells/mm³.

Patients with severe liver impairment (see sections 4.2 and 4.4).
Contraindications for other medicinal products also apply, when combined with docetaxel.

4.4 Special warnings and precautions for use

For breast and non-small cell lung cancers, premedication consisting of an oral corticosteroid, such as dexamethasone 16 mg per day (e.g. 8 mg BID) for 3 days starting 1 day prior to docetaxel administration, unless contraindicated, can reduce the incidence and severity of fluid retention as well as the severity of hypersensitivity reactions. For prostate cancer, the premedication is oral dexamethasone 8 mg, 12 hours, 3 hours and 1 hour before the docetaxel infusion (see section 4.2).

Haematology

Neutropenia is the most frequent adverse reaction of docetaxel. Neutrophil nadirs occurred at a median of 7 days but this interval may be shorter in heavily pre-treated patients. Frequent monitoring of complete blood counts should be conducted on all patients receiving docetaxel. Patients should be retreated with docetaxel when neutrophils recover to a level $\geq 1,500$ cells/mm$^3$ (see section 4.2).

In the case of severe neutropenia ($< 500$ cells/mm$^3$ for seven days or more) during a course of docetaxel therapy, a reduction in dose for subsequent courses of therapy or the use of appropriate symptomatic measures are recommended (see section 4.2).

In patients treated with docetaxel in combination with cisplatin and 5-fluorouracil (TCF), febrile neutropenia and neutropenic infection occurred at lower rates when patients received prophylactic G-CSF. Patients treated with TCF should receive prophylactic G-CSF to mitigate the risk of complicated neutropenia (febrile neutropenia, prolonged neutropenia or neutropenic infection). Patients receiving TCF should be closely monitored (see sections 4.2 and 4.8).

In patients treated with docetaxel in combination with doxorubicin and cyclophosphamide (TAC), febrile neutropenia and/or neutropenic infection occurred at lower rates when patients received primary G-CSF prophylaxis. Primary G-CSF prophylaxis should be considered in patients who receive adjuvant therapy with TAC for breast cancer to mitigate the risk of complicated neutropenia (febrile neutropenia, prolonged neutropenia or neutropenic infection). Patients receiving TAC should be closely monitored (see sections 4.2 and 4.8).

Gastrointestinal reactions

Caution is recommended for patients with neutropenia, particularly at risk for developing gastrointestinal complications. Although majority of cases occurred during the first or second cycle of docetaxel containing regimen, enterocolitis could develop at any time, and could lead to death as early as on the first day of onset. Patients should be closely monitored for early manifestations of serious gastrointestinal toxicity (see sections 4.2, 4.4 Haematology, and 4.8).

Hypersensitivity reactions

Patients should be observed closely for hypersensitivity reactions especially during the first and second infusions. Hypersensitivity reactions may occur within a few minutes following the initiation of the infusion of docetaxel, thus facilities for the treatment of hypotension and bronchospasm should be available. If hypersensitivity reactions occur, minor symptoms such as flushing or localised cutaneous reactions do not require interruption of therapy. However, severe reactions, such as severe hypotension, bronchospasm or generalised rash/erythema require immediate discontinuation of docetaxel and appropriate therapy. Patients who have developed severe hypersensitivity reactions should not be re-challenged with docetaxel. Patients who have previously experienced a hypersensitivity reaction to paclitaxel may be at risk to develop hypersensitivity reaction to docetaxel, including more severe hypersensitivity reaction. These patients should be closely monitored during initiation of docetaxel therapy.
Cutaneous reactions

Localised skin erythema of the extremities (palms of the hands and soles of the feet) with oedema followed by desquamation has been observed. Severe symptoms such as eruptions followed by desquamation which lead to interruption or discontinuation of docetaxel treatment were reported (see section 4.2).

Severe Cutaneous Adverse Reactions (SCARs) such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN) and Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with docetaxel treatment. Patients should be informed about the signs and symptoms of serious skin manifestations and closely monitored. If signs and symptoms suggestive of these reactions appear discontinuation of docetaxel should be considered.

Fluid retention

Patients with severe fluid retention such as pleural effusion, pericardial effusion and ascites should be monitored closely.

Respiratory disorders

Acute respiratory distress syndrome, interstitial pneumonia/pneumonitis, interstitial lung disease, pulmonary fibrosis and respiratory failure have been reported and may be associated with fatal outcome. Cases of radiation pneumonitis have been reported in patients receiving concomitant radiotherapy.

If new or worsening pulmonary symptoms develop, patients should be closely monitored, promptly investigated, and appropriately treated. Interruption of docetaxel therapy is recommended until diagnosis is available. Early use of supportive care measures may help improve the condition. The benefit of resuming docetaxel treatment must be carefully evaluated.

Patients with liver impairment

In patients treated with docetaxel at 100 mg/m$^2$ as single agent who have serum transaminase levels (ALT and/or AST) greater than 1.5 times the ULN concurrent with serum alkaline phosphatase levels greater than 2.5 times the ULN, there is a higher risk of developing severe adverse reactions such as toxic deaths including sepsis and gastrointestinal haemorrhage which can be fatal, febrile neutropenia, infections, thrombocytopenia, stomatitis and asthenia. Therefore, the recommended dose of docetaxel in those patients with elevated liver function test (LFTs) is 75 mg/m$^2$ and LFTs should be measured at baseline and before each cycle (see section 4.2).

For patients with serum bilirubin levels > ULN and/or ALT and AST > 3.5 times the ULN concurrent with serum alkaline phosphatase levels > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated.

In combination with cisplatin and 5-fluorouracil for the treatment of patients with gastric adenocarcinoma, the pivotal clinical study excluded patients with ALT and/or AST > 1.5 × ULN associated with alkaline phosphatase > 2.5 × ULN, and bilirubin > 1 x ULN; for these patients, no dose-reductions can be recommended and docetaxel should not be used unless strictly indicated. No data are available in patients with hepatic impairment treated by docetaxel in combination in the other indications.

Patients with renal impairment

There are no data available in patients with severely impaired renal function treated with docetaxel.

Nervous system

The development of severe peripheral neurotoxicity requires a reduction of dose (see section 4.2).
Cardiac toxicity

Heart failure has been observed in patients receiving docetaxel in combination with trastuzumab, particularly following anthracycline (doxorubicin or epirubicin)-containing chemotherapy. This may be moderate to severe and has been associated with death (see section 4.8).

When patients are candidates for treatment with docetaxel in combination with trastuzumab, they should undergo baseline cardiac assessment. Cardiac function should be further monitored during treatment (e.g. every three months) to help identify patients who may develop cardiac dysfunction. For more details see summary of product characteristics of trastuzumab.

Ventricular arrhythmia including ventricular tachycardia (sometimes fatal) has been reported in patients treated with docetaxel in combination regimens including doxorubicin, 5-fluorouracil and/or cyclophosphamide (see section 4.8). Baseline cardiac assessment is recommended.

Eye disorders

Cystoid macular oedema (CMO) has been reported in patients treated with docetaxel. Patients with impaired vision should undergo a prompt and complete ophthalmologic examination. In case CMO is diagnosed, docetaxel treatment should be discontinued and appropriate treatment initiated (see section 4.8).

Second primary malignancies

Second primary malignancies have been reported when docetaxel was given in combination with anticancer treatments known to be associated with second primary malignancies. Second primary malignancies (including acute myeloid leukaemia, myelodysplastic syndrome and non-Hodgkin lymphoma) may occur several months or years after docetaxel-containing therapy. Patients should be monitored for second primary malignancies (see section 4.8).

Tumour Lysis Syndrome

Tumour lysis syndrome has been reported with docetaxel after the first or the second cycle (see section 4.8). Patients at risk of tumour lysis syndrome (e.g. with renal impairment, hyperuricemia, bulky tumour, rapid progression) should be closely monitored. Correction of dehydration and treatment of high uric acid levels are recommended prior to initiation of treatment.

Others

Women of childbearing potential must use contraceptive measures during treatment and for 2 months after cessation of treatment with docetaxel. Men must use contraceptive measures during treatment and for 4 months after cessation of treatment with docetaxel (see section 4.6).

The concomitant use of docetaxel with strong CYP3A4 inhibitors (e.g., ketoconazole, itraconazole, clarithromycin, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin and voriconazole) should be avoided (see section 4.5).

Additional cautions for use in adjuvant treatment of breast cancer

Complicated neutropenia
For patients who experience complicated neutropenia (prolonged neutropenia, febrile neutropenia or infection), G-CSF and dose reduction should be considered (see section 4.2).
**Gastrointestinal reactions**
Symptoms such as early abdominal pain and tenderness, fever, diarrhoea, with or without neutropenia, may be early manifestations of serious gastrointestinal toxicity and should be evaluated and treated promptly.

**Congestive heart failure (CHF)**
Patients should be monitored for symptoms of congestive heart failure during therapy and during the follow up period. In patients treated with the TAC regimen for node positive breast cancer, the risk of CHF has been shown to be higher during the first year after treatment (see sections 4.8 and 5.1).

**Patients with 4+ nodes**
As the benefit observed in patient with 4+ nodes was not statistically significant on disease-free survival (DFS) and overall survival (OS), the positive benefit/risk ratio for TAC in patients with 4+ nodes was not fully demonstrated at the final analysis (see section 5.1).

**Elderly**

**Cautions for use in adjuvant treatment of breast cancer**
There are limited data available in patients > 70 years of age on docetaxel use in combination with doxorubicin and cyclophosphamide.

**Cautions for use in castration-resistant prostate cancer**
Of the 333 patients treated with docetaxel every three weeks in a prostate cancer study (TAX 327), 209 patients were 65 years of age or greater and 68 patients were older than 75 years. In patients treated with docetaxel every three weeks, the incidence of related nail changes occurred at a rate ≥ 10% higher in patients who were 65 years of age or greater compared to younger patients. The incidence of related fever, diarrhoea, anorexia, and peripheral oedema occurred at rates ≥ 10% higher in patients who were 75 years of age or greater versus less than 65 years.

**Cautions for use in hormone-sensitive prostate cancer**
Of the 545 patients treated with docetaxel every 3 weeks in a hormone-sensitive prostate cancer study (STAMPEDE), 296 patients were 65 years of age or older, and 48 patients were 75 years of age or older. More patients aged ≥65 years in the docetaxel arm reported hypersensitivity reaction, neutropenia, anaemia, fluid retention, dyspnea, and nail changes when compared to the patients aged less than 65 years. None of these increases in frequency reached 10% difference with the control arm. In patients who were 75 years of age or older, when compared to younger patients, neutropenia, anaemia, diarrhea, dyspnea and upper respiratory tract infection were reported with a greater incidence (at least 10% higher).

**Cautions for use in gastric adenocarcinoma cancer**
Among the 300 (221 patients in the phase III part of the study and 79 patients in the phase II part) patients treated with docetaxel in combination with cisplatin and 5-fluorouracil in the gastric cancer study, 74 were 65 years of age or older and 4 patients were 75 years of age or older. The incidence of serious adverse events was higher in older people compared to younger patients. The incidence of the following adverse events (all grades): lethargy, stomatitis, neutropenic infection occurred at rates ≥ 10% higher in patients who were 65 years of age or older compared to younger patients. Older people treated with TCF should be closely monitored.

**Excipients**
This medicinal product contains 50 vol % ethanol anhydrous (alcohol), i.e. up to 1.58 g ethanol anhydrous per vial, equivalent to 40 ml of beer or 17 ml wine.
Harmful for those suffering from alcoholism.
To be taken into account in pregnant or breast-feeding women, children and high-risk groups such as patients with liver disease, or epilepsy.

Consideration should be given to possible effects on the central nervous system.
4.5 Interaction with other medicinal products and other forms of interaction

The amount of alcohol in this medicinal product may alter the effects of other medicinal products.

_In vitro_ studies have shown that the metabolism of docetaxel may be modified by the concomitant administration of compounds which induce, inhibit or are metabolised by (and thus may inhibit the enzyme competitively) cytochrome P450-3A such as ciclosporine, ketoconazole and erythromycin. As a result, caution should be exercised when treating patients with these medicinal products as concomitant therapy since there is a potential for a significant interaction.

In case of combination with CYP3A4 inhibitors, the occurrence of docetaxel adverse reactions may increase, as a result of reduced metabolism. If the concomitant use of a strong CYP3A4 inhibitor (e.g., ketoconazole, itraconazole, clarithromycin, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin and voriconazole) cannot be avoided, a close clinical surveillance is warranted and a dose-adjustment of docetaxel may be suitable during the treatment with the strong CYP3A4 inhibitor (see section 4.4). In a pharmacokinetic study with 7 patients, the co-administration of docetaxel with the strong CYP3A4 inhibitor ketoconazole leads to a significant decrease in docetaxel clearance by 49%.

Docetaxel pharmacokinetics in the presence of prednisone was studied in patients with metastatic prostate cancer. Docetaxel is metabolised by CYP3A4 and prednisone is known to induce CYP3A4. No statistically significant effect of prednisone on the pharmacokinetics of docetaxel was observed.

Docetaxel is highly protein bound (> 95%). Although the possible _in vivo_ interaction of docetaxel with concomitantly administered medicinal product has not been investigated formally, _in vitro_ interactions with tightly protein-bound agents such as erythromycin, diphenhydramine, propranolol, propafenone, phenytoin, salicylate, sulfamethoxazole and sodium valproate did not affect protein binding of docetaxel. In addition, dexamethasone did not affect protein binding of docetaxel. Docetaxel did not influence the binding of digitoxin.

The pharmacokinetics of docetaxel, doxorubicin and cyclophosphamide were not influenced by their co-administration. Limited data from a single uncontrolled study were suggestive of an interaction between docetaxel and carboplatin. When combined to docetaxel, the clearance of carboplatin was about 50% higher than values previously reported for carboplatin monotherapy.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential/ Contraception in males and females

Women of childbearing potential and men receiving docetaxel should be advised to avoid becoming pregnant, and not to father a child and to inform the treating physician immediately should this occur.

Due to the genotoxic risk of docetaxel (see section 5.3), women of childbearing potential must use effective method of contraception during treatment and for 2 months after cessation of treatment with docetaxel. Men must use effective method of contraception during treatment and for 4 months after cessation of treatment with docetaxel.

Pregnancy

There is no information on the use of docetaxel in pregnant women. Docetaxel has been shown to be both embryotoxic and foetotoxic in rabbits and rats. As with other cytotoxic medicinal products, docetaxel may cause foetal harm when administered to pregnant women. Therefore, docetaxel must not be used during pregnancy unless clearly indicated.

Breast-feeding
Docetaxel is a lipophilic substance but it is not known whether it is excreted in human milk. Consequently, because of the potential for adverse reactions in nursing infants, breast feeding must be discontinued for the duration of docetaxel therapy.

Fertility

Studies in animals have shown that docetaxel may alter male fertility (see section 5.3). Therefore, males being treated with docetaxel must seek advice on conservation of sperm prior to treatment.

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. The amount of alcohol in this medicinal product and the side effects of the product may impair the ability to drive or use machines (see sections 4.4 and 4.8). Therefore, patients should be warned of the potential impact of the amount of alcohol and the side effects of this medicinal product on the ability to drive or use machines, and be advised not to drive or use machines if they experience these side effects during treatment.

4.8 Undesirable effects

Summary of the safety profile for all indications

The adverse reactions considered to be possibly or probably related to the administration of docetaxel have been obtained in:

- 1312 and 121 patients who received 100 mg/m² and 75 mg/m² of docetaxel as a single agent respectively.
- 258 patients who received docetaxel in combination with doxorubicin.
- 406 patients who received docetaxel in combination with cisplatin.
- 92 patients treated with docetaxel in combination with trastuzumab.
- 255 patients who received docetaxel in combination with capcitabine.
- 332 patients (TAX327) who received docetaxel in combination with prednisone or prednisolone (clinically important treatment related adverse events are presented).
- 1276 patients (744 and 532 in TAX 316 and GEICAM 9805 respectively) who received docetaxel in combination with doxorubicin and cyclophosphamide (clinically important treatment related adverse events are presented).
- 300 gastric adenocarcinoma patients (221 patients in the phase III part of the study and 79 patients in the phase II part) who received docetaxel in combination with cisplatin and 5-fluorouracil (clinically important treatment related adverse events are presented).
- 174 and 251 head and neck cancer patients who received docetaxel in combination with cisplatin and 5-fluorouracil (clinically important treatment related adverse events are presented).
- 545 patients (STAMPEDE study) who received docetaxel in combination with prednisone or prednisolone and ADT.

These reactions were described using the NCI Common Toxicity Criteria (grade 3 = G3; grade 3-4 = G3/4; grade 4 = G4), the COSTART and the MedDRA terms. Frequencies are defined as: very common (≥ 1/10), common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1,000); very rare (< 1/10,000); not known (cannot be estimated from available data).

Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

The most commonly reported adverse reactions of docetaxel alone are: neutropenia (which was reversible and not cumulative; the median day to nadir was 7 days and the median duration of severe neutropenia (< 500 cells/mm³) was 7 days), anaemia, alopecia, nausea, vomiting, stomatitis, diarrhoea and asthenia. The severity of adverse events of docetaxel may be increased when docetaxel is given in combination with other chemotherapeutic agents.
For combination with trastuzumab, adverse events (all grades) reported in ≥ 10% are displayed. There was an increased incidence of SAEs (40% vs. 31%) and Grade 4 AEs (34% vs. 23%) in the trastuzumab combination arm compared to docetaxel monotherapy.

For combination with capecitabine, the most frequent treatment-related undesirable effects (≥ 5%) reported in a phase III study in breast cancer patients failing anthracycline treatment are presented (see capecitabine summary of product characteristics).

For combination with ADT and with prednisone or prednisolone (STAMPEDE study), adverse events occurring over the 6 cycles of treatment with docetaxel and having at least 2% higher incidence in the docetaxel treatment arm by comparison to the control arm, are presented, using the CTCAE grading scale.

The following adverse reactions are frequently observed with docetaxel:

**Immune system disorders**

Hypersensitivity reactions have generally occurred within a few minutes following the start of the infusion of docetaxel and were usually mild to moderate. The most frequently reported symptoms were flushing, rash with or without pruritus, chest tightness, back pain, dyspnoea and fever or chills. Severe reactions were characterised by hypotension and/or bronchospasm or generalized rash/erythema (see section 4.4).

**Nervous system disorders**

The development of severe peripheral neurotoxicity requires a reduction of dose (see sections 4.2 and 4.4). Mild to moderate neuro-sensory signs are characterised by paresthesia, dysesthesia or pain including burning. Neuro-motor events are mainly characterised by weakness.

**Skin and subcutaneous tissue disorders**

Reversible cutaneous reactions have been observed and were generally considered as mild to moderate. Reactions were characterised by a rash including localised eruptions mainly on the feet and hands (including severe hand and foot syndrome), but also on the arms, face or thorax, and frequently associated with pruritus. Eruptions generally occurred within one week after the docetaxel infusion. Less frequently, severe symptoms such as eruptions followed by desquamation which rarely lead to interruption or discontinuation of docetaxel treatment were reported (see sections 4.2 and 4.4). Severe nail disorders are characterised by hypo- or hyperpigmentation and sometimes pain and onycholysis.

**General disorders and administration site conditions**

Infusion site reactions were generally mild and consisted of hyper pigmentation, inflammation, redness or dryness of the skin, phlebitis or extravasation and swelling of the vein. Fluid retention includes events such as peripheral oedema and less frequently pleural effusion, pericardial effusion, ascites and weight gain. The peripheral oedema usually starts at the lower extremities and may become generalised with a weight gain of 3 kg or more. Fluid retention is cumulative in incidence and severity (see section 4.4).

Tabulated list of adverse reactions in breast cancer for TAXOTERE 100 mg/m² single agent

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infections (G3/4: 5.7%; including sepsis and pneumonia, fatal in</td>
<td>Infection associated with G4 neutropenia (G3/4: 4.6%)</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 76.4%); Anaemia (G3/4: 8.9%); Febrile neutropenia</td>
<td>Thrombocytopenia (G4: 0.2%)</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 5.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 4.1%); Peripheral motor neuropathy (G3/4: 4%); Dysgeusia (severe: 0.07%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 0.7%)</td>
<td>Cardiac failure</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypotension; Hypertension; Haemorrhage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnoea (severe: 2.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Stomatitis (G3/4: 5.3%); Diarrhoea (G3/4: 4%); Nausea (G3/4: 4%); Vomiting (G3/4: 3%)</td>
<td>Constipation (severe: 0.2%); Abdominal pain (severe: 1%); Gastrointestinal haemorrhage (severe: 0.3%)</td>
<td>Oesophagitis (severe: 0.4%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Skin reaction (G3/4: 5.9%); Nail disorders (severe: 2.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (severe: 1.4%)</td>
<td>Arthralgia</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Fluid retention (severe: 6.5%); Asthenia (severe: 11.2%); Pain</td>
<td>Infusion site reaction; Non-cardiac chest pain (severe: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (&lt; 5%); G3/4 Blood alkaline phosphatase increased (&lt; 4%); G3/4 AST increased (&lt; 3%); G3/4 ALT increased (&lt; 2%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Description of selected adverse reactions in breast cancer for TAXOTERE 100 mg/m² single agent

**Blood and lymphatic system disorders**
Rare: bleeding episodes associated with grade 3/4 thrombocytopenia.

**Nervous system disorders**
Reversibility data are available among 35.3% of patients who developed neurotoxicity following docetaxel treatment at 100 mg/m² as single agent. The events were spontaneously reversible within 3 months.

**Skin and subcutaneous tissue disorders**
Very rare: one case of alopecia non-reversible at the end of the study. 73% of the cutaneous reactions were reversible within 21 days.

**General disorders and administration site conditions**
The median cumulative dose to treatment discontinuation was more than 1,000 mg/m² and the median time to fluid retention reversibility was 16.4 weeks (range 0 to 42 weeks). The onset of moderate and severe retention is delayed (median cumulative dose: 818.9 mg/m²) in patients with premedication compared with patients without premedication (median cumulative dose: 489.7 mg/m²); however, it has been reported in some patients during the early courses of therapy.

Tabulated list of adverse reactions in non-small cell lung cancer for TAXOTERE 75 mg/m² single agent

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infections (G3/4: 5%)</td>
<td>Febrile neutropenia</td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 54.2%);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaemia (G3/4: 10.8%);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thrombocytopenia (G4: 1.7%)</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (no severe)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy</td>
<td>Peripheral motor neuropathy</td>
</tr>
<tr>
<td></td>
<td>(G3/4: 0.8%)</td>
<td>(G3/4: 2.5%)</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Arrhythmia (no severe)</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Hypotension</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 3.3%);</td>
<td>Constipation</td>
</tr>
<tr>
<td></td>
<td>Stomatitis (G3/4: 1.7%);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vomiting (G3/4: 0.8%);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diarrhoea (G3/4: 1.7%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia;</td>
<td>Nail disorders (severe: 0.8%)</td>
</tr>
<tr>
<td></td>
<td>Skin reaction (G3/4: 0.8%)</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td>Myalgia</td>
</tr>
<tr>
<td>General disorders and administration site</td>
<td>Asthenia (severe: 12.4%);</td>
<td></td>
</tr>
<tr>
<td>conditions</td>
<td>Fluid retention (severe: 0.8%);</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pain</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>G3/4 Blood bilirubin increased (&lt; 2%)</td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions in breast cancer for TAXOTERE 75 mg/m² in combination with doxorubicin

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 7.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 91.7%); Anaemia (G3/4: 9.4%); Febrile neutropenia; Thrombocytopenia (G4: 0.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 0.4%)</td>
<td>Peripheral motor neuropathy (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Cardiac failure; Arrhythmia (no severe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypotension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 5%); Stomatitis (G3/4: 7.8%); Diarrhoea (G3/4: 6.2%); Vomiting (G3/4: 5%); Constipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (severe: 0.4%); Skin reaction (no severe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 8.1%); Fluid retention (severe: 1.2%); Pain</td>
<td>Infusion site reaction</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (&lt; 2.5%); G3/4 Blood alkaline phosphatase increased (&lt; 2.5%)</td>
<td>G3/4 AST increased (&lt; 1%); G3/4 ALT increased (&lt; 1%)</td>
<td></td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions in non-small cell lung cancer for TAXOTERE 75 mg/m² in combination with cisplatin

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 5.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 51.5%); Anaemia (G3/4: 6.9%); Thrombocytopenia (G4: 0.5%)</td>
<td>Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 2.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 3.7%); Peripheral motor neuropathy (G3/4: 2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 0.7%)</td>
<td></td>
<td>Cardiac failure</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypotension (G3/4: 0.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 9.6%); Vomiting (G3/4: 7.6%); Diarrhoea (G3/4: 6.4%); Stomatitis (G3/4: 2%)</td>
<td>Constipation</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (severe: 0.7%); Skin reaction (G3/4: 0.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (severe: 0.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 9.9%); Fluid retention (severe: 0.7%); Fever (G3/4: 1.2%)</td>
<td>Infusion site reaction; Pain</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (2.1%); G3/4 ALT increased (1.3%)</td>
<td>G3/4 AST increased (0.5%); G3/4 Blood alkaline phosphatase increased (0.3%)</td>
<td></td>
</tr>
</tbody>
</table>
### Tabulated list of adverse reactions in breast cancer for TAXOTERE 100 mg/m² in combination with trastuzumab

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 32%); Febrile neutropenia (includes neutropenia associated with fever and antibiotic use) or neutropenic sepsis</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Paresthesia; Headache; Dysgeusia; Hypoaesthesia</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased; Conjunctivitis</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Cardiac failure</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Lymphoedema</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Epistaxis; Pharyngolaryngeal pain; Nasopharyngitis; Dyspnœa; Cough; Rhinorrhoea</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea; Diarrhoea; Vomiting; Constipation; Stomatitis; Dyspepsia; Abdominal pain</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Erythema; Rash; Nail disorders</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia; Arthralgia; Pain in extremity; Bone pain; Back pain</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia; Oedema peripheral; Pyrexia; Fatigue; Mucosal inflammation; Pain; Influenza like illness; Chest pain; Chills</td>
<td>Lethargy</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight increased</td>
<td></td>
</tr>
</tbody>
</table>

### Description of selected adverse reactions in breast cancer for TAXOTERE 100 mg/m² in combination with trastuzumab

**Blood and lymphatic system disorders**

Very common: Haematological toxicity was increased in patients receiving trastuzumab and docetaxel, compared with docetaxel alone (32% grade 3/4 neutropenia versus 22%, using NCI-CTC criteria). Note that this is likely to be an underestimate since docetaxel alone at a dose of 100 mg/m² is known to result in neutropenia in 97% of patients, 76% grade 4, based on nadir blood counts. The incidence of febrile neutropenia/neutropenic sepsis was also increased in patients treated with Herceptin plus docetaxel (23% versus 17% for patients treated with docetaxel alone).

**Cardiac disorders**

Symptomatic cardiac failure was reported in 2.2% of the patients who received docetaxel plus trastuzumab compared to 0% of patients given docetaxel alone. In the docetaxel plus trastuzumab arm, 64% had received a prior anthracycline as adjuvant therapy compared with 55% in the docetaxel arm alone.
Tabulated list of adverse reactions in breast cancer for TAXOTERE 75 mg/m² in combination with capecitabine

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Oral candidiasis (G3/4: &lt; 1%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 63%); Anaemia (G3/4: 10%)</td>
<td>Thrombocytopenia (G3/4: 3%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 1%); Decreased appetite</td>
<td>Dehydration (G3/4: 2%)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia (G3/4: &lt; 1%); Paresthesia (G3/4: &lt; 1%)</td>
<td>Dizziness; Headache (G3/4: &lt; 1%); Neuropathy peripheral</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Pharyngolaryngeal pain (G3/4: 2%)</td>
<td>Dyspnoea (G3/4: 1%); Cough (G3/4: &lt; 1%); Epistaxis (G3/4: &lt; 1%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Stomatitis (G3/4: 18%); Diarrhoea (G3/4: 14%); Nausea (G3/4: 6%); Vomiting (G3/4: 4%); Constipation (G3/4: 1%); Abdominal pain (G3/4: 2%); Dyspepsia</td>
<td>Abdominal pain upper; Dry mouth</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Hand-foot syndrome (G3/4: 24%); Alopecia (G3/4: 6%); Nail disorders (G3/4: 2%)</td>
<td>Dermatitis; Rash erythematos (G3/4: &lt; 1%); Nail discolouration; Onycholysis (G3/4: 1%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (G3/4: 2%); Arthralgia (G3/4: 1%)</td>
<td>Pain in extremity (G3/4: &lt; 1%); Back pain (G3/4: 1%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (G3/4: 3%); Pyrexia (G3/4: 1%); Fatigue/weakness (G3/4: 5%); Oedema peripheral (G3/4: 1%)</td>
<td>Lethargy; Pain</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight decreased; G3/4 Blood bilirubin increased (9%)</td>
<td></td>
</tr>
</tbody>
</table>
### Tabulated list of adverse reactions in metastatic castration-resistant prostate cancer for TAXOTERE 75 mg/m² in combination with prednisone or prednisolone

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 3.3%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 32%); Anaemia (G3/4: 4.9%)</td>
<td>Thrombocytopenia (G3/4: 0.6%); Febrile neutropenia</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 1.2%); Dysgeusia (G3/4: 0%)</td>
<td>Peripheral motor neuropathy (G3/4: 0%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 2.4%); Diarrhoea (G3/4: 1.2%); Stomatitis/Pharyngitis (G3/4: 0.9%); Vomiting (G3/4: 1.2%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (no severe)</td>
<td>Exfoliative rash (G3/4: 0.3%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective bone disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Fatigue (G3/4: 3.9%); Fluid retention (severe: 0.6%)</td>
<td></td>
</tr>
</tbody>
</table>

### Tabulated list of adverse reactions in high-risk locally advanced or metastatic hormone-sensitive prostate cancer for TAXOTERE 75 mg/m² in combination with prednisone or prednisolone and ADT (STAMPEDE study)

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3-4: 12 %) Anaemia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocrine disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia (G3: 1%)</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (≥G3: 2%)&lt;sup&gt;a&lt;/sup&gt; Headache</td>
<td>Dizziness</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Blurred vision</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Hypotension (G3: 0%)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnea (G3: 1%) Coughing (G3: 0%) Upper respiratory tract infection (G3: 1%)</td>
<td>Pharyngitis (G3: 0%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhea (G3: 3%) Stomatitis (G3: 0%) Constipation (G3: 0%) Nausea (G3: 1%) Dyspepsia Abdominal pain (G3: 0%) Flatulence</td>
<td>Vomiting (G3: 1%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3: 3%)&lt;sup&gt;a&lt;/sup&gt; Nail changes (G3: 1%)</td>
<td>Rash</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3-4: 2%) Flu-like symptoms (G3: 0%) Asthenia (G3: 0%) Fluid retention</td>
<td>Fever (G3: 1%) Oral candidiasis Hypocalcaemia (G3: 0%) Hypophosphataemia (G3-4: 1%) Hypokalaemia (G3: 0%)</td>
</tr>
</tbody>
</table>

*From the GETUG AFU15 study

Tabulated list of adverse reactions in breast cancer for adjuvant therapy with TAXOTERE 75 mg/m² in combination with doxorubicin and cyclophosphamide in patients with node-positive (TAX 316) and node-negative (GEICAM 9805) breast cancer - pooled data

<table>
<thead>
<tr>
<th>MedDRA System Organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 2.4%); Neutropenic infection (G3/4: 2.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Anaemia (G3/4: 3%); Neutropenia (G3/4: 59.2%); Thrombocytopenia (G3/4: 1.6%); Febrile neutropenia (G3/4: NA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td></td>
<td>Hypersensitivity (G3/4: 0.6%)</td>
</tr>
<tr>
<td>MedDRA System Organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 1.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia (G3/4: 0.6%); Peripheral sensory neuropathy (G3/4: &lt;0.1%)</td>
<td>Peripheral motor neuropathy (G3/4: 0%)</td>
<td>Syncope (G3/4: 0%); Neurotoxicity (G3/4: 0%); Somnolence (G3/4: 0%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Conjunctivitis (G3/4: &lt;0.1%)</td>
<td>Lacrimation increased (G3/4: &lt;0.1%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Arrhythmia (G3/4: 0.2%)</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hot flush (G3/4: 0.5%)</td>
<td>Hypotension (G3/4: 0%); Phlebitis (G3/4: 0%)</td>
<td>Lymphoedema (G3/4: 0%)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td>Cough (G3/4: 0%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 5.0%); Stomatitis (G3/4: 6.0%); Vomiting (G3/4: 4.2%); Diarrhoea (G3/4: 3.4%); Constipation (G3/4: 0.5%)</td>
<td>Abdominal pain (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (persisting: &lt;3%); Skin disorder (G3/4: 0.6%); Nail disorders (G3/4: 0.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (G3/4: 0.7%); Arthralgia (G3/4: 0.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td>Amenorrhoea (G3/4: NA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (G3/4: 10.0%); Pyrexia (G3/4: NA); Oedema peripheral (G3/4: 0.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>Weight increased (G3/4: 0%); Weight decreased (G3/4: 0.2%)</td>
<td></td>
</tr>
</tbody>
</table>
Description of selected adverse reactions for adjuvant therapy with TAXOTERE 75 mg/m² in combination with doxorubicin and cyclophosphamide in patients with node-positive (TAX 316) and node-negative (GEICAM 9805) breast cancer

Nervous system disorders
In study TAX316 peripheral sensory neuropathy started during the treatment period and persisted into the follow-up period in 84 patients (11.3%) in TAC arm and 15 patients (2%) in FAC arm. At the end of the follow-up period (median follow-up time of 8 years), peripheral sensory neuropathy was observed to be ongoing in 10 patients (1.3%) in TAC arm, and in 2 patients (0.3%) in FAC arm. In GEICAM 9805 study peripheral sensory neuropathy that started during the treatment period persisted into the follow-up period in 10 patients (1.9%) in TAC arm and 4 patients (0.8%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), peripheral sensory neuropathy was observed to be ongoing in 3 patients (0.6%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

Cardiac disorders
In study TAX316, 26 patients (3.5%) in the TAC arm and 17 patients (2.3%) in the FAC arm experienced congestive heart failure. All except one patient in each arm were diagnosed with CHF more than 30 days after the treatment period. Two patients in the TAC arm and 4 patients in the FAC arm died because of cardiac failure. In GEICAM 9805 study, 3 patients (0.6%) in TAC arm and 3 patients (0.6%) in FAC arm developed congestive heart failure during the follow-up period. At the end of the follow-up period (actual median follow-up time of 10 years and 5 months), no patients had CHF in TAC arm and 1 patient in TAC arm died because of dilated cardiomyopathy, and CHF was observed to be ongoing in 1 patient (0.2%) in FAC arm.

Skin and subcutaneous tissue disorders
In study TAX316 alopecia persisting into the follow-up period after the end of chemotherapy was reported in 687 of 744 TAC patients (92.3%) and 645 of 736 FAC patients (87.6%). At the end of the follow-up period (actual median follow-up time of 8 years), alopecia was observed to be ongoing in 29 TAC patients (3.9%) and 16 FAC patients (2.2%). In GEICAM 9805 study alopecia that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 49 patients (9.2%) in TAC arm and 35 patients (6.7%) in FAC arm. Alopecia related to study drug started or worsened during the follow-up period in 42 patients (7.9%) in TAC arm and 30 patients (5.8%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), alopecia was observed to be ongoing in 3 patients (0.6%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

Reproductive system and breast disorders
In TAX316 amenorrhoea that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 202 of 744 TAC patients (27.2%) and 125 of 736 FAC patients (17.0%). Amenorrhoea was observed to be ongoing at the end of the follow-up period (median follow-up time of 8 years) in 121 of 744 TAC patients (16.3%) and 86 FAC patients (11.7%). In GEICAM 9805 study amenorrhoea that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 18 patients (3.4%) in TAC arm and 5 patients (1.0%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), amenorrhoea was observed to be ongoing in 7 patients (1.3%) in TAC arm, and in 4 patients (0.8%) in FAC arm.

General disorders and administration site conditions
In study TAX316 peripheral oedema that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was observed in 119 of 744 TAC patients (16.0%) and 23 of 736 FAC patients (3.1%). At the end of the follow-up period (actual median follow-up time of 8 years), peripheral oedema was ongoing in 19 TAC patients (2.6%) and 4 FAC patients (0.5%). In study TAX316 lymphoedema that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 11 of 744 TAC patients (1.5%) and 1 of 736
FAC patients (0.1%). At the end of the follow-up period (actual median follow-up time of 8 years), lymphoedema was observed to be ongoing in 6 TAC patients (0.8%) and 1 FAC patient (0.1%). In study TAX316 asthenia that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 236 of 744 TAC patients (31.7%) and 180 of 736 FAC patients (24.5%). At the end of the follow-up period (actual median follow-up time of 8 years), asthenia was observed to be ongoing in 29 TAC patients (3.9%) and 16 FAC patients (2.2%).

In study GEICAM 9805 peripheral oedema that started during the treatment period persisted into the follow-up period in 4 patients (0.8%) in TAC arm and in 2 patients (0.4%) in FAC arm. At the end of the follow-up period (median follow-up time of 6 years), no patients (0%) in TAC arm had peripheral oedema and it was observed to be ongoing in 1 patient (0.2%) in FAC arm.

Lymphoedema that started during the treatment period persisted into the follow-up period in 5 patients (0.9%) in TAC arm and 2 patients (0.4%) in FAC arm. At the end of the follow-up period, lymphoedema was observed to be ongoing in 4 patients (0.8%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

Asthenia that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 12 patients (2.3%) in TAC arm and 4 patients (0.8%) in FAC arm. At the end of the follow-up period, asthenia was observed to be ongoing in 2 patients (0.4%) in TAC arm, and in 2 patients (0.4%) in FAC arm.

Acute leukaemia / Myelodysplastic syndrome.

After 10 years of follow up in study TAX316, acute leukaemia was reported in 3 of 744 TAC patients (0.4%) and in 1 of 736 FAC patients (0.1%). One TAC patient (0.1%) and 1 FAC patient (0.1%) died due to AML during the follow-up period (median follow-up time of 8 years). Myelodysplastic syndrome was reported in 2 of 744 TAC patients (0.3%) and in 1 of 736 FAC patients (0.1%). After 10 years of follow-up in GEICAM 9805 study, acute leukaemia occurred in 1 of 532 (0.2%) patients in TAC arm. No cases were reported in patients in FAC arm. No patient was diagnosed with myelodysplastic syndrome in either treatment groups.

Neutropenic complications

Table below shows that the incidence of Grade 4 neutropenia, febrile neutropenia and neutropenic infection was decreased in patients who received primary G-CSF prophylaxis after it was made mandatory in the TAC arm – GEICAM study.

### Neutropenic complications in patients receiving TAC with or without primary G-CSF prophylaxis (GEICAM 9805)

<table>
<thead>
<tr>
<th></th>
<th>Without primary G-CSF prophylaxis (n = 111)</th>
<th>With primary G-CSF prophylaxis (n = 421)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia (Grade 4)</td>
<td>104 (93.7)</td>
<td>135 (32.1)</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>28 (25.2)</td>
<td>23 (5.5)</td>
</tr>
<tr>
<td>Neutropenic infection</td>
<td>14 (12.6)</td>
<td>21 (5.0)</td>
</tr>
<tr>
<td>Neutropenic infection</td>
<td>2 (1.8)</td>
<td>5 (1.2)</td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions in gastric adenocarcinoma center for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Neutropenic infection; Infection (G3/4: 11.7%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Anaemia (G3/4: 20.9%); Neutropenia (G3/4: 83.2%); Thrombocytopenia (G3/4: 8.8%); Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 1.7%)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 11.7%)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 8.7%)</td>
<td>Dizziness (G3/4: 2.3%); Peripheral motor neuropathy (G3/4: 1.3%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Lacrimation increased (G3/4: 0%)</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td>Hearing impaired (G3/4: 0%)</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Arrhythmia (G3/4: 1.0%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhoea (G3/4: 19.7%); Nausea (G3/4: 16%); Stomatitis (G3/4: 23.7%); Vomiting (G3/4: 14.3%)</td>
<td>Constipation (G3/4: 1.0%); Gastrointestinal pain (G3/4: 1.0%); Oesophagitis/dysphagia/odynophagia (G3/4: 0.7%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 4.0%)</td>
<td>Rash pruritus (G3/4: 0.7%); Nail disorders (G3/4: 0.7%); Skin exfoliation (G3/4: 0%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 19.0%); Fever (G3/4: 2.3%); Fluid retention (severe/life-threatening: 1%)</td>
<td></td>
</tr>
</tbody>
</table>

Description of selected adverse reactions in gastric adenocarcinoma cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

Blood and lymphatic system disorders
Febrile neutropenia and neutropenic infection occurred in 17.2% and 13.5% of patients respectively, regardless of G-CSF use. G-CSF was used for secondary prophylaxis in 19.3% of patients (10.7% of the cycles). Febrile neutropenia and neutropenic infection occurred respectively in 12.1% and 3.4% of patients when patients received prophylactic G-CSF, in 15.6% and 12.9% of patients without prophylactic G-CSF (see section 4.2).

Tabulated list of adverse reactions in head and neck cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

- Induction chemotherapy followed by radiotherapy (TAX 323)

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 6.3%); Neutropenic infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl cysts and polyps)</td>
<td></td>
<td>Cancer pain (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 76.3%); Anaemia (G3/4: 9.2%); Thrombocytopenia (G3/4: 5.2%)</td>
<td>Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypermunmunity (no severe)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 0.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia/Parosmia; Peripheral sensory neuropathy (G3/4: 0.6%)</td>
<td>Dizziness</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Lacrimation increased; Conjunctivitis</td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td>Hearing impaired</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Myocardial ischemia (G3/4: 1.7%); Arrhythmia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Venous disorder (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 0.6%); Stomatitis (G3/4: 4.0%); Diarrhoea (G3/4: 2.9%); Vomiting (G3/4: 0.6%)</td>
<td>Constipation; Esophagitis/dysphagia/ odynophagia (G3/4: 0.6%); Abdominal pain; Dyspepsia; Gastrointestinal haemorrhage (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 10.9%)</td>
<td>Rash pruritic; Dry skin; Skin exfoliative (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td>Myalgia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 3.4%); Pyrexia (G3/4: 0.6%); Fluid retention; Oedema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>Weight increased</td>
<td></td>
</tr>
</tbody>
</table>

- Induction chemotherapy followed by chemoradiotherapy (TAX 324)
<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 3.6%)</td>
<td>Neutropenic infection</td>
<td></td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl cysts and polyps)</td>
<td>Neutropenia (G3/4: 83.5%); Anaemia (G3/4: 12.4%); Thrombocytopenia (G3/4: 4.0%); Febrile neutropenia</td>
<td>Cancer pain (G3/4: 1.2%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Dysgeusia/Parosmia (G3/4: 0.4%); Peripheral sensory neuropathy (G3/4: 1.2%)</td>
<td>Dizziness (G3/4: 2.0%); Peripheral motor neuropathy (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 12.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Hearing impaired (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 13.9%); Stomatitis (G3/4: 20.7%); Vomiting (G3/4: 8.4%); Diarrhoea (G3/4: 6.8%); Esophagitis/dysphagia/odynophagia (G3/4: 12.0%); Constipation (G3/4: 0.4%)</td>
<td>Dyspepsia (G3/4: 0.8%); Gastrointestinal pain (G3/4: 1.2%); Gastrointestinal haemorrhage (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 4.0%); Rash pruritic</td>
<td>Dry skin ; Desquamation</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal, connective tissue bone disorders</td>
<td></td>
<td></td>
<td>Myalgia (G3/4: 0.4%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 4.0%); Pyrexia (G3/4: 3.6%); Fluid retention (G3/4: 1.2%); Oedema (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight decreased</td>
<td></td>
<td>Weight increased</td>
</tr>
</tbody>
</table>
Post-marketing experience

Neoplasms benign, malignant and unspecified (incl cysts and polyps)
Second primary malignancies (frequency not known), including non-Hodgkin lymphoma have been reported in association with docetaxel when used in combination with other anticancer treatments known to be associated with second primary malignancies. Acute myeloid leukaemia and myelodysplastic syndrome have been reported (frequency uncommon) in pivotal clinical studies in breast cancer with TAC regimen.

Blood and lymphatic system disorders
Bone marrow suppression and other haematologic adverse reactions have been reported. Disseminated intravascular coagulation (DIC), often in association with sepsis or multiorgan failure, has been reported.

Immune system disorders
Some cases of anaphylactic shock, sometimes fatal, have been reported. Hypersensitivity reactions (frequency not known) have been reported with docetaxel in patients who previously experienced hypersensitivity reactions to paclitaxel.

Nervous system disorders
Rare cases of convulsion or transient loss of consciousness have been observed with docetaxel administration. These reactions sometimes appear during the infusion of the medicinal product.

Eye disorders
Very rare cases of transient visual disturbances (flashes, flashing lights, scotomata) typically occurring during infusion of the medicinal product and in association with hypersensitivity reactions have been reported. These were reversible upon discontinuation of the infusion. Cases of lacrimation with or without conjunctivitis, as cases of lacrimal duct obstruction resulting in excessive tearing have been rarely reported. Cases of cystoid macular oedema (CMO) have been reported in patients treated with docetaxel.

Ear and labyrinth disorders
Rare cases of ototoxicity, hearing impaired and/or hearing loss have been reported.

Cardiac disorders
Rare cases of myocardial infarction have been reported. Ventricular arrhythmia including ventricular tachycardia (frequency not known), sometimes fatal, has been reported in patients treated with docetaxel in combination regimens including doxorubicin, 5-fluorouracil and/or cyclophosphamide.

Vascular disorders
Venous thromboembolic events have rarely been reported.

Respiratory, thoracic and mediastinal disorders
Acute respiratory distress syndrome and cases of interstitial pneumonia/ pneumonitis, interstitial lung disease, pulmonary fibrosis and respiratory failure sometimes fatal have rarely been reported. Rare cases of radiation pneumonitis have been reported in patients receiving concomitant radiotherapy.

Gastrointestinal disorders
Rare cases of enterocolitis, including colitis, ischemic colitis, and neutropenic enterocolitis, have been reported with a potential fatal outcome (frequency not known). Rare occurrences of dehydration have been reported as a consequence of gastrointestinal events including enterocolitis and gastrointestinal perforation. Rare cases of ileus and intestinal obstruction have been reported.

Hepatobiliary disorders
Very rare cases of hepatitis, sometimes fatal primarily in patients with pre-existing liver disorders, have been reported.

**Skin and subcutaneous tissue disorders**
Cases of cutaneous lupus erythematosus, bullous eruptions such as erythema multiforme and severe cutaneous adverse reactions such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN) and Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with docetaxel. Scleroderma-like changes usually preceded by peripheral lymphoedema have been reported with docetaxel. Cases of permanent alopecia (frequency not known) have been reported.

**Renal and urinary disorders**
Renal insufficiency and renal failure have been reported. In about 20% of these cases there were no risk factors for acute renal failure such as concomitant nephrotoxic medicinal products and gastrointestinal disorders.

**General disorders and administration site conditions**
Radiation recall phenomena have rarely been reported. Injection site recall reaction (recurrence of skin reaction at a site of previous extravasation following administration of docetaxel at a different site) has been observed at the site of previous extravasation (frequency not known). Fluid retention has not been accompanied by acute episodes of oliguria or hypotension. Dehydration and pulmonary oedema have rarely been reported.

**Metabolism and nutrition disorders**
Cases of electrolyte imbalance have been reported. Cases of hyponatraemia have been reported, mostly associated with dehydration, vomiting and pneumonia. Hypokalaemia, hypomagnesaemia, and hypocalcaemia were observed, usually in association with gastrointestinal disorders and in particular with diarrhoea. Tumour lysis syndrome, potentially fatal, has been reported (frequency not known).

**Musculoskeletal disorder**
Myositis has been reported with docetaxel (frequency not known).

**Reporting of suspected adverse reactions**
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in [Appendix V](#).

### 4.9 Overdose

There were a few reports of overdose. There is no known antidote for docetaxel overdose. In case of overdose, the patient should be kept in a specialised unit and vital functions closely monitored. In cases of overdose, exacerbation of adverse events may be expected. The primary anticipated complications of overdose would consist of bone marrow suppression, peripheral neurotoxicity and mucositis. Patients should receive therapeutic G-CSF as soon as possible after discovery of overdose. Other appropriate symptomatic measures should be taken, as needed.

### 5. PHARMACOLOGICAL PROPERTIES

#### 5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Taxanes, ATC Code: L01CD02
Mechanism of action

Docetaxel is an antineoplastic agent which acts by promoting the assembly of tubulin into stable microtubules and inhibits their disassembly which leads to a marked decrease of free tubulin. The binding of docetaxel to microtubules does not alter the number of protofilaments.

Docetaxel has been shown in vitro to disrupt the microtubular network in cells which is essential for vital mitotic and interphase cellular functions.

Pharmacodynamic effects

Docetaxel was found to be cytotoxic in vitro against various murine and human tumour cell lines and against freshly excised human tumour cells in clonogenic assays. Docetaxel achieves high intracellular concentrations with a long cell residence time. In addition, docetaxel was found to be active on some but not all cell lines over expressing the p-glycoprotein which is encoded by the multidrug resistance gene. In vivo, docetaxel is schedule independent and has a broad spectrum of experimental anti-tumour activity against advanced murine and human grafted tumours.

Clinical efficacy and safety

Breast cancer

TAXOTERE in combination with doxorubicin and cyclophosphamide: adjuvant therapy

Patients with operable node-positive breast cancer (TAX 316)

Data from a multi-centre open label randomised study support the use of docetaxel for the adjuvant treatment of patients with operable node-positive breast cancer and KPS ≥ 80%, between 18 and 70 years of age. After stratification according to the number of positive lymph nodes (1-3, 4+), 1491 patients were randomised to receive either docetaxel 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² (TAC arm), or doxorubicin 50 mg/m² followed by fluorouracil 500 mg/m² and cyclophosphamide 500 mg/m² (FAC arm). Both regimens were administered once every 3 weeks for 6 cycles. Docetaxel was administered as a 1-hour infusion, all other medicinal products were given as intravenous bolus on day one. G-CSF was administered as secondary prophylaxis to patients who experienced complicated neutropenia (febrile neutropenia, prolonged neutropenia, or infection). Patients on the TAC arm received antibiotic prophylaxis with ciprofloxacin 500 mg orally twice daily for 10 days starting on day 5 of each cycle, or equivalent. In both arms, after the last cycle of chemotherapy, patients with positive oestrogen and/or progesterone receptors received tamoxifen 20 mg daily for up to 5 years. Adjuvant radiation therapy was prescribed according to guidelines in place at participating institutions and was given to 69% of patients who received TAC and 72% of patients who received FAC. Two interim analyses and one final analysis were performed. The first interim analysis was planned 3 years after the date when half of study enrolment was done. The second interim analysis was done after 400 DFS events had been recorded overall, which led to a median follow-up of 55 months. The final analysis was performed when all patients had reached their 10-year follow-up visit (unless they had a DFS event or were lost to follow-up before). Disease-free survival (DFS) was the primary efficacy endpoint and Overall survival (OS) was the secondary efficacy endpoint.

A final analysis was performed with an actual median follow up of 96 months. Significantly longer disease-free survival for the TAC arm compared to the FAC arm was demonstrated. Incidence of relapses at 10 years was reduced in patients receiving TAC compared to those who received FAC (39% versus 45%, respectively) i.e. an absolute risk reduction by 6% (p = 0.0043). Overall survival at 10 years was also significantly increased with TAC compared to FAC (76% versus 69%, respectively) i.e. an absolute reduction of the risk of death by 7% (p = 0.002). As the benefit observed in patients with 4+ nodes was not statistically significant on DFS and OS, the positive benefit/risk ratio for TAC in patients with 4+ nodes was not fully demonstrated at the final analysis.
Overall, the study results demonstrate a positive benefit risk ratio for TAC compared to FAC.

TAC-treated patient subsets according to prospectively defined major prognostic factors were analysed:

<table>
<thead>
<tr>
<th>Patient subset</th>
<th>Number of patients</th>
<th>Disease free survival Hazard ratio*</th>
<th>95% CI</th>
<th>p =</th>
<th>Overall survival Hazard ratio*</th>
<th>95% CI</th>
<th>p =</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of positive nodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>745</td>
<td>0.80</td>
<td>0.68-0.93</td>
<td>0.0043</td>
<td>0.74</td>
<td>0.61-0.90</td>
<td>0.0020</td>
</tr>
<tr>
<td>1-3</td>
<td>467</td>
<td>0.72</td>
<td>0.58-0.91</td>
<td>0.0047</td>
<td>0.62</td>
<td>0.46-0.82</td>
<td>0.0008</td>
</tr>
<tr>
<td>4+</td>
<td>278</td>
<td>0.87</td>
<td>0.70-1.09</td>
<td>0.2290</td>
<td>0.87</td>
<td>0.67-1.12</td>
<td>0.2746</td>
</tr>
</tbody>
</table>

*a hazard ratio of less than 1 indicates that TAC is associated with a longer disease-free survival and overall survival compared to FAC

Patients with operable node-negative breast cancer eligible to receive chemotherapy (GEICAM 9805)

Data from a multi-centre open label randomised trial support the use of TAXOTERE for the adjuvant treatment of patients with operable node-negative breast cancer eligible to receive chemotherapy. 1060 patients were randomised to receive either TAXOTERE 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² (539 patients in TAC arm), or doxorubicin 50 mg/m² followed by fluorouracil 500 mg/m² and cyclophosphamide 500 mg/m² (521 patients in FAC arm), as adjuvant treatment of operable node-negative breast cancer patients with high risk of relapse according to 1998 St. Gallen criteria (tumour size >2 cm and/or negative ER and PR and/or high histological/nuclear grade (grade 2 to 3) and/or age <35 years). Both regimens were administered once every 3 weeks for 6 cycles. TAXOTERE was administered as a 1-hour infusion, all other medicinal products were given intravenously on day 1 every three weeks. Primary prophylactic G-CSF was made mandatory in TAC arm after 230 patients were randomised. The incidence of Grade 4 neutropenia, febrile neutropenia and neutropenic infection was decreased in patients who received primary G-CSF prophylaxis (see section 4.8). In both arms, after the last cycle of chemotherapy, patients with ER+ and/or PgR+ tumours received tamoxifen 20 mg once a day for up to 5 years. Adjuvant radiation therapy was administered according to guidelines in place at participating institutions and was given to 57.3% of patients who received TAC and 51.2% of patients who received FAC.

One primary analysis and one updated analysis were performed. The primary analysis was done when all patients had a follow-up of greater than 5 years (median follow-up time of 77 months). The updated analysis was performed when all patients had reached their 10-year (median follow up time of 10 years and 5 months) follow-up visit (unless they had a DFS event or were lost to follow-up previously). Disease-free survival (DFS) was the primary efficacy endpoint and Overall survival (OS) was the secondary efficacy endpoint.

At the median follow-up time of 77 months, significantly longer disease-free survival for the TAC arm compared to the FAC arm was demonstrated. TAC-treated patients had a 32% reduction in the risk of relapse compared to those treated with FAC (hazard ratio = 0.68, 95% CI (0.49-0.93), p = 0.01). At the median follow up time of 10 years and 5 months, TAC-treated patients had a 16.5% reduction in the risk of relapse compared to those treated with FAC (hazard ratio = 0.84, 95% CI (0.65-1.08), p=0.1646). DFS data were not statistically significant but were still associated with a positive trend in favour of TAC.

At the median follow-up time of 77 months, overall survival (OS) was longer in the TAC arm with TAC-treated patients having a 24% reduction in the risk of death compared to FAC (hazard ratio = 0.76, 95% CI (0.46-1.26, p = 0.29). However, the distribution of OS was not significantly different between the 2 groups.
At the median follow up time of 10 years and 5 months, TAC-treated patients had a 9\% reduction in the risk of death compared to FAC-treated patients (hazard ratio = 0.91, 95\% CI (0.63-1.32)). The survival rate was 93.7\% in the TAC arm and 91.4 \% in the FAC arm, at the 8-year follow-up time point, and 91.3 \% in the TAC arm and 89 \% in the FAC arm, at the 10-year follow-up time point.

The positive benefit risk ratio for TAC compared to FAC remained unchanged.

TAC-treated patient subsets according to prospectively defined major prognostic factors were analysed in the primary analysis (at the median follow-up time of 77 months) (see table below):

Subset Analyses-Adjuvant Therapy in Patients with Node-negative Breast Cancer Study (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Patient subset</th>
<th>Number of patients in TAC group</th>
<th>Disease Free Survival</th>
<th>Hazard ratio*</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>539</td>
<td>0.68</td>
<td>0.49-0.93</td>
<td></td>
</tr>
<tr>
<td>Age category 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;50 years</td>
<td>260</td>
<td>0.67</td>
<td>0.43-1.05</td>
<td></td>
</tr>
<tr>
<td>≥50 years</td>
<td>279</td>
<td>0.67</td>
<td>0.43-1.05</td>
<td></td>
</tr>
<tr>
<td>Age category 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;35 years</td>
<td>42</td>
<td>0.31</td>
<td>0.11-0.89</td>
<td></td>
</tr>
<tr>
<td>≥35 years</td>
<td>497</td>
<td>0.73</td>
<td>0.52-1.01</td>
<td></td>
</tr>
<tr>
<td>Hormonal receptor status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>195</td>
<td>0.7</td>
<td>0.45-1.1</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>344</td>
<td>0.62</td>
<td>0.4-0.97</td>
<td></td>
</tr>
<tr>
<td>Tumour size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤2 cm</td>
<td>285</td>
<td>0.69</td>
<td>0.43-1.1</td>
<td></td>
</tr>
<tr>
<td>&gt;2 cm</td>
<td>254</td>
<td>0.68</td>
<td>0.45-1.04</td>
<td></td>
</tr>
<tr>
<td>Histological grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1 (includes grade not assessed)</td>
<td>64</td>
<td>0.79</td>
<td>0.24-2.6</td>
<td></td>
</tr>
<tr>
<td>Grade 2</td>
<td>216</td>
<td>0.77</td>
<td>0.46-1.3</td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>259</td>
<td>0.59</td>
<td>0.39-0.9</td>
<td></td>
</tr>
<tr>
<td>Menopausal status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Menopausal</td>
<td>285</td>
<td>0.64</td>
<td>0.40-1</td>
<td></td>
</tr>
<tr>
<td>Post-Menopausal</td>
<td>254</td>
<td>0.72</td>
<td>0.47-1.12</td>
<td></td>
</tr>
</tbody>
</table>

*a hazard ratio (TAC/FAC) of less than 1 indicates that TAC is associated with a longer disease free survival compared to FAC.
Exploratory subgroup analyses for disease-free survival for patients who meet the 2009 St. Gallen chemotherapy criteria – (ITT population) were performed and presented here below:

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>TAC (n=539)</th>
<th>FAC (n=521)</th>
<th>Hazard ratio (TAC/FAC)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting relative indication for chemotherapy a</td>
<td></td>
<td></td>
<td>0.796 (0.434 - 1.459)</td>
<td>0.4593</td>
</tr>
<tr>
<td>No</td>
<td>18/214 (8.4%)</td>
<td>26/227 (11.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>48/325 (14.8%)</td>
<td>69/294 (23.5%)</td>
<td>0.606 (0.42 - 0.877)</td>
<td>0.0072</td>
</tr>
</tbody>
</table>

TAC = docetaxel, doxorubicin and cyclophosphamide
FAC = 5-fluorouracil, doxorubicin and cyclophosphamide
CI = confidence interval
ER = oestrogen receptor
PR = progesterone receptor
a ER/PR-negative or Grade 3 or tumour size >5 cm

The estimated hazard ratio was using Cox proportional hazard model with treatment group as the factor.

**TAXOTERE as single agent**

Two randomised phase III comparative studies, involving a total of 326 alkylating or 392 anthracycline failure metastatic breast cancer patients, have been performed with docetaxel at the recommended dose and regimen of 100 mg/m² every 3 weeks.

In alkylating-failure patients, docetaxel was compared to doxorubicin (75 mg/m² every 3 weeks). Without affecting overall survival time (docetaxel 15 months vs. doxorubicin 14 months, p = 0.38) or time to progression (docetaxel 27 weeks vs. doxorubicin 23 weeks, p = 0.54), docetaxel increased response rate (52% vs. 37%, p = 0.01) and shortened time to response (12 weeks vs. 23 weeks, p = 0.007). Three docetaxel patients (2%) discontinued the treatment due to fluid retention, whereas 15 doxorubicin patients (9%) discontinued due to cardiac toxicity (three cases of fatal congestive heart failure).

In anthracycline-failure patients, docetaxel was compared to the combination of mitomycin C and vinblastine (12 mg/m² every 6 weeks and 6 mg/m² every 3 weeks). Docetaxel increased response rate (33% vs. 12%, p < 0.0001), prolonged time to progression (19 weeks vs. 11 weeks, p = 0.0004) and prolonged overall survival (11 months vs. 9 months, p = 0.01).

During these two phase III studies, the safety profile of docetaxel was consistent with the safety profile observed in phase II studies (see section 4.8).

An open-label, multi-centre, randomised phase III study was conducted to compare docetaxel monotherapy and paclitaxel in the treatment of advanced breast cancer in patients whose previous therapy should have included an anthracycline. A total of 449 patients were randomised to receive either docetaxel monotherapy 100 mg/m² as a 1 hour infusion or paclitaxel 175 mg/m² as a 3 hour infusion. Both regimens were administered every 3 weeks.

Without affecting the primary endpoint, overall response rate (32% vs 25%, p = 0.10), docetaxel prolonged median time to progression (24.6 weeks vs 15.6 weeks; p < 0.01) and median survival (15.3 months vs 12.7 months; p = 0.03).

More grade 3/4 adverse events were observed for docetaxel monotherapy (55.4%) compared to paclitaxel (23.0%).
TAXOTERE in combination with doxorubicin

One large randomised phase III study, involving 429 previously untreated patients with metastatic disease, has been performed with doxorubicin (50 mg/m²) in combination with docetaxel (75 mg/m²) (AT arm) versus doxorubicin (60 mg/m²) in combination with cyclophosphamide (600 mg/m²) (AC arm). Both regimens were administered on day 1 every 3 weeks.

- Time to progression (TTP) was significantly longer in the AT arm versus AC arm, p = 0.0138. The median TTP was 37.3 weeks (95% CI: 33.4 - 42.1) in AT arm and 31.9 weeks (95% CI: 27.4 - 36.0) in AC arm.
- Overall response rate (ORR) was significantly higher in the AT arm versus AC arm, p = 0.009. The ORR was 59.3% (95% CI: 52.8 - 65.9) in AT arm versus 46.5% (95% CI: 39.8 - 53.2) in AC arm.

In this study, AT arm showed a higher incidence of severe neutropenia (90% versus 68.6%), febrile neutropenia (33.3% versus 10%), infection (8% versus 2.4%), diarrhoea (7.5% versus 1.4%), asthenia (8.5% versus 2.4%), and pain (2.8% versus 0%) than AC arm. On the other hand, AC arm showed a higher incidence of severe anaemia (15.8% versus 8.5%) than AT arm, and, in addition, a higher incidence of severe cardiac toxicity: congestive heart failure (3.8% versus 2.8%), absolute LVEF decrease ≥ 20% (13.1% versus 6.1%), absolute LVEF decrease ≥ 30% (6.2% versus 1.1%). Toxic deaths occurred in 1 patient in the AT arm (congestive heart failure) and in 4 patients in the AC arm (1 due to septic shock and 3 due to congestive heart failure).

In both arms, quality of life measured by the EORTC questionnaire was comparable and stable during treatment and follow-up.

TAXOTERE in combination with trastuzumab

Docetaxel in combination with trastuzumab was studied for the treatment of patients with metastatic breast cancer whose tumours overexpress HER2, and who previously had not received chemotherapy for metastatic disease. One hundred eighty six patients were randomised to receive docetaxel (100 mg/m²) with or without trastuzumab; 60% of patients received prior anthracycline-based adjuvant chemotherapy. Docetaxel plus trastuzumab was efficacious in patients whether or not they had received prior adjuvant anthracyclines. The main test method used to determine HER2 positivity in this pivotal study was immunohistochemistry (IHC). A minority of patients were tested using fluorescence in-situ hybridization (FISH). In this study, 87% of patients had disease that was IHC 3+, and 95% of patients entered had disease that was IHC 3+ and/or FISH positive. Efficacy results are summarized in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Docetaxel plus trastuzumab&lt;sup&gt;1&lt;/sup&gt;</th>
<th>Docetaxel&lt;sup&gt;1&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 92</td>
<td>n = 94</td>
</tr>
<tr>
<td>Response rate (95% CI)</td>
<td>61% (50-71)</td>
<td>34% (25-45)</td>
</tr>
<tr>
<td>Median duration of response (95% CI)</td>
<td>11.4 (9.2-15.0)</td>
<td>5.1 (4.4-6.2)</td>
</tr>
<tr>
<td>Median TTP (months) (95% CI)</td>
<td>10.6 (7.6-12.9)</td>
<td>5.7 (5.0-6.5)</td>
</tr>
<tr>
<td>Median survival (months) (95% CI)</td>
<td>30.5&lt;sup&gt;2&lt;/sup&gt; (26.8-ne)</td>
<td>22.1&lt;sup&gt;2&lt;/sup&gt; (17.6-28.9)</td>
</tr>
</tbody>
</table>

TTP = time to progression; “ne” indicates that it could not be estimated or it was not yet reached.  
<sup>1</sup>Full analysis set (intent-to-treat)  
<sup>2</sup>Estimated median survival
**TAXOTERE in combination with capecitabine**

Data from one multi-centre, randomised, controlled phase III clinical study support the use of docetaxel in combination with capecitabine for treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic chemotherapy, including an anthracycline. In this study, 255 patients were randomised to treatment with docetaxel (75 mg/m² as a 1 hour intravenous infusion every 3 weeks) and capecitabine (1250 mg/m² twice daily for 2 weeks followed by 1-week rest period). 256 patients were randomised to treatment with docetaxel alone (100 mg/m² as a 1 hour intravenous infusion every 3 weeks). Survival was superior in the docetaxel + capecitabine combination arm (p = 0.0126). Median survival was 442 days (docetaxel + capecitabine) vs. 352 days (docetaxel alone). The overall objective response rates in the all-randomised population (investigator assessment) were 41.6% (docetaxel + capecitabine) vs. 29.7% (docetaxel alone); p = 0.0058. Time to progressive disease was superior in the docetaxel + capecitabine combination arm (p < 0.0001). The median time to progression was 186 days (docetaxel + capecitabine) vs. 128 days (docetaxel alone).

**Non-small cell lung cancer**

*Patients previously treated with chemotherapy with or without radiotherapy*

In a phase III study, in previously treated patients, time to progression (12.3 weeks versus 7 weeks) and overall survival were significantly longer for docetaxel at 75 mg/m² compared to Best Supportive Care. The 1-year survival rate was also significantly longer in docetaxel (40%) versus BSC (16%). There was less use of morphinic analgesic (p < 0.01), non-morphinic analgesics (p < 0.01), other disease-related medicinal products (p = 0.06) and radiotherapy (p < 0.01) in patients treated with docetaxel at 75 mg/m² compared to those with BSC. The overall response rate was 6.8% in the evaluable patients, and the median duration of response was 26.1 weeks.

**TAXOTERE in combination with platinum agents in chemotherapy-naïve patients**

In a phase III study, 1218 patients with unresectable stage IIIB or IV NSCLC, with KPS of 70% or greater, and who did not receive previous chemotherapy for this condition, were randomised to either docetaxel (T) 75 mg/m² as a 1 hour infusion immediately followed by cisplatin (Cis) 75 mg/m² over 30-60 minutes every 3 weeks (TCis), docetaxel 75 mg/m² as a 1 hour infusion in combination with carboplatin (AUC 6 mg/ml.min) over 30-60 minutes every 3 weeks, or vinorelbine (V) 25 mg/m² administered over 6-10 minutes on days 1, 8, 15, 22 followed by cisplatin 100 mg/m² administered on day 1 of cycles repeated every 4 weeks (VCis).
Survival data, median time to progression and response rates for two arms of the study are illustrated in the following table:

<table>
<thead>
<tr>
<th></th>
<th>TCis n = 408</th>
<th>VCis n = 404</th>
<th>Statistical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall survival</td>
<td></td>
<td></td>
<td>Median survival (months)</td>
</tr>
<tr>
<td>(Primary end-point):</td>
<td></td>
<td></td>
<td>Median survival (months)</td>
</tr>
<tr>
<td></td>
<td>11.3</td>
<td>10.1</td>
<td>Hazard Ratio: 1.122 [97.2% CI: 0.937; 1.342]</td>
</tr>
<tr>
<td>1-year Survival (%)</td>
<td>46</td>
<td>41</td>
<td>Treatment difference: 5.4% [95% CI: -1.1; 12.0]</td>
</tr>
<tr>
<td>2-year Survival (%)</td>
<td>21</td>
<td>14</td>
<td>Treatment difference: 6.2% [95% CI: 0.2; 12.3]</td>
</tr>
<tr>
<td>Median time to progression (weeks):</td>
<td>22.0</td>
<td>23.0</td>
<td>Hazard Ratio: 1.032 [95% CI: 0.876; 1.216]</td>
</tr>
<tr>
<td>Overall response rate (%)</td>
<td>31.6</td>
<td>24.5</td>
<td>Treatment difference: 7.1% [95% CI: 0.7; 13.5]</td>
</tr>
</tbody>
</table>

*: Corrected for multiple comparisons and adjusted for stratification factors (stage of disease and region of treatment), based on evaluable patient population.

Secondary end-points included change of pain, global rating of quality of life by EuroQoL-5D, Lung Cancer Symptom Scale, and changes in Karnofsky performance status. Results on these end-points were supportive of the primary end-points results.

For docetaxel/carboplatin combination, neither equivalent nor non-inferior efficacy could be proven compared to the reference treatment combination VCis.

**Prostate cancer**

**Metastatic castration-resistant prostate cancer**

The safety and efficacy of docetaxel in combination with prednisone or prednisolone in patients with metastatic castration-resistant prostate cancer were evaluated in a randomised multi-centre phase III study (TAX 327). A total of 1006 patients with KPS ≥ 60 were randomised to the following treatment groups:

- Docetaxel 75 mg/m² every 3 weeks for 10 cycles.
- Docetaxel 30 mg/m² administered weekly for the first 5 weeks in a 6 week cycle for 5 cycles.
- Mitoxantrone 12 mg/m² every 3 weeks for 10 cycles.

All 3 regimens were administered in combination with prednisone or prednisolone 5 mg twice daily, continuously.

Patients who received docetaxel every three weeks demonstrated significantly longer overall survival compared to those treated with mitoxantrone. The increase in survival seen in the docetaxel weekly arm was not statistically significant compared to the mitoxantrone control arm. Efficacy endpoints for the docetaxel arms versus the control arm are summarized in the following table:
Given the fact that docetaxel every week presented a slightly better safety profile than docetaxel every 3 weeks, it is possible that certain patients may benefit from docetaxel every week.

No statistical differences were observed between treatment groups for Global Quality of Life.

**Metastatic hormone-sensitive prostate cancer**

**STAMPEDE study**

The safety and efficacy of docetaxel administered concomitantly with standard of care (ADT) in patients with high-risk locally advanced or metastatic hormone-sensitive prostate cancer were evaluated in a randomised multi-centre, multi-arm multi-stage (MAMS) study with a seamless phase II/III design (STAMPEDE – MRC PR08). A total of 1776 male patients were allocated to the treatment arms of interest:

- Standard of care + docetaxel 75 mg/m², administered every 3 weeks for 6 cycles
- Standard of care alone

Docetaxel regimen was administered in combination with prednisone or prednisolone 5 mg twice daily continuously.

Among the 1776 randomised patients 1086 (61%) had metastatic disease, 362 were randomised to docetaxel in combination with standard of care, 724 received standard of care alone.

In these metastatic prostate cancer patients, the median overall survival was significantly longer in docetaxel treatment groups than in the standard of care alone group, with a median overall survival 19 months longer with the addition of docetaxel to standard of care (HR = 0.76, 95% CI = 0.62-0.92, p=0.005).

Efficacy results in metastatic prostate cancer patients for docetaxel arm versus control arm are summarized in the following table:
Efficacy of docetaxel in combination with prednisone or prednisolone and standard of care in the treatment of patients with metastatic hormone-sensitive prostate cancer (STAMPEDE)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + standard of care</th>
<th>Standard of care alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of metastatic prostate cancer patients</td>
<td>362</td>
<td>724</td>
</tr>
<tr>
<td>Median overall survival (months)</td>
<td>62</td>
<td>43</td>
</tr>
<tr>
<td>95% CI</td>
<td>51-73</td>
<td>40-48</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.76</td>
<td>(0.62-0.92)</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Failure-Free survival(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>20.4</td>
<td>12</td>
</tr>
<tr>
<td>95% CI</td>
<td>16.8-25.2</td>
<td>9.6-12</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.66</td>
<td>(0.57-0.76)</td>
</tr>
<tr>
<td>95% CI</td>
<td>&lt; 0.001</td>
<td></td>
</tr>
<tr>
<td>p-value(^a)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) p-value calculated from the likelihood ratio test and adjusted for all stratification factors (except center and planned hormone therapy) and stratified by trial period

\(^b\) Failure-free survival: time from randomization to first evidence of at least one of: biochemical failure (defined as a rise in PSA of 50% above the within-24-week nadir and above 4 ng/mL and confirmed by retest or treatment); progression either locally, in lymph nodes, or in distant metastases; skeletal-related event; or death from prostate cancer.

**CHAARTED study**

The safety and efficacy of docetaxel administered at the beginning of androgen-deprivation therapy (ADT) in patients with metastatic hormone-sensitive prostate cancer were evaluated in a randomised Phase III multi-centre study (CHAARTED). A total of 790 male patients were allocated to the 2 treatment groups.

- ADT + docetaxel 75 mg/m² given at the beginning of ADT, administered every 3 weeks for 6 cycles
- ADT alone

The median overall survival was significantly longer in docetaxel treatment group than in the ADT alone group, with a median overall survival 13.6 months longer with the addition of docetaxel to ADT (hazard ratio (HR) = 0.61, 95% confidence interval (CI) = 0.47-0.80, p=0.0003).

Efficacy results or the docetaxel arm versus the control arm are summarized in the following table:
Efficacy of docetaxel and ADT in the treatment of patients with metastatic hormone-sensitive prostate cancer (CHAARTED)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel +ADT</th>
<th>ADT alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>397</td>
<td>393</td>
</tr>
<tr>
<td>Median overall survival (months)</td>
<td>57.6</td>
<td>44.0</td>
</tr>
<tr>
<td><em>95% CI</em> Adjusted hazard ratio</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td><em>95% CI</em></td>
<td>(0.47-0.80)</td>
<td>--</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0003</td>
<td>--</td>
</tr>
<tr>
<td>Progression Free Survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>19.8</td>
<td>11.6</td>
</tr>
<tr>
<td>95% CI</td>
<td>16.7-22.8</td>
<td>10.8-14.3</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.60</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.51-0.72</td>
<td>--</td>
</tr>
<tr>
<td>p-value*</td>
<td>P&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>PSA response** at 6 months – N(%)</td>
<td>127 (32.0)</td>
<td>77 (19.6)</td>
</tr>
<tr>
<td>p-value** at 6 months</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>PSA response** at 12 months – N(%)</td>
<td>110 (27.7)</td>
<td>66 (16.8)</td>
</tr>
<tr>
<td>p-value** at 12 months</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>Time to castration-resistant prostate cancer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>20.2</td>
<td>11.7</td>
</tr>
<tr>
<td>95% CI</td>
<td>(17.2-23.6)</td>
<td>(10.8-14.7)</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.51-0.72)</td>
<td>--</td>
</tr>
<tr>
<td>p-value</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>Time to clinical progression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>33.0</td>
<td>19.8</td>
</tr>
<tr>
<td>95% CI</td>
<td>(27.3-41.2)</td>
<td>(17.9-22.8)</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.50-0.75)</td>
<td>--</td>
</tr>
<tr>
<td>p-value</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
</tbody>
</table>

*a Time to event variables: Stratified log-rank test.
* Response rate variables: Fisher's Exact test
* p-value for descriptive purpose.
** PSA response: Prostate-Specific Antigen response: PSA level <0.2 ng/mL measured for two consecutive measurements at least 4 weeks apart.
*b Time to castration-resistant prostate cancer = time from randomization to PSA progression or clinical progression (i.e., increasing symptomatic bone metastases, progression per Response Evaluation Criteria in Solid Tumours (RECIST) criteria, or clinical deterioration due to cancer per the Investigator’s opinion), whichever occurred first.
*c The time to clinical progression = the time from randomization until clinical progression (i.e., increased symptoms of bone metastases; progression according to RECIST; or clinical deterioration due to cancer according to the investigator’s opinion).

**Gastric adenocarcinoma**

A multi-centre, open-label, randomised study was conducted to evaluate the safety and efficacy of docetaxel for the treatment of patients with metastatic gastric adenocarcinoma, including adenocarcinoma of the gastroesophageal junction, who had not received prior chemotherapy for
metastatic disease. A total of 445 patients with KPS > 70 were treated with either docetaxel (T) (75 mg/m² on day 1) in combination with cisplatin (C) (75 mg/m² on day 1) and 5-fluorouracil (F) (750 mg/m² per day for 5 days) or cisplatin (100 mg/m² on day 1) and 5-fluorouracil (1000 mg/m² per day for 5 days). The length of a treatment cycle was 3 weeks for the TCF arm and 4 weeks for the CF arm. The median number of cycles administered per patient was 6 (with a range of 1-16) for the TCF arm compared to 4 (with a range of 1-12) for the CF arm. Time to progression (TTP) was the primary endpoint. The risk reduction of progression was 32.1% and was associated with a significantly longer TTP (p = 0.0004) in favour of the TCF arm. Overall survival was also significantly longer (p = 0.0201) in favour of the TCF arm with a risk reduction of mortality of 22.7%. Efficacy results are summarized in the following table:

**Efficacy of docetaxel in the treatment of patients with gastric adenocarcinoma**

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>TCF n = 221</th>
<th>CF n = 224</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median TTP (months) (95% CI)</td>
<td>5.6 (4.86-5.91)</td>
<td>3.7 (3.45-4.47)</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>1.473 (1.189-1.825)</td>
<td>0.0004</td>
</tr>
<tr>
<td>*p-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median survival (months) (95% CI)</td>
<td>9.2 (8.38-10.58)</td>
<td>8.6 (7.16-9.46)</td>
</tr>
<tr>
<td>2-year estimate (%)</td>
<td>18.4</td>
<td>8.8</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>1.293 (1.041-1.606)</td>
<td>0.0201</td>
</tr>
<tr>
<td>*p-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall response rate (CR+PR) (%)</td>
<td>36.7</td>
<td>25.4</td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td>0.0106</td>
</tr>
<tr>
<td>Progressive disease as best overall response (%)</td>
<td>16.7</td>
<td>25.9</td>
</tr>
</tbody>
</table>

*Unstratified logrank test

Subgroup analyses across age, gender and race consistently favoured the TCF arm compared to the CF arm.

A survival update analysis conducted with a median follow-up time of 41.6 months no longer showed a statistically significant difference although always in favour of the TCF regimen and showed that the benefit of TCF over CF is clearly observed between 18 and 30 months of follow up.

Overall, quality of life (QoL) and clinical benefit results consistently indicated improvement in favour of the TCF arm. Patients treated with TCF had a longer time to 5% definitive deterioration of global health status on the QLQ-C30 questionnaire (p = 0.0121) and a longer time to definitive worsening of Karnofsky performance status (p = 0.0088) compared to patients treated with CF.

**Head and neck cancer**

- Induction chemotherapy followed by radiotherapy (TAX323)

The safety and efficacy of docetaxel in the induction treatment of patients with squamous cell carcinoma of the head and neck (SCCHN) was evaluated in a phase III, multi-centre, open-label, randomised study (TAX323). In this study, 358 patients with inoperable locally advanced SCCHN, and WHO performance status 0 or 1, were randomised to one of two treatment arms. Patients on the docetaxel arm received docetaxel (T) 75 mg/m² followed by cisplatin (P) 75 mg/m² followed by 5-fluorouracil (F) 750 mg/m² per day as a continuous infusion for 5 days. This regimen was administered every three weeks for 4 cycles in case at least a minor response (≥ 25% reduction in bidimensionally measured tumour size) was observed after 2 cycles. At the end of chemotherapy, with a minimal interval of 4 weeks and a maximal interval of 7 weeks, patients whose disease did not progress received radiotherapy (RT) according to institutional guidelines for 7 weeks (TPF/RT). Patients on the comparator arm received cisplatin (P) 100 mg/m² followed by 5-fluorouracil (F)
1000 mg/m$^2$ per day for 5 days. This regimen was administered every three weeks for 4 cycles in case at least a minor response ($\geq 25\%$ reduction in bidimensionally measured tumour size) was observed after 2 cycles. At the end of chemotherapy, with a minimal interval of 4 weeks and a maximal interval of 7 weeks, patients whose disease did not progress received radiotherapy (RT) according to institutional guidelines for 7 weeks (PF/RT). Locoregional therapy with radiation was delivered either with a conventional fraction (1.8 Gy - 2.0 Gy once a day, 5 days per week for a total dose of 66 to 70 Gy), or accelerated/hyperfractionated regimens of radiation therapy (twice a day, with a minimum interfraction interval of 6 hours, 5 days per week). A total of 70 Gy was recommended for accelerated regimens and 74 Gy for hyperfractionated schemes. Surgical resection was allowed following chemotherapy, before or after radiotherapy. Patients on the TPF arm received antibiotic prophylaxis with ciprofloxacin 500 mg orally twice daily for 10 days starting on day 5 of each cycle, or equivalent.

The primary endpoint in this study, progression-free survival (PFS), was significantly longer in the TPF arm compared to the PF arm, $p = 0.0042$ (median PFS: 11.4 vs. 8.3 months respectively) with an overall median follow up time of 33.7 months. Median overall survival was also significantly longer in favour of the TPF arm compared to the PF arm (median OS: 18.6 vs. 14.5 months respectively) with a 28% risk reduction of mortality, $p = 0.0128$. Efficacy results are presented in the table below:

### Efficacy of docetaxel in the induction treatment of patients with inoperable locally advanced SCCHN (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + Cis + 5-FU</th>
<th>Cis + 5-FU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 177</td>
<td>n = 181</td>
</tr>
<tr>
<td>Median progression free survival (months)</td>
<td>11.4 (10.1-14.0)</td>
<td>8.3 (7.4-9.1)</td>
</tr>
<tr>
<td>Adjusted hazard ratio (95% CI)</td>
<td>0.70 (0.55-0.89)</td>
<td>0.0042</td>
</tr>
<tr>
<td>Median survival (months) (95% CI)</td>
<td>18.6 (15.7-24.0)</td>
<td>14.5 (11.6-18.7)</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>0.72 (0.56-0.93)</td>
<td>0.0128</td>
</tr>
<tr>
<td>Best overall response to chemotherapy (%)</td>
<td>67.8 (60.4-74.6)</td>
<td>53.6 (46.0-61.0)</td>
</tr>
<tr>
<td>Best overall response to study treatment</td>
<td>72.3 (65.1-78.8)</td>
<td>58.6 (51.0-65.8)</td>
</tr>
<tr>
<td>[chemotherapy +/- radiotherapy] (95% CI)</td>
<td><strong>0.006</strong></td>
<td></td>
</tr>
<tr>
<td>Median duration of response to chemotherapy ±</td>
<td>n = 128</td>
<td>n = 106</td>
</tr>
<tr>
<td>radiotherapy (months) (95% CI)</td>
<td>15.7 (13.4-24.6)</td>
<td>11.7 (10.2-17.4)</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>0.72 (0.52-0.99)</td>
<td>0.0457</td>
</tr>
</tbody>
</table>

A hazard ratio of less than 1 favours docetaxel + cisplatin + 5-FU
* Cox model (adjustment for Primary tumour site, T and N clinical stages and PSWHO)
** Logrank test
*** Chi-square test

### Quality of life parameters

Patients treated with TPF experienced significantly less deterioration of their Global health score compared to those treated with PF ($p = 0.01$, using the EORTC QLQ-C30 scale).

### Clinical benefit parameters
The performance status scale, for head and neck (PSS-HN) subscales designed to measure understandability of speech, ability to eat in public, and normalcy of diet, was significantly in favour of TPF as compared to PF. Median time to first deterioration of WHO performance status was significantly longer in the TPF arm compared to PF. Pain intensity score improved during treatment in both groups indicating adequate pain management.

- Induction chemotherapy followed by chemoradiotherapy (TAX324)
The safety and efficacy of docetaxel in the induction treatment of patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN) was evaluated in a randomised, multi-centre open-label, phase III study (TAX324). In this study, 501 patients, with locally advanced SCCHN, and a WHO performance status of 0 or 1, were randomised to one of two arms. The study population comprised patients with technically unresectable disease, patients with low probability of surgical cure and patients aiming at organ preservation. The efficacy and safety evaluation solely addressed survival endpoints and the success of organ preservation was not formally addressed. Patients on the docetaxel arm received docetaxel (T) 75 mg/m² by intravenous infusion on day 1 followed by cisplatin (P) 100 mg/m² administered as a 30-minute to three-hour intravenous infusion, followed by the continuous intravenous infusion of 5-fluorouracil (F) 1000 mg/m²/day from day 1 to day 4. The cycles were repeated every 3 weeks for 3 cycles. All patients who did not have progressive disease were to receive chemoradiotherapy (CRT) as per protocol (TPF/CRT). Patients on the comparator arm received cisplatin (P) 100 mg/m² as a 30-minute to three-hour intravenous infusion on day 1 followed by the continuous intravenous infusion of 5-fluorouracil (F) 1000 mg/m²/day from day 1 to day 5. The cycles were repeated every 3 weeks for 3 cycles. All patients who did not have progressive disease were to receive CRT as per protocol (PF/CRT).

Patients in both treatment arms were to receive 7 weeks of CRT following induction chemotherapy with a minimum interval of 3 weeks and no later than 8 weeks after start of the last cycle (day 22 to day 56 of last cycle). During radiotherapy, carboplatin (AUC 1.5) was given weekly as a one-hour intravenous infusion for a maximum of 7 doses. Radiation was delivered with megavoltage equipment using once daily fractionation (2 Gy per day, 5 days per week for 7 weeks, for a total dose of 70-72 Gy). Surgery on the primary site of disease and/or neck could be considered at any time following completion of CRT. All patients on the docetaxel-containing arm of the study received prophylactic antibiotics. The primary efficacy endpoint in this study, overall survival (OS) was significantly longer (log-rank test, p = 0.0058) with the docetaxel-containing regimen compared to PF (median OS: 70.6 versus 30.1 months respectively), with a 30% risk reduction in mortality compared to PF (hazard ratio (HR) = 0.70, 95% confidence interval (CI) = 0.54-0.90) with an overall median follow up time of 41.9 months. The secondary endpoint, PFS, demonstrated a 29% risk reduction of progression or death and a 22 month improvement in median PFS (35.5 months for TPF and 13.1 for PF). This was also statistically significant with an HR of 0.71; 95% CI 0.56-0.90; log-rank test p = 0.004. Efficacy results are presented in the table below:
Efficacy of docetaxel in the induction treatment of patients with locally advanced SCCHN (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + Cis + 5-FU n = 255</th>
<th>Cis + 5-FU n = 246</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median overall survival (months) (95% CI)</td>
<td>70.6 (49.0-NA)</td>
<td>30.1 (20.9-51.5)</td>
</tr>
<tr>
<td>Hazard ratio: (95% CI)</td>
<td>0.70 (0.54-0.90)</td>
<td>0.0058</td>
</tr>
<tr>
<td>Median PFS (months) (95% CI)</td>
<td>35.5 (19.3-NA)</td>
<td>13.1 (10.6 - 20.2)</td>
</tr>
<tr>
<td>Hazard ratio: (95% CI)</td>
<td>0.71 (0.56 - 0.90)</td>
<td>0.004</td>
</tr>
<tr>
<td>Best overall response (CR + PR) to chemotherapy (%) (95% CI)</td>
<td>71.8 (65.8-77.2)</td>
<td>64.2 (57.9-70.2)</td>
</tr>
<tr>
<td>***p-value</td>
<td>0.070</td>
<td></td>
</tr>
<tr>
<td>Best overall response (CR + PR) to study treatment [chemotherapy +/- chemoradiotherapy] (%) (95%CI)</td>
<td>76.5 (70.8-81.5)</td>
<td>71.5 (65.5-77.1)</td>
</tr>
<tr>
<td>***p-value</td>
<td>0.209</td>
<td></td>
</tr>
</tbody>
</table>

A hazard ratio of less than 1 favours docetaxel + cisplatin + fluorouracil
*un-adjusted log-rank test
**un-adjusted log-rank test, not adjusted for multiple comparisons
***Chi square test, not adjusted for multiple comparisons
NA-not applicable

Paediatric population

The European Medicines Agency has waived the obligation to submit the results of studies with TAXOTERE in all subsets of the paediatric population in breast cancer, non-small cell lung cancer, prostate cancer, gastric carcinoma and head and neck cancer, not including type II and III less differentiated nasopharyngeal carcinoma (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

Absorption

The pharmacokinetics of docetaxel have been evaluated in cancer patients after administration of 20-115 mg/m² in phase I studies. The kinetic profile of docetaxel is dose independent and consistent with a three-compartment pharmacokinetic model with half-lives for the α, β and γ (terminal) phases of 4 min, 36 min and between 11.1 h and 17.5 h, respectively, when sampled up to 24 hours. An additional study assessing the pharmacokinetics of docetaxel at similar doses (75 – 100 mg/m²) in patients, but over a longer time interval (over 22 days) found a longer mean terminal elimination half-life between 91 and 120 hours. The late phase is due, in part, to a relatively slow efflux of docetaxel from the peripheral compartment.

Distribution

Following the administration of a 100 mg/m² dose given as a one-hour infusion a mean peak plasma level of 3.7 µg/ml was obtained with a corresponding AUC of 4.6 h.µg/ml. Mean values for total body clearance and steady-state volume of distribution were 21 l/h/m² and 113 l, respectively. Inter
individual variation in total body clearance was approximately 50%. Docetaxel is more than 95% bound to plasma proteins.

Elimination

A study of $^{14}$C-docetaxel has been conducted in three cancer patients. Docetaxel was eliminated in both the urine and faeces following cytochrome P450-mediated oxidative metabolism of the tert-buty l ester group, within seven days, the urinary and faecal excretion accounted for about 6% and 75% of the administered radioactivity, respectively. About 80% of the radioactivity recovered in faeces is excreted during the first 48 hours as one major inactive metabolite and 3 minor inactive metabolites and very low amounts of unchanged medicinal product.

Special populations

Age and gender

A population pharmacokinetic analysis has been performed with docetaxel in 577 patients. Pharmacokinetic parameters estimated by the model were very close to those estimated from phase I studies. The pharmacokinetics of docetaxel were not altered by the age or sex of the patient.

Hepatic impairment

In a small number of patients ($n = 23$) with clinical chemistry data suggestive of mild to moderate liver function impairment (ALT, AST $\geq 1.5$ times the ULN associated with alkaline phosphatase $\geq 2.5$ times the ULN), total clearance was lowered by 27% on average (see section 4.2).

Fluid retention

Docetaxel clearance was not modified in patients with mild to moderate fluid retention and there are no data available in patients with severe fluid retention.

Combination therapy

Doxorubicin

When used in combination, docetaxel does not influence the clearance of doxorubicin and the plasma levels of doxorubicinol (a doxorubicin metabolite). The pharmacokinetics of docetaxel, doxorubicin and cyclophosphamide were not influenced by their co-administration.

Capecitabine

Phase I study evaluating the effect of capecitabine on the pharmacokinetics of docetaxel and vice versa showed no effect by capecitabine on the pharmacokinetics of docetaxel (Cmax and AUC) and no effect by docetaxel on the pharmacokinetics of a relevant capecitabine metabolite 5'-DFUR.

Cisplatin

Clearance of docetaxel in combination therapy with cisplatin was similar to that observed following monotherapy. The pharmacokinetic profile of cisplatin administered shortly after docetaxel infusion is similar to that observed with cisplatin alone.

Cisplatin and 5-fluorouracil

The combined administration of docetaxel, cisplatin and 5-fluorouracil in 12 patients with solid tumours had no influence on the pharmacokinetics of each individual medicinal product.

Prednisone and dexamethasone

The effect of prednisone on the pharmacokinetics of docetaxel administered with standard dexamethasone premedication has been studied in 42 patients.

Prednisone

No effect of prednisone on the pharmacokinetics of docetaxel was observed.

5.3 Preclinical safety data
The carcinogenic potential of docetaxel has not been studied.

Docetaxel has been shown to be genotoxic by an aneugenic mechanism in the \textit{in vitro} micronucleus and chromosome aberration test in CHO-K1 cells and in the \textit{in vivo} micronucleus test in the mouse. However, it did not induce mutagenicity in the Ames test or the CHO/HGPRT gene mutation assay. These results are consistent with the pharmacological activity of docetaxel.

Undesirable effects on the testis observed in rodent toxicity studies suggest that docetaxel may impair male fertility.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

- Polysorbate 80
- Ethanol anhydrous
- Citric acid

6.2 Incompatibilities

This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.

6.3 Shelf-life

- Unopened vial
  - 3 years
- After opening of the vial
  - Each vial is for single use and should be used immediately after opening. If not used immediately, in-use storage times and conditions are the responsibility of the user.

Once added to the infusion bag

From a microbiological point of view, reconstitution/dilution must take place in controlled and aseptic conditions and the medicinal product should be used immediately. If not used immediately, in-use storage times and conditions are the responsibility of the user.

Once added as recommended into the infusion bag, the docetaxel infusion solution, if stored below 25°C, is stable for 6 hours. It should be used within 6 hours (including the one hour infusion intravenous administration).

In addition, physical and chemical in-use stability of the infusion solution prepared as recommended has been demonstrated in non-PVC bags up to 48 hours when stored between 2 to 8°C.

Docetaxel infusion solution is supersaturated, therefore may crystallize over time. If crystals appear, the solution must no longer be used and shall be discarded.

6.4 Special precautions for storage

- Do not store above 25°C.
- Store in the original package in order to protect from light.

For storage conditions of the diluted medicinal product, see section 6.3.

6.5 Nature and contents of container
7 ml clear glass (type I) vial with a magenta aluminium seal and a magenta plastic flip-off cap containing 4 ml of concentrate.

Each box contains one vial.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

TAXOTERE is an antineoplastic agent and, as with other potentially toxic compounds, caution should be exercised when handling it and preparing TAXOTERE solutions. The use of gloves is recommended.

If TAXOTERE concentrate or infusion solution should come into contact with skin, wash immediately and thoroughly with soap and water. If TAXOTERE concentrate or infusion solution should come into contact with mucous membranes, wash immediately and thoroughly with water.

Preparation for the intravenous administration

Preparation of the infusion solution
DO NOT use other docetaxel medicinal products consisting of 2 vials (concentrate and solvent) with this medicinal product (TAXOTERE 80 mg/4 ml concentrate for solution for infusion, which contains only 1 vial).

TAXOTERE 80 mg/4 ml concentrate for solution for infusion requires NO prior dilution with a solvent and is ready to add to the infusion solution.

Each vial is of single use and should be used immediately.

If the vials are stored under refrigeration, allow the required number of boxes of TAXOTERE concentrate for solution for infusion to stand below 25°C for 5 minutes before use. More than one vial of TAXOTERE concentrate for solution for infusion may be necessary to obtain the required dose for the patient. Aseptically withdraw the required amount of TAXOTERE concentrate for solution for infusion using a calibrated syringe fitted with a 21G needle.

In TAXOTERE 80 mg/4 ml vial the concentration of docetaxel is 20 mg/ml.
The required volume of TAXOTERE concentrate for solution for infusion must be injected via a single injection (one shot) into a 250 ml infusion bag or bottle containing either 5% glucose solution or sodium chloride 9 mg/ml (0.9%) solution for infusion.

If a dose greater than 190 mg of docetaxel is required, use a larger volume of the infusion vehicle so that a concentration of 0.74 mg/ml docetaxel is not exceeded.

Mix the infusion bag or bottle manually using a rocking motion.

The infusion bag solution should be used within 6 hours below 25°C including the one hour infusion to the patient. As with all parenteral products, TAXOTERE infusion solution should be visually inspected prior to use, solutions containing a precipitate should be discarded.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORITY HONER
8. MARKETING AUTHORISATION NUMBER

EU/1/95/002/004

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 27 November 1995
Date of latest renewal: 27 November 2005

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
1. **NAME OF THE MEDICINAL PRODUCT**

TAXOTERE 160 mg/8 ml concentrate for solution for infusion.

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**

Each ml of concentrate contains 20 mg docetaxel (as trihydrate).

One vial of 8 ml of concentrate contains 160 mg of docetaxel.

**Excipient with known effect:**
Each vial of concentrate contains 4 ml of ethanol anhydrous (3.16 g).

For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**

Concentrate for solution for infusion (sterile concentrate).

The concentrate is a pale yellow to brownish-yellow solution.

4. **CLINICAL PARTICULARS**

4.1 **Therapeutic indications**

**Breast cancer**

TAXOTERE in combination with doxorubicin and cyclophosphamide is indicated for the adjuvant treatment of patients with:
- operable node-positive breast cancer
- operable node-negative breast cancer

For patients with operable node-negative breast cancer, adjuvant treatment should be restricted to patients eligible to receive chemotherapy according to internationally established criteria for primary therapy of early breast cancer (see section 5.1).

TAXOTERE in combination with doxorubicin is indicated for the treatment of patients with locally advanced or metastatic breast cancer who have not previously received cytotoxic therapy for this condition.

TAXOTERE monotherapy is indicated for the treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic therapy. Previous chemotherapy should have included an anthracycline or an alkylating agent.

TAXOTERE in combination with trastuzumab is indicated for the treatment of patients with metastatic breast cancer whose tumours over express HER2 and who previously have not received chemotherapy for metastatic disease.

TAXOTERE in combination with capecitabine is indicated for the treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic chemotherapy. Previous therapy should have included an anthracycline.
Non-small cell lung cancer

TAXOTERE is indicated for the treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of prior chemotherapy.

TAXOTERE in combination with cisplatin is indicated for the treatment of patients with unresectable, locally advanced or metastatic non-small cell lung cancer, in patients who have not previously received chemotherapy for this condition.

Prostate cancer

TAXOTERE in combination with prednisone or prednisolone is indicated for the treatment of patients with metastatic castration-resistant prostate cancer.

TAXOTERE in combination with androgen-deprivation therapy (ADT), with or without prednisone or prednisolone, is indicated for the treatment of patients with metastatic hormone-sensitive prostate cancer.

Gastric adenocarcinoma

TAXOTERE in combination with cisplatin and 5-fluorouracil is indicated for the treatment of patients with metastatic gastric adenocarcinoma, including adenocarcinoma of the gastroesophageal junction, who have not received prior chemotherapy for metastatic disease.

Head and neck cancer

TAXOTERE in combination with cisplatin and 5-fluorouracil is indicated for the induction treatment of patients with locally advanced squamous cell carcinoma of the head and neck.

4.2 Posology and method of administration

The use of docetaxel should be confined to units specialised in the administration of cytotoxic chemotherapy and it should only be administered under the supervision of a physician qualified in the use of anticancer chemotherapy (see section 6.6).

Posology

For breast, non-small cell lung, gastric, and head and neck cancers, premedication consisting of an oral corticosteroid, such as dexamethasone 16 mg per day (e.g. 8 mg BID) for 3 days starting 1 day prior to docetaxel administration, unless contraindicated, can be used (see section 4.4). For metastatic castration-resistant prostate cancer, given the concurrent use of prednisone or prednisolone the recommended premedication regimen is oral dexamethasone 8 mg, 12 hours, 3 hours and 1 hour before the docetaxel infusion (see section 4.4). For metastatic hormone-sensitive prostate cancer, irrespective of the concurrent use of prednisone or prednisolone, the recommended premedication regimen is oral dexamethasone 8 mg 12 hours, 3 hours, and 1 hour before docetaxel infusion (see section 4.4).

Prophylactic G-CSF may be used to mitigate the risk of haematological toxicities.

Docetaxel is administered as a one-hour infusion every three weeks.

Breast cancer

In the adjuvant treatment of operable node-positive and node-negative breast cancer, the recommended dose of docetaxel is 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² every 3 weeks for 6 cycles (TAC regimen) (see also Dose adjustments during treatment).
For the treatment of patients with locally advanced or metastatic breast cancer, the recommended dose of docetaxel is 100 mg/m² in monotherapy. In first-line treatment, docetaxel 75 mg/m² is given in combination therapy with doxorubicin (50 mg/m²).

In combination with trastuzumab the recommended dose of docetaxel is 100 mg/m² every three weeks, with trastuzumab administered weekly. In the pivotal study the initial docetaxel infusion was started the day following the first dose of trastuzumab. The subsequent docetaxel doses were administered immediately after completion of the trastuzumab infusion, if the preceding dose of trastuzumab was well tolerated. For trastuzumab dose and administration, see trastuzumab summary of product characteristics.

In combination with capecitabine, the recommended dose of docetaxel is 75 mg/m² every three weeks, combined with capecitabine at 1250 mg/m² twice daily (within 30 minutes after a meal) for 2 weeks followed by a 1-week rest period. For capecitabine dose calculation according to body surface area, see capecitabine summary of product characteristics.

**Non-small cell lung cancer**
In chemotherapy naïve patients treated for non-small cell lung cancer, the recommended dose regimen is docetaxel 75 mg/m² immediately followed by cisplatin 75 mg/m² over 30-60 minutes. For treatment after failure of prior platinum-based chemotherapy, the recommended dose is 75 mg/m² as a single agent.

**Prostate cancer**

*Metastatic castration-resistant prostate cancer*
The recommended dose of docetaxel is 75 mg/m². Prednisone or prednisolone 5 mg orally twice daily is administered continuously (see section 5.1).

*Metastatic hormone-sensitive prostate cancer*
The recommended dose of docetaxel is 75 mg/m² every 3 weeks for 6 cycles. Prednisone or prednisolone 5 mg orally twice daily may be administered continuously.

**Gastric adenocarcinoma**
The recommended dose of docetaxel is 75 mg/m² as a 1-hour infusion, followed by cisplatin 75 mg/m², as a 1- to 3-hour infusion (both on day 1 only), followed by 5-fluourouracil 750 mg/m² per day given as a 24-hour continuous infusion for 5 days, starting at the end of the cisplatin infusion. Treatment is repeated every three weeks. Patients must receive premedication with antiemetics and appropriate hydration for cisplatin administration. Prophylactic G-CSF should be used to mitigate the risk of haematological toxicities (see also Dose adjustments during treatment).

**Head and neck cancer**
Patients must receive premedication with antiemetics and appropriate hydration (prior to and after cisplatin administration). Prophylactic G-CSF may be used to mitigate the risk of haematological toxicities. All patients on the docetaxel-containing arm of the TAX 323 and TAX 324 studies, received prophylactic antibiotics.

- Induction chemotherapy followed by radiotherapy (TAX 323)
  For the induction treatment of inoperable locally advanced squamous cell carcinoma of the head and neck (SCCHN), the recommended dose of docetaxel is 75 mg/m² as a 1 hour infusion followed by cisplatin 75 mg/m² over 1 hour, on day one, followed by 5-fluourouracil as a continuous infusion at 750 mg/m² per day for five days. This regimen is administered every 3 weeks for 4 cycles. Following chemotherapy, patients should receive radiotherapy.

- Induction chemotherapy followed by chemoradiotherapy (TAX 324)
  For the induction treatment of patients with locally advanced (technically unresectable, low probability of surgical cure, and aiming at organ preservation) squamous cell carcinoma of the head and neck (SCCHN), the recommended dose of docetaxel is 75 mg/m² as a 1 hour intravenous infusion on day 1, followed by cisplatin 100 mg/m² administered as a 30-minute to 3-hour
infusion, followed by 5-fluorouracil 1000 mg/m²/day as a continuous infusion from day 1 to day 4. This regimen is administered every 3 weeks for 3 cycles. Following chemotherapy, patients should receive chemoradiotherapy.

For cisplatin and 5-fluorouracil dose modifications, see the corresponding summary of product characteristics.

Dose adjustments during treatment

**General**
Docetaxel should be administered when the neutrophil count is ≥ 1,500 cells/mm³. In patients who experienced either febrile neutropenia, neutrophil count < 500 cells/mm³ for more than one week, severe or cumulative cutaneous reactions or severe peripheral neuropathy during docetaxel therapy, the dose of docetaxel should be reduced from 100 mg/m² to 75 mg/m² and/or from 75 to 60 mg/m². If the patient continues to experience these reactions at 60 mg/m², the treatment should be discontinued.

**Adjuvant therapy for breast cancer**
Primary G-CSF prophylaxis should be considered in patients who receive docetaxel, doxorubicin and cyclophosphamide (TAC) adjuvant therapy for breast cancer. Patients who experience febrile neutropenia and/or neutropenic infection should have their docetaxel dose reduced to 60 mg/m² in all subsequent cycles (see sections 4.4 and 4.8). Patients who experience Grade 3 or 4 stomatitis should have their dose decreased to 60 mg/m².

**In combination with cisplatin**
For patients who are dosed initially at docetaxel 75 mg/m² in combination with cisplatin and whose nadir of platelet count during the previous course of therapy is < 25,000 cells/mm³, or in patients who experience febrile neutropenia, or in patients with serious non-haematologic toxicities, the docetaxel dose in subsequent cycles should be reduced to 65 mg/m². For cisplatin dose adjustments, see the corresponding summary of product characteristics.

**In combination with capecitabine**
- For capecitabine dose modifications, see capecitabine summary of product characteristics.
- For patients developing the first appearance of Grade 2 toxicity, which persists at the time of the next docetaxel/capecitabine treatment, delay treatment until resolved to Grade 0-1, and resume at 100% of the original dose.
- For patients developing the second appearance of Grade 2 toxicity, or the first appearance of Grade 3 toxicity, at any time during the treatment cycle, delay treatment until resolved to Grade 0-1 and then resume treatment with docetaxel 55 mg/m².
- For any subsequent appearances of toxicities, or any Grade 4 toxicities, discontinue the docetaxel dose.

For trastuzumab dose modifications, see trastuzumab summary of product characteristics.

**In combination with cisplatin and 5-fluorouracil**
If an episode of febrile neutropenia, prolonged neutropenia or neutropenic infection occurs despite G-CSF use, the docetaxel dose should be reduced from 75 to 60 mg/m². If subsequent episodes of complicated neutropenia occur the docetaxel dose should be reduced from 60 to 45 mg/m². In case of Grade 4 thrombocytopenia the docetaxel dose should be reduced from 75 to 60 mg/m². Patients should not be retreated with subsequent cycles of docetaxel until neutrophils recover to a level > 1,500 cells/mm³ and platelets recover to a level > 100,000 cells/mm³. Discontinue treatment if these toxicities persist (see section 4.4).

Recommended dose modifications for toxicities in patients treated with docetaxel in combination with cisplatin and 5-fluorouracil (5-FU):
### Toxicity and Dose Adjustment

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Dose adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhoea grade 3</td>
<td>First episode: reduce 5-FU dose by 20%. Second episode: then reduce docetaxel dose by 20%.</td>
</tr>
<tr>
<td>Diarrhoea grade 4</td>
<td>First episode: reduce docetaxel and 5-FU doses by 20%. Second episode: discontinue treatment.</td>
</tr>
<tr>
<td>Stomatitis/mucositis grade 3</td>
<td>First episode: reduce 5-FU dose by 20%. Second episode: stop 5-FU only, at all subsequent cycles. Third episode: reduce docetaxel dose by 20%.</td>
</tr>
<tr>
<td>Stomatitis/mucositis grade 4</td>
<td>First episode: stop 5-FU only, at all subsequent cycles. Second episode: reduce docetaxel dose by 20%.</td>
</tr>
</tbody>
</table>

For cisplatin and 5-fluorouracil dose adjustments, see the corresponding summary of product characteristics.

In the pivotal SCCHN studies patients who experienced complicated neutropenia (including prolonged neutropenia, febrile neutropenia, or infection), it was recommended to use G-CSF to provide prophylactic coverage (eg, day 6-15) in all subsequent cycles.

### Special populations

**Patients with hepatic impairment**

Based on pharmacokinetic data with docetaxel at 100 mg/m\(^2\) as single agent, patients who have both elevations of transaminase (ALT and/or AST) greater than 1.5 times the upper limit of the normal range (ULN) and alkaline phosphatase greater than 2.5 times the ULN, the recommended dose of docetaxel is 75 mg/m\(^2\) (see sections 4.4 and 5.2). For those patients with serum bilirubin > ULN and/or ALT and AST > 3.5 times the ULN associated with alkaline phosphatase > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated.

In combination with cisplatin and 5-fluorouracil for the treatment of patients with gastric adenocarcinoma, the pivotal clinical study excluded patients with ALT and/or AST > 1.5 × ULN associated with alkaline phosphatase > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated. No data are available in patients with hepatic impairment treated by docetaxel in combination in the other indications.

**Paediatric population**
The safety and efficacy of TAXOTERE in nasopharyngeal carcinoma in children aged 1 month to less than 18 years have not yet been established.

There is no relevant use of TAXOTERE in the paediatric population in the indications breast cancer, non-small cell lung cancer, prostate cancer, gastric carcinoma and head and neck cancer, not including type II and III less differentiated nasopharyngeal carcinoma.

**Older people**

Based on a population pharmacokinetic analysis, there are no special instructions for use in the older people.

In combination with capecitabine, for patients 60 years of age or more, a starting dose reduction of capecitabine to 75% is recommended (see capecitabine summary of product characteristics).

**Method of administration**

For instructions on preparation and administration of the product, see section 6.6.

### 4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

Patients with baseline neutrophil count of < 1,500 cells/mm\(^3\).

Patients with severe liver impairment (see sections 4.2 and 4.4).
Contraindications for other medicinal products also apply, when combined with docetaxel.

4.4 Special warnings and precautions for use

For breast and non-small cell lung cancers, premedication consisting of an oral corticosteroid, such as dexamethasone 16 mg per day (e.g. 8 mg BID) for 3 days starting 1 day prior to docetaxel administration, unless contraindicated, can reduce the incidence and severity of fluid retention as well as the severity of hypersensitivity reactions. For prostate cancer, the premedication is oral dexamethasone 8 mg, 12 hours, 3 hours and 1 hour before the docetaxel infusion (see section 4.2).

Haematology

Neutropenia is the most frequent adverse reaction of docetaxel. Neutrophil nadirs occurred at a median of 7 days but this interval may be shorter in heavily pre-treated patients. Frequent monitoring of complete blood counts should be conducted on all patients receiving docetaxel. Patients should be retreated with docetaxel when neutrophils recover to a level $\geq 1,500$ cells/mm$^3$ (see section 4.2).

In the case of severe neutropenia ($< 500$ cells/mm$^3$ for seven days or more) during a course of docetaxel therapy, a reduction in dose for subsequent courses of therapy or the use of appropriate symptomatic measures are recommended (see section 4.2).

In patients treated with docetaxel in combination with cisplatin and 5-fluorouracil (TCF), febrile neutropenia and neutropenic infection occurred at lower rates when patients received prophylactic G-CSF. Patients treated with TCF should receive prophylactic G-CSF to mitigate the risk of complicated neutropenia (febrile neutropenia, prolonged neutropenia or neutropenic infection). Patients receiving TCF should be closely monitored (see sections 4.2 and 4.8).

In patients treated with docetaxel in combination with doxorubicin and cyclophosphamide (TAC), febrile neutropenia and neutropenic infection occurred at lower rates when patients received primary G-CSF prophylaxis. Primary G-CSF prophylaxis should be considered in patients who receive adjuvant therapy with TAC for breast cancer to mitigate the risk of complicated neutropenia (febrile neutropenia, prolonged neutropenia or neutropenic infection). Patients receiving TAC should be closely monitored (see sections 4.2 and 4.8).

Gastrointestinal reactions

Caution is recommended for patients with neutropenia, particularly at risk for developing gastrointestinal complications. Although majority of cases occurred during the first or second cycle of docetaxel containing regimen, enterocolitis could develop at any time, and could lead to death as early as on the first day of onset. Patients should be closely monitored for early manifestations of serious gastrointestinal toxicity (see sections 4.2, 4.4 Haematology, and 4.8).

Hypersensitivity reactions

Patients should be observed closely for hypersensitivity reactions especially during the first and second infusions. Hypersensitivity reactions may occur within a few minutes following the initiation of the infusion of docetaxel, thus facilities for the treatment of hypotension and bronchospasm should be available. If hypersensitivity reactions occur, minor symptoms such as flushing or localised cutaneous reactions do not require interruption of therapy. However, severe reactions, such as severe hypotension, bronchospasm or generalised rash/erythema require immediate discontinuation of docetaxel and appropriate therapy. Patients who have developed severe hypersensitivity reactions should not be re-challenged with docetaxel. Patients who have previously experienced a hypersensitivity reaction to paclitaxel may be at risk to develop hypersensitivity reaction to docetaxel, including more severe hypersensitivity reaction. These patients should be closely monitored during initiation of docetaxel therapy.
Cutaneous reactions

Localised skin erythema of the extremities (palms of the hands and soles of the feet) with oedema followed by desquamation has been observed. Severe symptoms such as eruptions followed by desquamation which lead to interruption or discontinuation of docetaxel treatment were reported (see section 4.2).

Severe Cutaneous Adverse Reactions (SCARs) such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN) and Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with docetaxel treatment. Patients should be informed about the signs and symptoms of serious skin manifestations and closely monitored. If signs and symptoms suggestive of these reactions appear discontinuation of docetaxel should be considered.

Fluid retention

Patients with severe fluid retention such as pleural effusion, pericardial effusion and ascites should be monitored closely.

Respiratory disorders

Acute respiratory distress syndrome, interstitial pneumonia/pneumonitis, interstitial lung disease, pulmonary fibrosis and respiratory failure have been reported and may be associated with fatal outcome. Cases of radiation pneumonitis have been reported in patients receiving concomitant radiotherapy.

If new or worsening pulmonary symptoms develop, patients should be closely monitored, promptly investigated, and appropriately treated. Interruption of docetaxel therapy is recommended until diagnosis is available. Early use of supportive care measures may help improve the condition. The benefit of resuming docetaxel treatment must be carefully evaluated.

Patients with liver impairment

In patients treated with docetaxel at 100 mg/m\(^2\) as single agent who have serum transaminase levels (ALT and/or AST) greater than 1.5 times the ULN concurrent with serum alkaline phosphatase levels greater than 2.5 times the ULN, there is a higher risk of developing severe adverse reactions such as toxic deaths including sepsis and gastrointestinal haemorrhage which can be fatal, febrile neutropenia, infections, thrombocytopenia, stomatitis and asthenia. Therefore, the recommended dose of docetaxel in those patients with elevated liver function test (LFTs) is 75 mg/m\(^2\) and LFTs should be measured at baseline and before each cycle (see section 4.2).

For patients with serum bilirubin levels > ULN and/or ALT and AST ≥ 3.5 times the ULN concurrent with serum alkaline phosphatase levels > 6 times the ULN, no dose-reduction can be recommended and docetaxel should not be used unless strictly indicated.

In combination with cisplatin and 5-fluorouracil for the treatment of patients with gastric adenocarcinoma, the pivotal clinical study excluded patients with ALT and/or AST > 1.5 × ULN associated with alkaline phosphatase > 2.5 × ULN, and bilirubin > 1 x ULN; for these patients, no dose-reductions can be recommended and docetaxel should not be used unless strictly indicated. No data are available in patients with hepatic impairment treated by docetaxel in combination in the other indications.

Patients with renal impairment

There are no data available in patients with severely impaired renal function treated with docetaxel.

Nervous system

The development of severe peripheral neurotoxicity requires a reduction of dose (see section 4.2).
Cardiac toxicity

Heart failure has been observed in patients receiving docetaxel in combination with trastuzumab, particularly following anthracycline (doxorubicin or epirubicin)-containing chemotherapy. This may be moderate to severe and has been associated with death (see section 4.8).

When patients are candidates for treatment with docetaxel in combination with trastuzumab, they should undergo baseline cardiac assessment. Cardiac function should be further monitored during treatment (e.g. every three months) to help identify patients who may develop cardiac dysfunction. For more details see summary of product characteristics of trastuzumab.

Ventricular arrhythmia including ventricular tachycardia (sometimes fatal) has been reported in patients treated with docetaxel in combination regimens including doxorubicin, 5-fluorouracil and/or cyclophosphamide (see section 4.8). Baseline cardiac assessment is recommended.

Eye disorders

Cystoid macular oedema (CMO) has been reported in patients treated with docetaxel. Patients with impaired vision should undergo a prompt and complete ophthalmologic examination. In case CMO is diagnosed, docetaxel treatment should be discontinued and appropriate treatment initiated (see section 4.8).

Second primary malignancies

Second primary malignancies have been reported when docetaxel was given in combination with antineoplastic treatments known to be associated with second primary malignancies. Second primary malignancies (including acute myeloid leukaemia, myelodysplastic syndrome and non-Hodgkin lymphoma) may occur several months or years after docetaxel-containing therapy. Patients should be monitored for second primary malignancies (see section 4.8).

Tumour Lysis Syndrome

Tumour lysis syndrome has been reported with docetaxel after the first or the second cycle (see section 4.8). Patients at risk of tumour lysis syndrome (e.g. with renal impairment, hyperuricemia, bulky tumour, rapid progression) should be closely monitored. Correction of dehydration and treatment of high uric acid levels are recommended prior to initiation of treatment.

Others

Women of childbearing potential must use contraceptive measures during treatment and for 2 months after cessation of treatment with docetaxel. Men must use contraceptive measures during treatment and for 4 months after cessation of treatment with docetaxel (see section 4.6).

The concomitant use of docetaxel with strong CYP3A4 inhibitors (e.g., ketoconazole, itraconazole, clarithromycin, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin and voriconazole) should be avoided (see section 4.5).

Additional cautions for use in adjuvant treatment of breast cancer

Complicated neutropenia
For patients who experience complicated neutropenia (prolonged neutropenia, febrile neutropenia or infection), G-CSF and dose reduction should be considered (see section 4.2).
**Gastrointestinal reactions**
Symptoms such as early abdominal pain and tenderness, fever, diarrhoea, with or without neutropenia, may be early manifestations of serious gastrointestinal toxicity and should be evaluated and treated promptly.

**Congestive heart failure (CHF)**
Patients should be monitored for symptoms of congestive heart failure during therapy and during the follow up period. In patients treated with the TAC regimen for node positive breast cancer, the risk of CHF has been shown to be higher during the first year after treatment (see sections 4.8 and 5.1).

**Patients with 4+ nodes**
As the benefit observed in patient with 4+ nodes was not statistically significant on disease-free survival (DFS) and overall survival (OS), the positive benefit/risk ratio for TAC in patients with 4+ nodes was not fully demonstrated at the final analysis (see section 5.1).

**Elderly**

**Cautions for use in adjuvant treatment of breast cancer**
There are limited data available in patients > 70 years of age on docetaxel use in combination with doxorubicin and cyclophosphamide.

**Cautions for use in castration-resistant prostate cancer**
Of the 333 patients treated with docetaxel every three weeks in a prostate cancer study (TAX 327), 209 patients were 65 years of age or greater and 68 patients were older than 75 years. In patients treated with docetaxel every three weeks, the incidence of related nail changes occurred at a rate \(\geq 10\%\) higher in patients who were 65 years of age or greater compared to younger patients. The incidence of related fever, diarrhoea, anorexia, and peripheral oedema occurred at rates \(\geq 10\%\) higher in patients who were 75 years of age or greater versus less than 65 years.

**Cautions for use in hormone-sensitive prostate cancer**
Of the 545 patients treated with docetaxel every 3 weeks in a hormone-sensitive prostate cancer study (STAMPEDE), 296 patients were 65 years of age or older, and 48 patients were 75 years of age or older. More patients aged \(\geq 65\) years in the docetaxel arm reported hypersensitivity reaction, neutropenia, anaemia, fluid retention, dyspnea, and nail changes when compared to the patients aged less than 65 years. None of these increases in frequency reached 10\% difference with the control arm. In patients who were 75 years of age or older, when compared to younger patients, neutropenia, anaemia, diarrhea, dyspnea and upper respiratory tract infection were reported with a greater incidence (at least 10\% higher).

**Cautions for use in gastric adenocarcinoma cancer**
Among the 300 (221 patients in the phase III part of the study and 79 patients in the phase II part) patients treated with docetaxel in combination with cisplatin and 5-fluorouracil in the gastric cancer study, 74 were 65 years of age or older and 4 patients were 75 years of age or older. The incidence of serious adverse events was higher in older people compared to younger patients. The incidence of the following adverse events (all grades): lethargy, stomatitis, neutropenic infection occurred at rates \(\geq 10\%\) higher in patients who were 65 years of age or older compared to younger patients. Older people treated with TCF should be closely monitored.

**Excipients**
This medicinal product contains 50 vol % ethanol anhydrous (alcohol), i.e. up to 3.16 g ethanol anhydrous per vial, equivalent to 80 ml of beer or 33 ml wine.
Harmful for those suffering from alcoholism.
To be taken into account in pregnant or breast-feeding women, children and high-risk groups such as patients with liver disease, or epilepsy.
Consideration should be given to possible effects on the central nervous system.

4.5 Interaction with other medicinal products and other forms of interaction

The amount of alcohol in this medicinal product may alter the effects of other medicinal products.

In vitro studies have shown that the metabolism of docetaxel may be modified by the concomitant administration of compounds which induce, inhibit or are metabolised by (and thus may inhibit the enzyme competitively) cytochrome P450-3A such as ciclosporine, ketoconazole and erythromycin. As a result, caution should be exercised when treating patients with these medicinal products as concomitant therapy since there is a potential for a significant interaction.

In case of combination with CYP3A4 inhibitors, the occurrence of docetaxel adverse reactions may increase, as a result of reduced metabolism. If the concomitant use of a strong CYP3A4 inhibitor (e.g., ketoconazole, itraconazole, clarithromycin, indinavir, nefazodone, nelfinavir, ritonavir, saquinavir, telithromycin and voriconazole) cannot be avoided, a close clinical surveillance is warranted and a dose-adjustment of docetaxel may be suitable during the treatment with the strong CYP3A4 inhibitor (see section 4.4). In a pharmacokinetic study with 7 patients, the co-administration of docetaxel with the strong CYP3A4 inhibitor ketoconazole leads to a significant decrease in docetaxel clearance by 49%.

Docetaxel pharmacokinetics in the presence of prednisone was studied in patients with metastatic prostate cancer. Docetaxel is metabolised by CYP3A4 and prednisone is known to induce CYP3A4. No statistically significant effect of prednisone on the pharmacokinetics of docetaxel was observed.

Docetaxel is highly protein bound (> 95%). Although the possible in vivo interaction of docetaxel with concomitantly administered medicinal product has not been investigated formally, in vitro interactions with tightly protein-bound agents such as erythromycin, diphenhydramine, propranolol, propafenone, phenytoin, salicylate, sulfamethoxazole and sodium valproate did not affect protein binding of docetaxel. In addition, dexamethasone did not affect protein binding of docetaxel. Docetaxel did not influence the binding of digitoxin.

The pharmacokinetics of docetaxel, doxorubicin and cyclophosphamide were not influenced by their co-administration. Limited data from a single uncontrolled study were suggestive of an interaction between docetaxel and carboplatin. When combined to docetaxel, the clearance of carboplatin was about 50% higher than values previously reported for carboplatin monotherapy.

4.6 Fertility, pregnancy and lactation

Women of childbearing potential/ Contraception in males and females

Women of childbearing potential and men receiving docetaxel should be advised to avoid becoming pregnant, and not to father a child and to inform the treating physician immediately should this occur.

Due to the genotoxic risk of docetaxel (see section 5.3), women of childbearing potential must use effective method of contraception during treatment and for 2 months after cessation of treatment with docetaxel. Men must use effective method of contraception during treatment and for 4 months after cessation of treatment with docetaxel.

Pregnancy

There is no information on the use of docetaxel in pregnant women. Docetaxel has been shown to be both embryotoxic and foetotoxic in rabbits and rats. As with other cytotoxic medicinal products, docetaxel may cause foetal harm when administered to pregnant women. Therefore, docetaxel must not be used during pregnancy unless clearly indicated.

Breast-feeding
Docetaxel is a lipophilic substance but it is not known whether it is excreted in human milk. Consequently, because of the potential for adverse reactions in nursing infants, breast feeding must be discontinued for the duration of docetaxel therapy.

Fertility

Studies in animals have shown that docetaxel may alter male fertility (see section 5.3). Therefore, males being treated with docetaxel must seek advice on conservation of sperm prior to treatment.

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive and use machines have been performed. The amount of alcohol in this medicinal product and the side effects of the product may impair the ability to drive or use machines (see sections 4.4 and 4.8). Therefore, patients should be warned of the potential impact of the amount of alcohol and the side effects of this medicinal product on the ability to drive or use machines, and be advised not to drive or use machines if they experience these side effects during treatment.

4.8 Undesirable effects

Summary of the safety profile for all indications

The adverse reactions considered to be possibly or probably related to the administration of docetaxel have been obtained in:

- 1312 and 121 patients who received 100 mg/m² and 75 mg/m² of docetaxel as a single agent respectively.
- 258 patients who received docetaxel in combination with doxorubicin.
- 406 patients who received docetaxel in combination with cisplatin.
- 92 patients treated with docetaxel in combination with trastuzumab.
- 255 patients who received docetaxel in combination with capecitabine.
- 332 patients (TAX327) who received docetaxel in combination with prednisone or prednisolone (clinically important treatment related adverse events are presented).
- 1276 patients (744 and 532 in TAX 316 and GEICAM 9805 respectively) who received docetaxel in combination with doxorubicin and cyclophosphamide (clinically important treatment related adverse events are presented).
- 300 gastric adenocarcinoma patients (221 patients in the phase III part of the study and 79 patients in the phase II part) who received docetaxel in combination with cisplatin and 5-fluorouracil (clinically important treatment related adverse events are presented).
- 174 and 251 head and neck cancer patients who received docetaxel in combination with cisplatin and 5-fluorouracil (clinically important treatment related adverse events are presented).
- 545 patients (STAMPEDE study) who received docetaxel in combination with prednisone or prednisolone ADT.

These reactions were described using the NCI Common Toxicity Criteria (grade 3 = G3; grade 3-4 = G3/4; grade 4 = G4), the COSTART and the MedDRA terms. Frequencies are defined as: very common (≥ 1/10), common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1,000); very rare (< 1/10,000); not known (cannot be estimated from available data).

Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

The most commonly reported adverse reactions of docetaxel alone are: neutropenia (which was reversible and not cumulative; the median day to nadir was 7 days and the median duration of severe neutropenia (< 500 cells/mm³ was 7 days), anaemia, alopecia, nausea, vomiting, stomatitis, diarrhoea and asthenia. The severity of adverse events of docetaxel may be increased when docetaxel is given in combination with other chemotherapeutic agents.
For combination with trastuzumab, adverse events (all grades) reported in ≥ 10% are displayed. There was an increased incidence of SAEs (40% vs. 31%) and Grade 4 AEs (34% vs. 23%) in the trastuzumab combination arm compared to docetaxel monotherapy.

For combination with capecitabine, the most frequent treatment-related undesirable effects (≥ 5%) reported in a phase III study in breast cancer patients failing anthracycline treatment are presented (see capecitabine summary of product characteristics).

For combination with ADT and with prednisone or prednisolone (STAMPEDE study), adverse events occurring over the 6 cycles of treatment with docetaxel and having at least 2% higher incidence in the docetaxel treatment arm by comparison to the control arm, are presented, using the CTCAE grading scale.

The following adverse reactions are frequently observed with docetaxel:

**Immune system disorders**

Hypersensitivity reactions have generally occurred within a few minutes following the start of the infusion of docetaxel and were usually mild to moderate. The most frequently reported symptoms were flushing, rash with or without pruritus, chest tightness, back pain, dyspnoea and fever or chills. Severe reactions were characterised by hypotension and/or bronchospasm or generalized rash/erythema (see section 4.4).

**Nervous system disorders**

The development of severe peripheral neurotoxicity requires a reduction of dose (see sections 4.2 and 4.4). Mild to moderate neuro-sensory signs are characterised by paresthesia, dysesthesia or pain including burning. Neuro-motor events are mainly characterised by weakness.

**Skin and subcutaneous tissue disorders**

Reversible cutaneous reactions have been observed and were generally considered as mild to moderate. Reactions were characterised by a rash including localised eruptions mainly on the feet and hands (including severe hand and foot syndrome), but also on the arms, face or thorax, and frequently associated with pruritus. Eruptions generally occurred within one week after the docetaxel infusion. Less frequently, severe symptoms such as eruptions followed by desquamation which rarely lead to interruption or discontinuation of docetaxel treatment were reported (see sections 4.2 and 4.4). Severe nail disorders are characterised by hypo- or hyperpigmentation and sometimes pain and onycholysis.

**General disorders and administration site conditions**

Infusion site reactions were generally mild and consisted of hyper pigmentation, inflammation, redness or dryness of the skin, phlebitis or extravasation and swelling of the vein.

Fluid retention includes events such as peripheral oedema and less frequently pleural effusion, pericardial effusion, ascites and weight gain. The peripheral oedema usually starts at the lower extremities and may become generalised with a weight gain of 3 kg or more. Fluid retention is cumulative in incidence and severity (see section 4.4).

Tabulated list of adverse reactions in breast cancer for TAXOTERE 100 mg/m² single agent

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infections (G3/4: 5.7%; including sepsis and pneumonia, fatal in)</td>
<td>Infection associated with G4 neutropenia (G3/4: 4.6%)</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 76.4%);</td>
<td>Thrombocytopenia (G4:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anaemia (G3/4: 8.9%);</td>
<td>0.2%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Febrile neutropenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 4.1%);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peripheral motor neuropathy (G3/4: 4%);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dysgeusia (severe: 0.07%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 0.7%)</td>
<td>Cardiac failure</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypotension; Hypertension;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Haemorrhage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal</td>
<td>Dyspnoea (severe: 2.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Stomatitis (G3/4: 5.3%);</td>
<td>Constipation (severe:</td>
<td>Oesophagitis (severe:</td>
</tr>
<tr>
<td></td>
<td>Diarrhoea (G3/4: 4%);</td>
<td>0.2%); Abdominal pain</td>
<td>0.4%)</td>
</tr>
<tr>
<td></td>
<td>Nausea (G3/4: 4%);</td>
<td>(severe: 1%); Gastrointestinal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vomiting (G3/4: 3%)</td>
<td>haemorrhage (severe: 0.3%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Skin reaction (G3/4: 5.9%);</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nail disorders (severe: 2.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue</td>
<td>Myalgia (severe: 1.4%)</td>
<td>Arthralgia</td>
<td></td>
</tr>
<tr>
<td>disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site</td>
<td>Fluid retention (severe: 6.5%);</td>
<td>Infusion site reaction;</td>
<td></td>
</tr>
<tr>
<td>conditions</td>
<td>Asthenia (severe: 11.2%);</td>
<td>Non-cardiac chest pain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pain</td>
<td>(severe: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (&lt;5%);</td>
<td>G3/4 Blood alkaline</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>phosphatase increased (&lt;4%);</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3/4 AST increased (&lt;3%);</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G3/4 ALT increased (&lt;2%)</td>
<td></td>
</tr>
</tbody>
</table>
Description of selected adverse reactions in breast cancer for TAXOTERE 100 mg/m² single agent

**Blood and lymphatic system disorders**
Rare: bleeding episodes associated with grade 3/4 thrombocytopenia.

**Nervous system disorders**
Reversibility data are available among 35.3% of patients who developed neurotoxicity following docetaxel treatment at 100 mg/m² as single agent. The events were spontaneously reversible within 3 months.

**Skin and subcutaneous tissue disorders**
Very rare: one case of alopecia non-reversible at the end of the study. 73% of the cutaneous reactions were reversible within 21 days.

**General disorders and administration site conditions**
The median cumulative dose to treatment discontinuation was more than 1,000 mg/m² and the median time to fluid retention reversibility was 16.4 weeks (range 0 to 42 weeks). The onset of moderate and severe retention is delayed (median cumulative dose: 818.9 mg/m²) in patients with premedication compared with patients without premedication (median cumulative dose: 489.7 mg/m²); however, it has been reported in some patients during the early courses of therapy.

Tabulated list of adverse reactions in non-small cell lung cancer for TAXOTERE 75 mg/m² single agent

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infections (G3/4: 5%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 54.2%); Anaemia (G3/4: 10.8%); Thrombocytopenia (G4: 1.7%)</td>
<td>Febrile neutropenia</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Anorexia</td>
<td>Hypersensitivity (no severe)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 0.8%)</td>
<td>Peripheral motor neuropathy (G3/4: 2.5%)</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Arrhythmia (no severe)</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Hypotension</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 3.3%); Stomatitis (G3/4: 1.7%); Vomiting (G3/4: 0.8%); Diarrhoea (G3/4: 1.7%)</td>
<td>Constipation</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Skin reaction (G3/4: 0.8%)</td>
<td>Nail disorders (severe: 0.8%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td>Myalgia</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 12.4%); Fluid retention (severe: 0.8%); Pain</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>G3/4 Blood bilirubin increased (&lt; 2%)</td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions in breast cancer for TAXOTERE 75 mg/m² in combination with doxorubicin

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 7.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 91.7%); Anaemia (G3/4: 9.4%); Febrile neutropenia; Thrombocytopenia (G4: 0.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td>Anorexia</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 0.4%)</td>
<td>Peripheral motor neuropathy (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Cardiac failure; Arrhythmia (no severe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Hypotension</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 5%); Stomatitis (G3/4: 7.8%); Diarrhoea (G3/4: 6.2%); Vomiting (G3/4: 5%); Constipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (severe: 0.4%); Skin reaction (no severe)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td>Myalgia</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 8.1%); Fluid retention (severe: 1.2%); Pain</td>
<td>Infusion site reaction</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (&lt; 2.5%); G3/4 Blood alkaline phosphatase increased (&lt; 2.5%)</td>
<td>G3/4 AST increased (&lt; 1%); G3/4 ALT increased (&lt; 1%)</td>
<td></td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions in non-small cell lung cancer for TAXOTERE 75 mg/m² in combination with cisplatin

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 5.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G4: 51.5%); Anaemia (G3/4: 6.9%); Thrombocytopenia (G4: 0.5%)</td>
<td>Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 2.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3: 3.7%); Peripheral motor neuropathy (G3/4: 2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 0.7%)</td>
<td>Cardiac failure</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hypotension (G3/4: 0.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 9.6%); Vomiting (G3/4: 7.6%); Diarrhoea (G3/4: 6.4%); Stomatitis (G3/4: 2%)</td>
<td>Constipation</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (severe: 0.7%); Skin reaction (G3/4: 0.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (severe: 0.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (severe: 9.9%); Fluid retention (severe: 0.7%); Fever (G3/4: 1.2%)</td>
<td>Infusion site reaction; Pain</td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>G3/4 Blood bilirubin increased (2.1%); G3/4 ALT increased (1.3%)</td>
<td>G3/4 AST increased (0.5%); G3/4 Blood alkaline phosphatase increased (0.3%)</td>
<td></td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in breast cancer for TAXOTERE 100 mg/m² in combination with trastuzumab

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 32%); Febrile neutropenia (includes</td>
<td></td>
</tr>
</tbody>
</table>
### MedDRA system organ classes

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Paresthesia; Headache; Dysgeusia; Hypoaesthesia</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased; Conjunctivitis</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Cardiac failure</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Lymphoedema</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Epistaxis; Pharyngolaryngeal pain; Nasopharyngitis; Dyspnoea; Cough; Rhinorrhea</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea; Diarrhoea; Vomiting; Constipation; Stomatitis; Dyspepsia; Abdominal pain</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Erythema; Rash; Nail disorders</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia; Arthralgia; Pain in extremity; Bone pain; Back pain</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia; Oedema peripheral; Pyrexia; Fatigue; Mucosal inflammation; Pain; Influenza like illness; Chest pain; Chills</td>
<td>Lethargy</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight increased</td>
<td></td>
</tr>
</tbody>
</table>

**Description of selected adverse reactions in breast cancer for TAXOTERE 100 mg/m² in combination with trastuzumab**

**Blood and lymphatic system disorders**
Very common: Haematological toxicity was increased in patients receiving trastuzumab and docetaxel, compared with docetaxel alone (32% grade 3/4 neutropenia versus 22%, using NCI-CTC criteria). Note that this is likely to be an underestimate since docetaxel alone at a dose of 100 mg/m² is known to result in neutropenia in 97% of patients, 76% grade 4, based on nadir blood counts. The incidence of febrile neutropenia/neutropenic sepsis was also increased in patients treated with Herceptin plus docetaxel (23% versus 17% for patients treated with docetaxel alone).

**Cardiac disorders**
Symptomatic cardiac failure was reported in 2.2% of the patients who received docetaxel plus trastuzumab compared to 0% of patients given docetaxel alone. In the docetaxel plus trastuzumab arm, 64% had received a prior anthracycline as adjuvant therapy compared with 55% in the docetaxel arm alone.
Tabulated list of adverse reactions in breast cancer for TAXOTERE 75 mg/m² in combination with capecitabine

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Oral candidiasis (G3/4: &lt; 1%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 63%); Anaemia (G3/4: 10%)</td>
<td>Thrombocytopenia (G3/4: 3%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 1%); Decreased appetite</td>
<td>Dehydration (G3/4: 2%)</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia (G3/4: &lt; 1%); Pareaesthesia (G3/4: &lt; 1%)</td>
<td>Dizziness; Headache (G3/4: &lt; 1%); Neuropathy peripheral</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Pharyngolaryngeal pain (G3/4: 2%)</td>
<td>Dyspnoea (G3/4: 1%); Cough (G3/4: &lt; 1%); Epistaxis (G3/4: &lt; 1%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Stomatitis (G3/4: 18%); Diarrhoea (G3/4: 14%); Nausea (G3/4: 6%); Vomiting (G3/4: 4%); Constipation (G3/4: 1%); Abdominal pain (G3/4: 2%); Dyspepsia</td>
<td>Abdominal pain upper; Dry mouth</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Hand-foot syndrome (G3/4: 24%); Alopecia (G3/4: 6%); Nail disorders (G3/4: 2%)</td>
<td>Dermatitis; Rash erythematous (G3/4: &lt; 1%); Nail discoloration; Onycholysis (G3/4: 1%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (G3/4: 2%); Arthralgia (G3/4: 1%)</td>
<td>Pain in extremity (G3/4: &lt; 1%); Back pain (G3/4: 1%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Asthenia (G3/4: 3%); Pyrexia (G3/4: 1%); Fatigue/weakness (G3/4: 5%); Oedema peripheral (G3/4: 1%)</td>
<td>Lethargy; Pain</td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight decreased; G3/4 Blood bilirubin increased (9%)</td>
<td></td>
</tr>
</tbody>
</table>
Tabulated list of adverse reactions in metastatic castration-resistant prostate cancer for TAXOTERE 75 mg/m² in combination with prednisone or prednisolone

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 3.3%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 32%); Anaemia (G3/4: 4.9%)</td>
<td>Thrombocytopenia (G3/4: 0.6%); Febrile neutropenia</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (G3/4: 0.6%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 1.2%); Dysgeusia (G3/4: 0%)</td>
<td>Peripheral motor neuropathy (G3/4: 0%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Lacrimation increased (G3/4: 0.6%)</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td>Cardiac left ventricular function decrease (G3/4: 0.3%)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td>Epistaxis (G3/4: 0%); Dyspnoea (G3/4: 0.6%); Cough (G3/4: 0%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 2.4%); Diarrhoea (G3/4: 1.2%); Stomatitis/Pharyngitis (G3/4: 0.9%); Vomiting (G3/4: 1.2%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia; Nail disorders (no severe)</td>
<td>Exfoliative rash (G3/4: 0.3%)</td>
</tr>
<tr>
<td>Musculoskeletal and connective bone disorders</td>
<td></td>
<td>Arthralgia (G3/4: 0.3%); Myalgia (G3/4: 0.3%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Fatigue (G3/4: 3.9%); Fluid retention (severe: 0.6%)</td>
<td></td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in high-risk locally advanced or metastatic hormone-sensitive prostate cancer for TAXOTERE 75 mg/m² in combination with prednisone or prednisolone and ADT (STAMPEDE study)

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3-4: 12 %) Anaemia Febrile neutropenia (G3-4: 15%)</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (G3-4: 1%)</td>
</tr>
<tr>
<td>Endocrine disorders</td>
<td></td>
<td>Diabetes (G3-4: 1%)</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td>Anorexia</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Insomnia (G3: 1%)</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>------------------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (≥G3: 2%)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Dizziness</td>
</tr>
<tr>
<td></td>
<td>Headache</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blurred vision</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Hypotension (G3: 0%)</td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnea (G3: 1%)</td>
<td>Pharyngitis (G3: 0%)</td>
</tr>
<tr>
<td></td>
<td>Coughing (G3: 0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper respiratory tract infection (G3: 1%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhea (G3: 3%)</td>
<td>Vomiting (G3: 1%)</td>
</tr>
<tr>
<td></td>
<td>Stomatitis (G3: 0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constipation (G3: 0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nausea (G3: 1%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dyspepsia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abdominal pain (G3: 0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flatulence</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3: 3%)&lt;sup&gt;a&lt;/sup&gt;</td>
<td>Rash</td>
</tr>
<tr>
<td></td>
<td>Nail changes (G3: 1%)</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3-4: 2%)</td>
<td>Fever (G3: 1%)</td>
</tr>
<tr>
<td></td>
<td>Flu-like symptoms (G3: 0%)</td>
<td>Oral candidiasis</td>
</tr>
<tr>
<td></td>
<td>Asthenia (G3: 0%)</td>
<td>Hypocalcaemia (G3: 0%)</td>
</tr>
<tr>
<td></td>
<td>Fluid retention</td>
<td>Hypophosphataemia (G3-4: 1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypokalaemia (G3: 0%)</td>
</tr>
</tbody>
</table>

<sup>a</sup> From the GETUG AFU15 study
Tabulated list of adverse reactions in breast cancer for adjuvant therapy with TAXOTERE 75 mg/m² in combination with doxorubicin and cyclophosphamide in patients with node-positive (TAX 316) and node-negative (GEICAM 9805) breast cancer - pooled data

<table>
<thead>
<tr>
<th>MedDRA System Organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 2.4%); Neutropenic infection (G3/4: 2.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Anaemia (G3/4: 3%); Neutropenia (G3/4: 59.2%); Thrombocytopenia (G3/4: 1.6%); Febrile neutropenia (G3/4: NA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 1.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia (G3/4: 0.6%); Peripheral sensory neuropathy (G3/4: &lt;0.1%)</td>
<td>Peripheral motor neuropathy (G3/4: 0%)</td>
<td>Syncope (G3/4: 0%); Neurotoxicity (G3/4: 0%); Somnolence (G3/4: 0%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Conjunctivitis (G3/4: &lt;0.1%)</td>
<td>Lacrimation increased (G3/4: &lt;0.1%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td></td>
<td></td>
<td>Arrhythmia (G3/4: 0.2%)</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Hot flush (G3/4: 0.5%)</td>
<td>Hypotension (G3/4: 0%); Phlebitis (G3/4: 0%)</td>
<td>Lymphoedema (G3/4: 0%)</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td></td>
<td>Cough (G3/4: 0%)</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 5.0%); Stomatitis (G3/4: 6.0%); Vomiting (G3/4: 4.2%); Diarrhoea (G3/4: 3.4%); Constipation (G3/4: 0.5%)</td>
<td>Abdominal pain (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (persisting: &lt;3%); Skin disorder (G3/4: 0.6%); Nail disorders (G3/4: 0.4%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>Myalgia (G3/4: 0.7%); Arthralgia (G3/4: 0.2%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Description of selected adverse reactions in breast cancer for adjuvant therapy with TAXOTERE 75 mg/m² in combination with doxorubicin and cyclophosphamide in patients with node-positive (TAX 316) and node-negative (GEICAM 9805) breast cancer

#### Nervous system disorders
In study TAX316 peripheral sensory neuropathy started during the treatment period and persisted into the follow-up period in 84 patients (11.3%) in TAC arm and 15 patients (2%) in FAC arm. At the end of the follow-up period (median follow-up time of 8 years), peripheral sensory neuropathy was observed to be ongoing in 10 patients (1.3%) in TAC arm, and in 2 patients (0.3%) in FAC arm. In GEICAM 9805 study peripheral sensory neuropathy that started during the treatment period persisted into the follow-up period in 10 patients (1.9%) in TAC arm and 4 patients (0.8%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), peripheral sensory neuropathy was observed to be ongoing in 3 patients (0.6%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

#### Cardiac disorders
In study TAX316, 26 patients (3.5%) in the TAC arm and 17 patients (2.3%) in the FAC arm experienced congestive heart failure. All except one patient in each arm were diagnosed with CHF more than 30 days after the treatment period. Two patients in the TAC arm and 4 patients in the FAC arm died because of cardiac failure. In GEICAM 9805 study, 3 patients (0.6%) in TAC arm and 3 patients (0.6%) in FAC arm developed congestive heart failure during the follow-up period. At the end of the follow-up period (actual median follow-up time of 10 years and 5 months), no patients had CHF in TAC arm and 1 patient in TAC arm died because of dilated cardiomyopathy, and CHF was observed to be ongoing in 1 patient (0.2%) in FAC arm.

#### Skin and subcutaneous tissue disorders
In study TAX316 alopecia persisting into the follow-up period after the end of chemotherapy was reported in 687 of 744 TAC patients (92.3%) and 645 of 736 FAC patients (87.6%). At the end of the follow-up period (actual median follow-up time of 8 years), alopecia was observed to be ongoing in 29 TAC patients (3.9%) and 16 FAC patients (2.2%). In GEICAM 9805 study alopecia that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 49 patients (9.2%) in TAC arm and 35 patients (6.7%) in FAC arm. Alopecia related to study drug started or worsened during the follow-up period in 42 patients (7.9%) in TAC arm and 30 patients (5.8%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), alopecia was observed to be ongoing in 3 patients (0.6%) in TAC arm, and in 1 patient (0.2%) in FAC arm.

#### Reproductive system and breast disorders
In TAX316 amenorrhoea that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 202 of 744 TAC patients (27.2%) and 125 of 736 FAC patients (16.5%).
FAC patients (17.0%). Amenorrhea was observed to be ongoing at the end of the follow-up period (median follow-up time of 8 years) in 121 of 744 TAC patients (16.3%) and 86 FAC patients (11.7%). In GEICAM 9805 study amenorrhea that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 18 patients (3.4 %) in TAC arm and 5 patients (1.0 %) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), amenorrhea was observed to be ongoing in 7 patients (1.3%) in TAC arm, and in 4 patients (0.8%) in FAC arm.

General disorders and administration site conditions
In study TAX316 peripheral oedema that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was observed in 119 of 744 TAC patients (16.0%) and 23 of 736 FAC patients (3.1%). At the end of the follow-up period (actual median follow-up time of 8 years), peripheral oedema was ongoing in 19 TAC patients (2.6%) and 4 FAC patients (0.5%). In study TAX316 lymphoedema that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 11 of 744 TAC patients (1.5%) and 1 of 736 FAC patients (0.1%). At the end of the follow-up period (actual median follow-up time of 8 years), lymphoedema was observed to be ongoing in 6 TAC patients (0.8%) and 1 FAC patient (0.1%). In study TAX316 asthenia that started during the treatment period and persisted into the follow-up period after the end of chemotherapy was reported in 236 of 744 TAC patients (31.7%) and 180 of 736 FAC patients (24.5%). At the end of the follow-up period (actual median follow-up time of 8 years), asthenia was observed to be ongoing in 29 TAC patients (3.9%) and 16 FAC patients (2.2%).

In study GEICAM 9805 peripheral oedema that started during the treatment period persisted into the follow-up period in 4 patients (0.8%) in TAC arm and in 2 patients (0.4%) in FAC arm. At the end of the follow-up period (median follow-up time of 10 years and 5 months), no patients (0%) in TAC arm had peripheral oedema and it was observed to be ongoing in 1 patient (0.2%) in FAC arm. Lymphoedema that started during the treatment period persisted into the follow-up period in 5 patients (0.9%) in TAC arm and 2 patients (0.4 %) in FAC arm. At the end of the follow-up period, lymphoedema was observed to be ongoing in 4 patients (0.8%) in TAC arm, and in 1 patient (0.2%) in FAC arm. Asthenia that started during the treatment period and persisted into the follow-up period was observed to be ongoing in 12 patients (2.3 %) in TAC arm and 4 patients (0.8 %) in FAC arm. At the end of the follow-up period, asthenia was observed to be ongoing in 2 patients (0.4%) in TAC arm, and in 2 patients (0.4%) in FAC arm.

Acute leukaemia / Myelodysplastic syndrome.
After 10 years of follow up in study TAX316, acute leukaemia was reported in 3 of 744 TAC patients (0.4%) and in 1 of 736 FAC patients (0.1%). One TAC patient (0.1%) and 1 FAC patient (0.1%) died due to AML during the follow-up period (median follow-up time of 8 years). Myelodysplastic syndrome was reported in 2 of 744 TAC patients (0.3%) and in 1 of 736 FAC patients (0.1%).

After 10 years of follow-up in GEICAM 9805 study, acute leukaemia occurred in 1 of 532 (0.2%) patients in TAC arm. No cases were reported in patients in FAC arm. No patient was diagnosed with myelodysplastic syndrome in either treatment groups.

Neutropenic complications
Table below shows that the incidence of Grade 4 neutropenia, febrile neutropenia and neutropenic infection was decreased in patients who received primary G-CSF prophylaxis after it was made mandatory in the TAC arm – GEICAM STUDY.
Neutropenic complications in patients receiving TAC with or without primary G-CSF prophylaxis (GEICAM 9805)

<table>
<thead>
<tr>
<th></th>
<th>Without primary G-CSF prophylaxis (n = 111)</th>
<th>n (%)</th>
<th>With primary G-CSF prophylaxis (n = 421)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia (Grade 4)</td>
<td>104 (93.7)</td>
<td></td>
<td>135 (32.1)</td>
<td></td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>28 (25.2)</td>
<td></td>
<td>23 (5.5)</td>
<td></td>
</tr>
<tr>
<td>Neutropenic infection</td>
<td>14 (12.6)</td>
<td></td>
<td>21 (5.0)</td>
<td></td>
</tr>
<tr>
<td>Neutropenic infection (Grade 3-4)</td>
<td>2 (1.8)</td>
<td></td>
<td>5 (1.2)</td>
<td></td>
</tr>
</tbody>
</table>

Tabulated list of adverse reactions in gastric adenocarcinoma cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Neutropenic infection; Infection (G3/4: 11.7%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Anaemia (G3/4: 20.9%); Neutropenia (G3/4: 83.2%); Thrombocytopenia (G3/4: 8.8%); Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Hypersensitivity (G3/4: 1.7%)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 11.7%)</td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Peripheral sensory neuropathy (G3/4: 8.7%)</td>
<td>Dizziness (G3/4: 2.3%); Peripheral motor neuropathy (G3/4: 1.3%)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Lacrimation increased (G3/4: 0%)</td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Hearing impaired (G3/4: 0%)</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 1.0%)</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Diarrhoea (G3/4: 19.7%); Nausea (G3/4: 16%); Stomatitis (G3/4: 23.7%); Vomiting (G3/4: 14.3%)</td>
<td>Constipation (G3/4: 1.0%); Gastrointestinal pain (G3/4: 1.0%); Oesophagitis/dysphagia/odynophagia (G3/4: 0.7%)</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 4.0%)</td>
<td>Rash pruritus (G3/4: 0.7%); Nail disorders (G3/4: 0.7%); Skin exfoliation (G3/4: 0%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 19.0%); Fever (G3/4: 2.3%); Fluid retention (severe/life-threatening: 1%)</td>
<td></td>
</tr>
</tbody>
</table>
Description of selected adverse reactions in gastric adenocarcinoma cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

**Blood and lymphatic system disorders**
Febrile neutropenia and neutropenic infection occurred in 17.2% and 13.5% of patients respectively, regardless of G-CSF use. G-CSF was used for secondary prophylaxis in 19.3% of patients (10.7% of the cycles). Febrile neutropenia and neutropenic infection occurred respectively in 12.1% and 3.4% of patients when patients received prophylactic G-CSF, in 15.6% and 12.9% of patients without prophylactic G-CSF (see section 4.2).

Tabulated list of adverse reactions in head and neck cancer for TAXOTERE 75 mg/m² in combination with cisplatin and 5-fluorouracil

- Induction chemotherapy followed by radiotherapy (TAX 323)

<table>
<thead>
<tr>
<th>MedDRA system organ classes</th>
<th>Very common adverse reactions</th>
<th>Common adverse reactions</th>
<th>Uncommon adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 6.3%); Neutropenic infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl cysts and polyps)</td>
<td>Neutropenia (G3/4: 76.3%); Anaemia (G3/4: 9.2%); Thrombocytopenia (G3/4: 5.2%)</td>
<td>Febrile neutropenia</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td></td>
<td>Cancer pain (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity (no severe)</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 0.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia/Parosmia; Peripheral sensory neuropathy (G3/4: 0.6%)</td>
<td>Dizziness</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Lacrimation increased; Conjunctivitis</td>
<td></td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td></td>
<td>Hearing impaired</td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Myocardial ischemia (G3/4: 1.7%)</td>
<td>Arrhythmia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Venous disorder (G3/4: 0.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 0.6%); Stomatitis (G3/4: 4.0%); Diarrhoea (G3/4: 2.9%); Vomiting (G3/4: 0.6%)</td>
<td>Constipation; Esophagitis/dysphagia/odynophagia (G3/4: 0.6%); Abdominal pain; Dyspepsia; Gastrointestinal haemorrhage (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>-----------------------------------------------------------------</td>
<td>-------------------------------------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 10.9%)</td>
<td>Rash pruritic; Dry skin; Skin exfoliative (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
<td>Myalgia (G3/4: 0.6%)</td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 3.4%); Pyrexia (G3/4: 0.6%); Fluid retention; Oedema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td>Weight increased</td>
<td></td>
</tr>
<tr>
<td>• Induction chemotherapy followed by chemoradiotherapy (TAX 324)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>Infections and infestations</td>
<td>Infection (G3/4: 3.6%)</td>
<td>Neutropenic infection</td>
<td></td>
</tr>
<tr>
<td>Neoplasms benign, malignant and unspecified (incl cysts and polyps)</td>
<td></td>
<td>Cancer pain (G3/4: 1.2%)</td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Neutropenia (G3/4: 83.5%); Anaemia (G3/4: 12.4%); Thrombocytopenia (G3/4: 4.0%); Febrile neutropenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td>Hypersensitivity</td>
<td></td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia (G3/4: 12.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Dysgeusia/Parosmia (G3/4: 0.4%); Peripheral sensory neuropathy (G3/4: 1.2%)</td>
<td>Dizziness (G3/4: 2.0%); Peripheral motor neuropathy (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td>Lacrimation increased</td>
<td>Conjunctivitis</td>
</tr>
<tr>
<td>Ear and labyrinth disorders</td>
<td>Hearing impaired (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Arrhythmia (G3/4: 2.0%)</td>
<td>Ischemia myocardial</td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td>Venous disorder</td>
<td></td>
</tr>
<tr>
<td>MedDRA system organ classes</td>
<td>Very common adverse reactions</td>
<td>Common adverse reactions</td>
<td>Uncommon adverse reactions</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Nausea (G3/4: 13.9%); Stomatitis (G3/4: 20.7%); Vomiting (G3/4: 8.4%); Diarrhoea (G3/4: 6.8%); Esophagitis/dysphagia/odynophagia (G3/4: 12.0%); Constipation (G3/4: 0.4%)</td>
<td>Dyspepsia (G3/4: 0.8%); Gastrointestinal pain (G3/4: 1.2%); Gastrointestinal haemorrhage (G3/4: 0.4%)</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Alopecia (G3/4: 4.0%); Rash pruritic</td>
<td>Dry skin ; Desquamation</td>
<td></td>
</tr>
<tr>
<td>Musculoskeletal, connective tissue bone disorders</td>
<td></td>
<td></td>
<td>Myalgia (G3/4: 0.4%)</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Lethargy (G3/4: 4.0%); Pyrexia (G3/4: 3.6%); Fluid retention (G3/4: 1.2%); Oedema (G3/4: 1.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td>Weight decreased</td>
<td></td>
<td>Weight increased</td>
</tr>
</tbody>
</table>

**Post-marketing experience**

*Neoplasms benign, malignant and unspecified (incl cysts and polyps)*

Second primary malignancies (frequency not known), including non-Hodgkin lymphoma have been reported in association with docetaxel when used in combination with other anticancer treatments known to be associated with second primary malignancies. Acute myeloid leukaemia and myelodysplastic syndrome have been reported (frequency uncommon) in pivotal clinical studies in breast cancer with TAC regimen.

*Blood and lymphatic system disorders*

Bone marrow suppression and other haematologic adverse reactions have been reported. Disseminated intravascular coagulation (DIC), often in association with sepsis or multiorgan failure, has been reported.

*Immune system disorders*

Some cases of anaphylactic shock, sometimes fatal, have been reported. Hypersensitivity reactions (frequency not known) have been reported with docetaxel in patients who previously experienced hypersensitivity reactions to paclitaxel.

*Nervous system disorders*

Rare cases of convulsion or transient loss of consciousness have been observed with docetaxel administration. These reactions sometimes appear during the infusion of the medicinal product.

*Eye disorders*

Very rare cases of transient visual disturbances (flashes, flashing lights, scotomata) typically occurring during infusion of the medicinal product and in association with hypersensitivity reactions have been reported. These were reversible upon discontinuation of the infusion. Cases of lacrimation with or without conjunctivitis, as cases of lacrimal duct obstruction resulting in excessive tearing have been rarely reported. Cases of cystoid macular oedema (CMO) have been reported in patients treated with docetaxel.
**Ear and labyrinth disorders**
Rare cases of ototoxicity, hearing impaired and/or hearing loss have been reported.

**Cardiac disorders**
Rare cases of myocardial infarction have been reported. Ventricular arrhythmia including ventricular tachycardia (frequency not known), sometimes fatal, has been reported in patients treated with docetaxel in combination regimens including doxorubicin, 5-fluorouracil and/or cyclophosphamide.

**Vascular disorders**
Venous thromboembolic events have rarely been reported.

**Respiratory, thoracic and mediastinal disorders**
Acute respiratory distress syndrome and cases of interstitial pneumonia/pneumonitis, interstitial lung disease, pulmonary fibrosis and respiratory failure sometimes fatal have rarely been reported. Rare cases of radiation pneumonitis have been reported in patients receiving concomitant radiotherapy.

**Gastrointestinal disorders**
Rare cases of enterocolitis, including colitis, ischemic colitis, and neutropenic enterocolitis, have been reported with a potential fatal outcome (frequency not known). Rare occurrences of dehydration have been reported as a consequence of gastrointestinal events including enterocolitis and gastrointestinal perforation. Rare cases of ileus and intestinal obstruction have been reported.

**Hepatobiliary disorders**
Very rare cases of hepatitis, sometimes fatal primarily in patients with pre-existing liver disorders, have been reported.

**Skin and subcutaneous tissue disorders**
Cases of cutaneous lupus erythematosus, bullous eruptions such as erythema multiforme and severe cutaneous adverse reactions such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN) and Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with docetaxel. Scleroderma-like changes usually preceded by peripheral lymphoedema have been reported with docetaxel. Cases of permanent alopecia (frequency not known) have been reported.

**Renal and urinary disorders**
Renal insufficiency and renal failure have been reported. In about 20% of these cases there were no risk factors for acute renal failure such as concomitant nephrotoxic medicinal products and gastrointestinal disorders.

**General disorders and administration site conditions**
Radiation recall phenomena have rarely been reported. Injection site recall reaction (recurrence of skin reaction at a site of previous extravasation following administration of docetaxel at a different site) has been observed at the site of previous extravasation (frequency not known). Fluid retention has not been accompanied by acute episodes of oliguria or hypotension. Dehydration and pulmonary oedema have rarely been reported.

**Metabolism and nutrition disorders**
Cases of electrolyte imbalance have been reported. Cases of hyponatraemia have been reported, mostly associated with dehydration, vomiting and pneumonia. Hypokalaemia, hypomagnesaemia, and hypocalcaemia were observed, usually in association with gastrointestinal disorders and in particular with diarrhoea. Tumour lysis syndrome, potentially fatal, has been reported (frequency not known).
**Musculoskeletal disorder**

Myositis has been reported with docetaxel (frequency not known).

**Reporting of suspected adverse reactions**

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

**4.9 Overdose**

There were a few reports of overdose. There is no known antidote for docetaxel overdose. In case of overdose, the patient should be kept in a specialised unit and vital functions closely monitored. In cases of overdose, exacerbation of adverse events may be expected. The primary anticipated complications of overdose would consist of bone marrow suppression, peripheral neurotoxicity and mucositis. Patients should receive therapeutic G-CSF as soon as possible after discovery of overdose. Other appropriate symptomatic measures should be taken, as needed.

**5. PHARMACOLOGICAL PROPERTIES**

**5.1 Pharmacodynamic properties**

Pharmacotherapeutic group: Taxanes, ATC Code: L01CD02

**Mechanism of action**

Docetaxel is an antineoplastic agent which acts by promoting the assembly of tubulin into stable microtubules and inhibits their disassembly which leads to a marked decrease of free tubulin. The binding of docetaxel to microtubules does not alter the number of protofilaments.

Docetaxel has been shown *in vitro* to disrupt the microtubular network in cells which is essential for vital mitotic and interphase cellular functions.

**Pharmacodynamic effects**

Docetaxel was found to be cytotoxic *in vitro* against various murine and human tumour cell lines and against freshly excised human tumour cells in clonogenic assays. Docetaxel achieves high intracellular concentrations with a long cell residence time. In addition, docetaxel was found to be active on some but not all cell lines over expressing the p-glycoprotein which is encoded by the multidrug resistance gene. *In vivo*, docetaxel is schedule independent and has a broad spectrum of experimental anti-tumour activity against advanced murine and human grafted tumours.

**Clinical efficacy and safety**

**Breast cancer**

*TAXOTERE in combination with doxorubicin and cyclophosphamide: adjuvant therapy*

**Patients with operable node-positive breast cancer (TAX 316)**

Data from a multi-centre open label randomised study support the use of docetaxel for the adjuvant treatment of patients with operable node-positive breast cancer and KPS ≥ 80%, between 18 and 70 years of age. After stratification according to the number of positive lymph nodes (1-3, 4+), 1491 patients were randomised to receive either docetaxel 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² (TAC arm), or doxorubicin 50 mg/m² followed by fluorouracil 500 mg/m² and cyclophosphamide 500 mg/m² (FAC arm). Both regimens
were administered once every 3 weeks for 6 cycles. Docetaxel was administered as a 1-hour infusion, all other medicinal products were given as intravenous bolus on day one. G-CSF was administered as secondary prophylaxis to patients who experienced complicated neutropenia (febrile neutropenia, prolonged neutropenia, or infection). Patients on the TAC arm received antibiotic prophylaxis with ciprofloxacin 500 mg orally twice daily for 10 days starting on day 5 of each cycle, or equivalent. In both arms, after the last cycle of chemotherapy, patients with positive oestrogen and/or progesterone receptors received tamoxifen 20 mg daily for up to 5 years. Adjuvant radiation therapy was prescribed according to guidelines in place at participating institutions and was given to 69% of patients who received TAC and 72% of patients who received FAC. Two interim analyses and one final analysis were performed. The first interim analysis was planned 3 years after the date when half of study enrolment was done. The second interim analysis was done after 400 DFS events had been recorded overall, which led to a median follow-up of 55 months. The final analysis was performed when all patients had reached their 10-year follow-up visit (unless they had a DFS event or were lost to follow-up before). Disease-free survival (DFS) was the primary efficacy endpoint and Overall survival (OS) was the secondary efficacy endpoint.

A final analysis was performed with an actual median follow up of 96 months. Significantly longer disease-free survival for the TAC arm compared to the FAC arm was demonstrated. Incidence of relapses at 10 years was reduced in patients receiving TAC compared to those who received FAC (39% versus 45%, respectively) i.e. an absolute risk reduction by 6% (p = 0.0043). Overall survival at 10 years was also significantly increased with TAC compared to FAC (76% versus 69%, respectively) i.e. an absolute reduction of the risk of death by 7% (p = 0.002). As the benefit observed in patients with 4+ nodes was not statistically significant on DFS and OS, the positive benefit/risk ratio for TAC in patients with 4+ nodes was not fully demonstrated at the final analysis.

Overall, the study results demonstrate a positive benefit risk ratio for TAC compared to FAC.

TAC-treated patient subsets according to prospectively defined major prognostic factors were analysed:

<table>
<thead>
<tr>
<th>Patient subset</th>
<th>Number of patients</th>
<th>Hazard ratio*</th>
<th>95% CI</th>
<th>p =</th>
<th>Hazard ratio*</th>
<th>95% CI</th>
<th>p =</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of positive nodes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>745</td>
<td>0.80</td>
<td>0.68-0.93</td>
<td>0.0043</td>
<td>0.74</td>
<td>0.61-0.90</td>
<td>0.0020</td>
</tr>
<tr>
<td>1-3</td>
<td>467</td>
<td>0.72</td>
<td>0.58-0.91</td>
<td>0.0047</td>
<td>0.62</td>
<td>0.46-0.82</td>
<td>0.0008</td>
</tr>
<tr>
<td>4+</td>
<td>278</td>
<td>0.87</td>
<td>0.70-1.09</td>
<td>0.2290</td>
<td>0.87</td>
<td>0.67-1.12</td>
<td>0.2746</td>
</tr>
</tbody>
</table>

*a hazard ratio of less than 1 indicates that TAC is associated with a longer disease-free survival and overall survival compared to FAC

Patients with operable node-negative breast cancer eligible to receive chemotherapy (GEICAM 9805)

Data from a multi-centre open label randomised trial support the use of TAXOTERE for the adjuvant treatment of patients with operable node-negative breast cancer eligible to receive chemotherapy. 1060 patients were randomised to receive either TAXOTERE 75 mg/m² administered 1-hour after doxorubicin 50 mg/m² and cyclophosphamide 500 mg/m² (539 patients in TAC arm), or doxorubicin 50 mg/m² followed by fluorouracil 500 mg/m² and cyclophosphamide 500 mg/m² (521 patients in FAC arm), as adjuvant treatment of operable node-negative breast cancer patients with high risk of relapse according to 1998 St. Gallen criteria (tumour size >2 cm and/or negative ER and PR and/or high histological/nuclear grade (grade 2 to 3) and/or age <35 years).). Both regimens were administered once every 3 weeks for 6 cycles. TAXOTERE was administered as a 1-hour infusion, all other medicinal products were given intravenously on day 1 every three weeks. Primary prophylactic G-CSF was made mandatory in TAC arm after 230 patients were randomised. The incidence of Grade 4 neutropenia, febrile neutropenia and neutropenic infection was decreased in patients who received primary G-CSF prophylaxis (see section 4.8). In both arms, after the last cycle of
chemotherapy, patients with ER+ and/or PgR+ tumours received tamoxifen 20 mg once a day for up to 5 years. Adjuvant radiation therapy was administered according to guidelines in place at participating institutions and was given to 57.3% of patients who received TAC and 51.2% of patients who received FAC.

One primary analysis and one updated analysis were performed. The primary analysis was done when all patients had a follow-up of greater than 5 years (median follow-up time of 77 months). The updated analysis was performed when all patients had reached their 10-year (median follow-up time of 10 years and 5 months) follow-up visit (unless they had a DFS event or were lost to follow-up previously). Disease-free survival (DFS) was the primary efficacy endpoint and Overall survival (OS) was the secondary efficacy endpoint.

At the median follow-up time of 77 months, significantly longer disease-free survival for the TAC arm compared to the FAC arm was demonstrated. TAC-treated patients had a 32% reduction in the risk of relapse compared to those treated with FAC (hazard ratio = 0.68, 95% CI (0.49-0.93), p = 0.01). At the median follow up time of 10 years and 5 months, TAC-treated patients had a 16.5% reduction in the risk of relapse compared to those treated with FAC (hazard ratio = 0.84, 95% CI (0.65-1.08), p=0.1646). DFS data were not statistically significant but were still associated with a positive trend in favour of TAC.

At the median follow-up time of 77 months, overall survival (OS) was longer in the TAC arm with TAC-treated patients having a 24% reduction in the risk of death compared to FAC (hazard ratio = 0.76, 95% CI (0.46-1.26, p = 0.29). However, the distribution of OS was not significantly different between the 2 groups.

At the median follow up time of 10 years and 5 months, TAC-treated patients had a 9% reduction in the risk of death compared to FAC-treated patients (hazard ratio = 0.91, 95% CI (0.63-1.32)). The survival rate was 93.7% in the TAC arm and 91.4 % in the FAC arm, at the 8-year follow-up time point, and 91.3 % in the TAC arm and 89 % in the FAC arm, at the 10-year follow-up time point.

The positive benefit risk ratio for TAC compared to FAC remained unchanged.

TAC-treated patient subsets according to prospectively defined major prognostic factors were analysed in the primary analysis (at the median follow-up time of 77 months) (see table below):

**Subset Analyses-Adjuvant Therapy in Patients with Node-negative Breast Cancer Study (Intent-to-Treat Analysis)**

<table>
<thead>
<tr>
<th>Patient subset</th>
<th>Number of patients in TAC group</th>
<th>Disease Free Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hazard ratio*</td>
</tr>
<tr>
<td>Overall</td>
<td>539</td>
<td>0.68</td>
</tr>
<tr>
<td>Age category 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;50 years</td>
<td>260</td>
<td>0.67</td>
</tr>
<tr>
<td>≥50 years</td>
<td>279</td>
<td>0.67</td>
</tr>
<tr>
<td>Age category 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;35 years</td>
<td>42</td>
<td>0.31</td>
</tr>
<tr>
<td>≥35 years</td>
<td>497</td>
<td>0.73</td>
</tr>
<tr>
<td>Hormonal receptor status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>195</td>
<td>0.7</td>
</tr>
<tr>
<td>Positive</td>
<td>344</td>
<td>0.62</td>
</tr>
<tr>
<td>Tumour size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤2 cm</td>
<td>285</td>
<td>0.69</td>
</tr>
<tr>
<td>&gt;2 cm</td>
<td>254</td>
<td>0.68</td>
</tr>
<tr>
<td>Histological grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade1 (includes grade not assessed)</td>
<td>64</td>
<td>0.79</td>
</tr>
</tbody>
</table>
Exploratory subgroup analyses for disease-free survival for patients who meet the 2009 St. Gallen chemotherapy criteria – (ITT population) were performed and presented here below:

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>TAC</th>
<th>FAC</th>
<th>Hazard ratio (TAC/FAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=539)</td>
<td>(n=521)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>Meeting relative indication for chemotherapy *</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>18/214 (8.4%)</td>
<td>26/227 (11.5%)</td>
<td>0.796 (0.434 - 1.459)</td>
</tr>
<tr>
<td>Yes</td>
<td>48/325 (14.8%)</td>
<td>69/294 (23.5%)</td>
<td>0.606 (0.42 - 0.877)</td>
</tr>
</tbody>
</table>

TAC = docetaxel, doxorubicin and cyclophosphamide
FAC = 5-fluorouracil, doxorubicin and cyclophosphamide
CI = confidence interval
ER = oestrogen receptor
PR = progesterone receptor

*a ER/PR-negative or Grade 3 or tumour size >5 cm

The estimated hazard ratio was using Cox proportional hazard model with treatment group as the factor.

**TAXOTERE as single agent**

Two randomised phase III comparative studies, involving a total of 326 alkylating or 392 anthracycline failure metastatic breast cancer patients, have been performed with docetaxel at the recommended dose and regimen of 100 mg/m² every 3 weeks.

In alkylating-failure patients, docetaxel was compared to doxorubicin (75 mg/m² every 3 weeks). Without affecting overall survival time (docetaxel 15 months vs. doxorubicin 14 months, p = 0.38) or time to progression (docetaxel 27 weeks vs. doxorubicin 23 weeks, p = 0.54), docetaxel increased response rate (52% vs. 37%, p = 0.01) and shortened time to response (12 weeks vs. 23 weeks, p = 0.007). Three docetaxel patients (2%) discontinued the treatment due to fluid retention, whereas 15 doxorubicin patients (9%) discontinued due to cardiac toxicity (three cases of fatal congestive heart failure).

In anthracycline-failure patients, docetaxel was compared to the combination of mitomycin C and vinblastine (12 mg/m² every 6 weeks and 6 mg/m² every 3 weeks). Docetaxel increased response rate (33% vs. 12%, p < 0.0001), prolonged time to progression (19 weeks vs. 11 weeks, p = 0.0004) and prolonged overall survival (11 months vs. 9 months, p = 0.01).

During these two phase III studies, the safety profile of docetaxel was consistent with the safety profile observed in phase II studies (see section 4.8).

An open-label, multi-centre, randomised phase III study was conducted to compare docetaxel monotherapy and paclitaxel in the treatment of advanced breast cancer in patients whose previous
therapy should have included an anthracycline. A total of 449 patients were randomised to receive either docetaxel monotherapy 100 mg/m² as a 1 hour infusion or paclitaxel 175 mg/m² as a 3 hour infusion. Both regimens were administered every 3 weeks. Without affecting the primary endpoint, overall response rate (32% vs 25%, p = 0.10), docetaxel prolonged median time to progression (24.6 weeks vs 15.6 weeks; p < 0.01) and median survival (15.3 months vs 12.7 months; p = 0.03). More grade 3/4 adverse events were observed for docetaxel monotherapy (55.4%) compared to paclitaxel (23.0%).

**TAXOTERE in combination with doxorubicin**

One large randomised phase III study, involving 429 previously untreated patients with metastatic disease, has been performed with doxorubicin (50 mg/m²) in combination with docetaxel (75 mg/m²) (AT arm) versus doxorubicin (60 mg/m²) in combination with cyclophosphamide (600 mg/m²) (AC arm). Both regimens were administered on day 1 every 3 weeks.

- Time to progression (TTP) was significantly longer in the AT arm versus AC arm, p = 0.0138. The median TTP was 37.3 weeks (95% CI: 33.4 - 42.1) in AT arm and 31.9 weeks (95% CI: 27.4 - 36.0) in AC arm.
- Overall response rate (ORR) was significantly higher in the AT arm versus AC arm, p = 0.009. The ORR was 59.3% (95% CI: 52.8 - 65.9) in AT arm versus 46.5% (95% CI: 39.8 - 53.2) in AC arm.

In this study, AT arm showed a higher incidence of severe neutropenia (90% versus 68.6%), febrile neutropenia (33.3% versus 10%), infection (8% versus 2.4%), diarrhoea (7.5% versus 1.4%), asthenia (8.5% versus 2.4%), and pain (2.8% versus 0%) than AC arm. On the other hand, AC arm showed a higher incidence of severe anaemia (15.8% versus 8.5%) than AT arm, and, in addition, a higher incidence of severe cardiac toxicity: congestive heart failure (3.8% versus 2.8%), absolute LVEF decrease ≥ 20% (13.1% versus 6.1%), absolute LVEF decrease ≥ 30% (6.2% versus 1.1%). Toxic deaths occurred in 1 patient in the AT arm (congestive heart failure) and in 4 patients in the AC arm (1 due to septic shock and 3 due to congestive heart failure).

In both arms, quality of life measured by the EORTC questionnaire was comparable and stable during treatment and follow-up.

**TAXOTERE in combination with trastuzumab**

Docetaxel in combination with trastuzumab was studied for the treatment of patients with metastatic breast cancer whose tumours overexpress HER2, and who previously had not received chemotherapy for metastatic disease. One hundred eighty six patients were randomised to receive docetaxel (100 mg/m²) with or without trastuzumab; 60% of patients received prior anthracycline-based adjuvant chemotherapy. Docetaxel plus trastuzumab was efficacious in patients whether or not they had received prior adjuvant anthracyclines. The main test method used to determine HER2 positivity in this pivotal study was immunohistochemistry (IHC). A minority of patients were tested using fluorescence in-situ hybridization (FISH). In this study, 87% of patients had disease that was IHC 3+, and 95% of patients entered had disease that was IHC 3+ and/or FISH positive. Efficacy results are summarized in the following table:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Docetaxel plus trastuzumab</th>
<th>Docetaxel</th>
<th>n = 94</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response rate</td>
<td>61% (50-71)</td>
<td>34% (25-45)</td>
<td></td>
</tr>
<tr>
<td>Median duration of response</td>
<td>11.4 (9.2-15.0)</td>
<td>5.1 (4.4-6.2)</td>
<td></td>
</tr>
<tr>
<td>Median TTP (months)</td>
<td>10.6 (7.6-12.9)</td>
<td>5.7 (5.0-6.5)</td>
<td></td>
</tr>
<tr>
<td>Median survival (months)</td>
<td>30.5 (26.8-ne)</td>
<td>22.1 (17.6-28.9)</td>
<td>14.5 (9.4-22.1)</td>
</tr>
</tbody>
</table>

218
TTP = time to progression; “ne” indicates that it could not be estimated or it was not yet reached.

1 Full analysis set (intent-to-treat)
2 Estimated median survival

**TAXOTERE in combination with capecitabine**

Data from one multi-centre, randomised, controlled phase III clinical study support the use of docetaxel in combination with capecitabine for treatment of patients with locally advanced or metastatic breast cancer after failure of cytotoxic chemotherapy, including an anthracycline. In this study, 255 patients were randomised to treatment with docetaxel (75 mg/m² as a 1 hour intravenous infusion every 3 weeks) and capecitabine (1250 mg/m² twice daily for 2 weeks followed by 1-week rest period). 256 patients were randomised to treatment with docetaxel alone (100 mg/m² as a 1 hour intravenous infusion every 3 weeks). Survival was superior in the docetaxel + capecitabine combination arm (p = 0.0126). Median survival was 442 days (docetaxel + capecitabine) vs. 352 days (docetaxel alone). The overall objective response rates in the all-randomised population (investigator assessment) were 41.6% (docetaxel + capecitabine) vs. 29.7% (docetaxel alone); p = 0.0058. Time to progressive disease was superior in the docetaxel + capecitabine combination arm (p < 0.0001). The median time to progression was 186 days (docetaxel + capecitabine) vs. 128 days (docetaxel alone).

**Non-small cell lung cancer**

*Patients previously treated with chemotherapy with or without radiotherapy*

In a phase III study, in previously treated patients, time to progression (12.3 weeks versus 7 weeks) and overall survival were significantly longer for docetaxel at 75 mg/m² compared to Best Supportive Care. The 1-year survival rate was also significantly longer in docetaxel (40%) versus BSC (16%). There was less use of morphinic analgesic (p < 0.01), non-morphinic analgesics (p < 0.01), other disease-related medicinal products (p = 0.06) and radiotherapy (p < 0.01) in patients treated with docetaxel at 75 mg/m² compared to those with BSC. The overall response rate was 6.8% in the evaluable patients, and the median duration of response was 26.1 weeks.

**TAXOTERE in combination with platinum agents in chemotherapy-naïve patients**

In a phase III study, 1218 patients with unresectable stage IIIIB or IV NSCLC, with KPS of 70% or greater, and who did not receive previous chemotherapy for this condition, were randomised to either docetaxel (T) 75 mg/m² as a 1 hour infusion immediately followed by cisplatin (Cis) 75 mg/m² over 30-60 minutes every 3 weeks (TCis), docetaxel 75 mg/m² as a 1 hour infusion in combination with carboplatin (AUC 6 mg/ml.min) over 30-60 minutes every 3 weeks, or vinorelbine (V) 25 mg/m² administered over 6-10 minutes on days 1, 8, 15, 22 followed by cisplatin 100 mg/m² administered on day 1 of cycles repeated every 4 weeks (VCis).
Survival data, median time to progression and response rates for two arms of the study are illustrated in the following table:

<table>
<thead>
<tr>
<th></th>
<th>TCis n = 408</th>
<th>VCis n = 404</th>
<th>Statistical analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Primary end-point):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median survival (months)</td>
<td>11.3</td>
<td>10.1</td>
<td>Hazard Ratio: 1.122</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[97.2% CI: 0.937; 1.342]*</td>
</tr>
<tr>
<td>1-year Survival (%)</td>
<td>46</td>
<td>41</td>
<td>Treatment difference: 5.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[95% CI: -1.1; 12.0]</td>
</tr>
<tr>
<td>2-year Survival (%)</td>
<td>21</td>
<td>14</td>
<td>Treatment difference: 6.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[95% CI: 0.2; 12.3]</td>
</tr>
<tr>
<td>Median time to progression (weeks):</td>
<td>22.0</td>
<td>23.0</td>
<td>Hazard Ratio: 1.032</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[95% CI: 0.876; 1.216]</td>
</tr>
<tr>
<td>Overall response rate (%)</td>
<td>31.6</td>
<td>24.5</td>
<td>Treatment difference: 7.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[95% CI: 0.7; 13.5]</td>
</tr>
</tbody>
</table>

*: Corrected for multiple comparisons and adjusted for stratification factors (stage of disease and region of treatment), based on evaluable patient population.

Secondary end-points included change of pain, global rating of quality of life by EuroQoL-5D, Lung Cancer Symptom Scale, and changes in Karnofsky performance status. Results on these end-points were supportive of the primary end-points results.

For docetaxel/carboplatin combination, neither equivalent nor non-inferior efficacy could be proven compared to the reference treatment combination VCis.

**Prostate cancer**

**Metastatic castration-resistant prostate cancer**

The safety and efficacy of docetaxel in combination with prednisone or prednisolone in patients with metastatic castration-resistant prostate cancer were evaluated in a randomised multi-centre phase III study (TAX 327). A total of 1006 patients with KPS ≥ 60 were randomised to the following treatment groups:

- Docetaxel 75 mg/m² every 3 weeks for 10 cycles.
- Docetaxel 30 mg/m² administered weekly for the first 5 weeks in a 6 week cycle for 5 cycles.
- Mitoxantrone 12 mg/m² every 3 weeks for 10 cycles.

All 3 regimens were administered in combination with prednisone or prednisolone 5 mg twice daily, continuously.

Patients who received docetaxel every three weeks demonstrated significantly longer overall survival compared to those treated with mitoxantrone. The increase in survival seen in the docetaxel weekly arm was not statistically significant compared to the mitoxantrone control arm. Efficacy endpoints for the docetaxel arms versus the control arm are summarized in the following table:
Given the fact that docetaxel every week presented a slightly better safety profile than docetaxel every 3 weeks, it is possible that certain patients may benefit from docetaxel every week.

No statistical differences were observed between treatment groups for Global Quality of Life.

**Metastatic hormone-sensitive prostate cancer**

**STAMPEDE study**

The safety and efficacy of docetaxel administered concomitantly with standard of care (ADT) in patients with high-risk locally advanced or metastatic hormone-sensitive prostate cancer were evaluated in a randomised multi-centre, multi-arm multi-stage (MAMS) study with a seamless phase II/III design (STAMPEDE – MRC PR08). A total of 1776 male patients were allocated to the treatment arms of interest:

- Standard of care + docetaxel 75 mg/m², administered every 3 weeks for 6 cycles
- Standard of care alone

Docetaxel regimen was administered in combination with prednisone or prednisolone 5 mg twice daily continuously.

Among the 1776 randomised patients 1086 (61%) had metastatic disease, 362 were randomised to docetaxel in combination with standard of care, 724 received standard of care alone.

In these metastatic prostate cancer patients, the median overall survival was significantly longer in docetaxel treatment groups than in the standard of care alone group, with a median overall survival 19 months longer with the addition of docetaxel to standard of care (HR = 0.76, 95% CI = 0.62-0.92, p=0.005).

Efficacy results in metastatic prostate cancer patients for docetaxel arm versus control arm are summarized in the following table:
Efficacy of docetaxel in combination with prednisone or prednisolone and standard of care in the treatment of patients with metastatic hormone-sensitive prostate cancer (STAMPEDE)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + standard of care</th>
<th>Standard of care alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of metastatic prostate cancer patients</td>
<td>362</td>
<td>724</td>
</tr>
<tr>
<td>Median overall survival (months) 95% CI</td>
<td>62</td>
<td>43</td>
</tr>
<tr>
<td>95% CI</td>
<td>51-73</td>
<td>40-48</td>
</tr>
<tr>
<td>Adjusted hazard ratio 95% CI p-value&lt;sup&gt;a&lt;/sup&gt;</td>
<td>0.76 (0.62-0.92)</td>
<td>0.005</td>
</tr>
<tr>
<td>Failure-Free survival&lt;sup&gt;b&lt;/sup&gt; Median (months)</td>
<td>20.4</td>
<td>12</td>
</tr>
<tr>
<td>95% CI</td>
<td>16.8-25.2</td>
<td>9.6-12</td>
</tr>
<tr>
<td>Adjusted hazard ratio 95% CI p-value&lt;sup&gt;a&lt;/sup&gt;</td>
<td>0.66 (0.57-0.76)</td>
<td>&lt; 0.001</td>
</tr>
</tbody>
</table>

<sup>a</sup> p-value calculated from the likelihood ratio test and adjusted for all stratification factors (except center and planned hormone therapy) and stratified by trial period

<sup>b</sup> Failure-free survival: time from randomization to first evidence of at least one of: biochemical failure (defined as a rise in PSA of 50% above the within-24-week nadir and above 4 ng/mL and confirmed by retest or treatment); progression either locally, in lymph nodes, or in distant metastases; skeletal-related event; or death from prostate cancer.

**CHAARTED study**

The safety and efficacy of docetaxel administered at the beginning of androgen-deprivation therapy (ADT) in patients with metastatic hormone-sensitive prostate cancer were evaluated in a randomised Phase III multi-centre study (CHAARTED). A total of 790 male patients were allocated to the 2 treatment groups:

- ADT + docetaxel 75 mg/m² given at the beginning of ADT, administered every 3 weeks for 6 cycles
- ADT alone

The median overall survival was significantly longer in docetaxel treatment group than in the ADT alone group, with a median overall survival 13.6 months longer with the addition of docetaxel to ADT (hazard ratio (HR) = 0.61, 95% confidence interval (CI) = 0.47-0.80, p=0.0003).

Efficacy results or the docetaxel arm versus the control arm are summarized in the following table:

Efficacy of docetaxel and ADT in the treatment of patients with metastatic hormone-sensitive prostate cancer (CHAARTED)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel +ADT</th>
<th>ADT alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>397</td>
<td>393</td>
</tr>
<tr>
<td>Median overall survival (months) 95% CI All patients</td>
<td>57.6</td>
<td>44.0</td>
</tr>
<tr>
<td>95% CI Adjusted hazard ratio</td>
<td>49.1-72.8</td>
<td>34.4-49.1</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(0.47-0.80)</td>
<td>--</td>
</tr>
<tr>
<td>Endpoint</td>
<td>Docetaxel +ADT</td>
<td>ADT alone</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;</td>
<td>0.0003</td>
<td>--</td>
</tr>
<tr>
<td>Progression Free Survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>19.8</td>
<td>11.6</td>
</tr>
<tr>
<td>95% CI</td>
<td>16.7-22.8</td>
<td>10.8-14.3</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.60</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.51-0.72</td>
<td>--</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;</td>
<td>P&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>PSA response** at 6 months – N(%)</td>
<td>127 (32.0)</td>
<td>77 (19.6)</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>PSA response** at 12 months – N(%)</td>
<td>110 (27.7)</td>
<td>66 (16.8)</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>Time to castration-resistant prostate cancer&lt;sup&gt;b&lt;/sup&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>20.2</td>
<td>11.7</td>
</tr>
<tr>
<td>95% CI</td>
<td>(17.2-23.6)</td>
<td>(10.8-14.7)</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.51-0.72)</td>
<td>--</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
<tr>
<td>Time to clinical progression&lt;sup&gt;c&lt;/sup&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (months)</td>
<td>33.0</td>
<td>19.8</td>
</tr>
<tr>
<td>95% CI</td>
<td>(27.3-41.2)</td>
<td>(17.9-22.8)</td>
</tr>
<tr>
<td>Adjusted hazard ratio</td>
<td>0.61</td>
<td>--</td>
</tr>
<tr>
<td>95% CI</td>
<td>(0.50-0.75)</td>
<td>--</td>
</tr>
<tr>
<td>p-value&lt;sup&gt;a&lt;/sup&gt;</td>
<td>&lt;0.0001</td>
<td>--</td>
</tr>
</tbody>
</table>

<sup>a</sup> Time to event variables: Stratified log-rank test.
Response rate variables: Fisher's Exact test
* p-value for descriptive purpose.
** PSA response: Prostate-Specific Antigen response: PSA level <0.2 ng/mL measured for two consecutive measurements at least 4 weeks apart.

<sup>b</sup> Time to castration-resistant prostate cancer = time from randomization to PSA progression or clinical progression (i.e., increasing symptomatic bone metastases, progression per Response Evaluation Criteria in Solid Tumours (RECIST) criteria, or clinical deterioration due to cancer per the Investigator’s opinion), whichever occurred first.

<sup>c</sup> The time to clinical progression = the time from randomization until clinical progression (i.e., increased symptoms of bone metastases; progression according to RECIST; or clinical deterioration due to cancer according to the investigator’s opinion).

**Gastric adenocarcinoma**

A multi-centre, open-label, randomised study was conducted to evaluate the safety and efficacy of docetaxel for the treatment of patients with metastatic gastric adenocarcinoma, including adenocarcinoma of the gastroesophageal junction, who had not received prior chemotherapy for metastatic disease. A total of 445 patients with KPS > 70 were treated with either docetaxel (T) (75 mg/m² on day 1) in combination with cisplatin (C) (75 mg/m² on day 1) and 5-fluorouracil (F) (750 mg/m² per day for 5 days) or cisplatin (100 mg/m² on day 1) and 5-fluorouracil (1000 mg/m² per day for 5 days). The length of a treatment cycle was 3 weeks for the TCF arm and 4 weeks for the CF arm. The median number of cycles administered per patient was 6 (with a range of 1-16) for the TCF arm compared to 4 (with a range of 1-12) for the CF arm. Time to progression (TTP) was the primary endpoint. The risk reduction of progression was 32.1% and was associated with a significantly longer TTP (p = 0.0004) in favour of the TCF arm. Overall survival was also significantly longer
(p = 0.0201) in favor of the TCF arm with a risk reduction of mortality of 22.7%. Efficacy results are summarized in the following table:

**Efficacy of docetaxel in the treatment of patients with gastric adenocarcinoma**

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>TCF</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Median TTP (months)</strong></td>
<td>5.6</td>
<td>3.7</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(4.86-5.91)</td>
<td>(3.45-4.47)</td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>1.473</td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(1.189-1.825)</td>
<td></td>
</tr>
<tr>
<td><em>p-value</em></td>
<td>0.0004</td>
<td></td>
</tr>
<tr>
<td><strong>Median survival (months)</strong></td>
<td>9.2</td>
<td>8.6</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(8.38-10.58)</td>
<td>(7.16-9.46)</td>
</tr>
<tr>
<td>2-year estimate (%)</td>
<td>18.4</td>
<td>8.8</td>
</tr>
<tr>
<td>Hazard ratio</td>
<td>1.293</td>
<td></td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(1.041-1.606)</td>
<td></td>
</tr>
<tr>
<td><em>p-value</em></td>
<td>0.0201</td>
<td></td>
</tr>
<tr>
<td><strong>Overall response rate (CR+PR) (%)</strong></td>
<td>36.7</td>
<td>25.4</td>
</tr>
<tr>
<td><em>p-value</em></td>
<td>0.0106</td>
<td></td>
</tr>
<tr>
<td><strong>Progressive disease as best overall response (%)</strong></td>
<td>16.7</td>
<td>25.9</td>
</tr>
</tbody>
</table>

*Unstratified logrank test

Subgroup analyses across age, gender and race consistently favoured the TCF arm compared to the CF arm.

A survival update analysis conducted with a median follow-up time of 41.6 months no longer showed a statistically significant difference although always in favour of the TCF regimen and showed that the benefit of TCF over CF is clearly observed between 18 and 30 months of follow up.

Overall, quality of life (QoL) and clinical benefit results consistently indicated improvement in favour of the TCF arm. Patients treated with TCF had a longer time to 5% definitive deterioration of global health status on the QLQ-C30 questionnaire (p = 0.0121) and a longer time to definitive worsening of Karnofsky performance status (p = 0.0088) compared to patients treated with CF.

**Head and neck cancer**

- Induction chemotherapy followed by radiotherapy (TAX323)
  The safety and efficacy of docetaxel in the induction treatment of patients with squamous cell carcinoma of the head and neck (SCCHN) was evaluated in a phase III, multi-centre, open-label, randomised study (TAX323). In this study, 358 patients with inoperable locally advanced SCCHN, and WHO performance status 0 or 1, were randomised to one of two treatment arms. Patients on the docetaxel arm received docetaxel (T) 75 mg/m$^2$ followed by cisplatin (P) 75 mg/m$^2$ followed by 5-fluorouracil (F) 750 mg/m$^2$ per day as a continuous infusion for 5 days. This regimen was administered every three weeks for 4 cycles in case at least a minor response (≥ 25% reduction in bidimensionally measured tumour size) was observed after 2 cycles. At the end of chemotherapy, with a minimal interval of 4 weeks and a maximal interval of 7 weeks, patients whose disease did not progress received radiotherapy (RT) according to institutional guidelines for 7 weeks (TPF/RT). Patients on the comparator arm received cisplatin (P) 100 mg/m$^2$ followed by 5-fluorouracil (F) 1000 mg/m$^2$ per day for 5 days. This regimen was administered every three weeks for 4 cycles in case at least a minor response (≥ 25% reduction in bidimensionally measured tumour size) was observed after 2 cycles. At the end of chemotherapy, with a minimal interval of 4 weeks and a maximal interval of 7 weeks, patients whose disease did not progress received radiotherapy (RT) according to institutional guidelines for 7 weeks (PF/RT). Locoregional therapy with radiation was delivered either with a conventional fraction (1.8 Gy - 2.0 Gy once a day, 5 days per week for a total dose of 66 to 70 Gy), or accelerated/hyperfractionated regimens of radiation therapy (twice a day, with a minimum interfraction interval of 6 hours, 5 days per week). A total of 70 Gy was recommended for accelerated
regimens and 74 Gy for hyperfractionated schemes. Surgical resection was allowed following chemotherapy, before or after radiotherapy. Patients on the TPF arm received antibiotic prophylaxis with ciprofloxacin 500 mg orally twice daily for 10 days starting on day 5 of each cycle, or equivalent. The primary endpoint in this study, progression-free survival (PFS), was significantly longer in the TPF arm compared to the PF arm, $p = 0.0042$ (median PFS: 11.4 vs. 8.3 months respectively) with an overall median follow up time of 33.7 months. Median overall survival was also significantly longer in favour of the TPF arm compared to the PF arm (median OS: 18.6 vs. 14.5 months respectively) with a 28% risk reduction of mortality, $p = 0.0128$. Efficacy results are presented in the table below:

### Efficacy of docetaxel in the induction treatment of patients with inoperable locally advanced SCCHN (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + Cis + 5-FU</th>
<th>Cis + 5-FU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median progression free survival (months) (95% CI)</td>
<td>11.4 (10.1-14.0)</td>
<td>8.3 (7.4-9.1)</td>
</tr>
<tr>
<td>Adjusted hazard ratio (95% CI)</td>
<td>0.70 (0.55-0.89)</td>
<td>*p-value 0.0042</td>
</tr>
<tr>
<td>Median survival (months) (95% CI)</td>
<td>18.6 (15.7-24.0)</td>
<td>14.5 (11.6-18.7)</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>0.72 (0.56-0.93)</td>
<td>**p-value 0.0128</td>
</tr>
<tr>
<td>Best overall response to chemotherapy (%) (95% CI)</td>
<td>67.8 (60.4-74.6)</td>
<td>53.6 (46.0-61.0)</td>
</tr>
<tr>
<td>***p-value</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Best overall response to study treatment [chemotherapy +/- radiotherapy] (%) (95% CI)</td>
<td>72.3 (65.1-78.8)</td>
<td>58.6 (51.0-65.8)</td>
</tr>
<tr>
<td>***p-value</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Median duration of response to chemotherapy +/- radiotherapy (months) (95% CI)</td>
<td>n = 128 15.7 (13.4-24.6)</td>
<td>n = 106 11.7 (10.2-17.4)</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>0.72 (0.52-0.99)</td>
<td>**p-value 0.0457</td>
</tr>
</tbody>
</table>

A hazard ratio of less than 1 favours docetaxel + cisplatin + 5-FU

*Cox model (adjustment for Primary tumour site, T and N clinical stages and PSWHO)

**Logrank test

*** Chi-square test

### Quality of life parameters

Patients treated with TPF experienced significantly less deterioration of their Global health score compared to those treated with PF ($p = 0.01$, using the EORTC QLQ-C30 scale).

### Clinical benefit parameters

The performance status scale, for head and neck (PSS-HN) subscales designed to measure understandability of speech, ability to eat in public, and normalcy of diet, was significantly in favour of TPF as compared to PF.

Median time to first deterioration of WHO performance status was significantly longer in the TPF arm compared to PF. Pain intensity score improved during treatment in both groups indicating adequate pain management.
Induction chemotherapy followed by chemoradiotherapy (TAX324)
The safety and efficacy of docetaxel in the induction treatment of patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN) was evaluated in a randomised, multi-centre open-label, phase III study (TAX324). In this study, 501 patients, with locally advanced SCCHN, and a WHO performance status of 0 or 1, were randomised to one of two arms. The study population comprised patients with technically unresectable disease, patients with low probability of surgical cure and patients aiming at organ preservation. The efficacy and safety evaluation solely addressed survival endpoints and the success of organ preservation was not formally addressed. Patients on the docetaxel arm received docetaxel (T) 75 mg/m² by intravenous infusion on day 1 followed by cisplatin (P) 100 mg/m² administered as a 30-minute to three-hour intravenous infusion, followed by the continuous intravenous infusion of 5-fluorouracil (F) 1000 mg/m²/day from day 1 to day 4. The cycles were repeated every 3 weeks for 3 cycles. All patients who did not have progressive disease were to receive chemoradiotherapy (CRT) as per protocol (TPF/CRT). Patients on the comparator arm received cisplatin (P) 100 mg/m² as a 30-minute to three-hour intravenous infusion on day 1 followed by the continuous intravenous infusion of 5-fluorouracil (F) 1000 mg/m²/day from day 1 to day 5. The cycles were repeated every 3 weeks for 3 cycles. All patients who did not have progressive disease were to receive CRT as per protocol (PF/CRT).

Patients in both treatment arms were to receive 7 weeks of CRT following induction chemotherapy with a minimum interval of 3 weeks and no later than 8 weeks after start of the last cycle (day 22 to day 56 of last cycle). During radiotherapy, carboplatin (AUC 1.5) was given weekly as a one-hour intravenous infusion for a maximum of 7 doses. Radiation was delivered with megavoltage equipment using once daily fractionation (2 Gy per day, 5 days per week for 7 weeks, for a total dose of 70-72 Gy). Surgery on the primary site of disease and/or neck could be considered at any time following completion of CRT. All patients on the docetaxel-containing arm of the study received prophylactic antibiotics. The primary efficacy endpoint in this study, overall survival (OS) was significantly longer (log-rank test, p = 0.0058) with the docetaxel-containing regimen compared to PF (median OS: 70.6 versus 30.1 months respectively), with a 30% risk reduction in mortality compared to PF (hazard ratio (HR) = 0.70, 95% confidence interval (CI) = 0.54-0.90) with an overall median follow up time of 41.9 months. The secondary endpoint, PFS, demonstrated a 29% risk reduction of progression or death and a 22 month improvement in median PFS (35.5 months for TPF and 13.1 for PF). This was also statistically significant with an HR of 0.71; 95% CI 0.56-0.90; log-rank test p = 0.004. Efficacy results are presented in the table below:
Efficacy of docetaxel in the induction treatment of patients with locally advanced SCCHN (Intent-to-Treat Analysis)

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Docetaxel + Cis + 5-FU (n = 255)</th>
<th>Cis + 5-FU (n = 246)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median overall survival (months) (95% CI)</td>
<td>70.6 (49.0-NA)</td>
<td>30.1 (20.9-51.5)</td>
</tr>
<tr>
<td>Hazard ratio:</td>
<td>0.70 (0.54-0.90)</td>
<td>0.0058</td>
</tr>
<tr>
<td>Median PFS (months) (95% CI)</td>
<td>35.5 (19.3-NA)</td>
<td>13.1 (10.6 - 20.2)</td>
</tr>
<tr>
<td>Hazard ratio:</td>
<td>0.71 (0.56 - 0.90)</td>
<td>0.004</td>
</tr>
<tr>
<td>Best overall response (CR + PR) to chemotherapy (%) (95% CI)</td>
<td>71.8 (65.8-77.2)</td>
<td>64.2 (57.9-70.2)</td>
</tr>
<tr>
<td>***p-value</td>
<td>0.070</td>
<td>0.209</td>
</tr>
<tr>
<td>Best overall response (CR + PR) to study treatment [chemotherapy +/- chemoradiotherapy] (%) (95%CI)</td>
<td>76.5 (70.8-81.5)</td>
<td>71.5 (65.5-77.1)</td>
</tr>
<tr>
<td>***p-value</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A hazard ratio of less than 1 favours docetaxel + cisplatin + fluorouracil
*un-adjusted log-rank test
**un-adjusted log-rank test, not adjusted for multiple comparisons
***Chi square test, not adjusted for multiple comparisons
NA-not applicable

Paediatric population

The European Medicines Agency has waived the obligation to submit the results of studies with TAXOTERE in all subsets of the paediatric population in breast cancer, non-small cell lung cancer, prostate cancer, gastric carcinoma and head and neck cancer, not including type II and III less differentiated nasopharyngeal carcinoma (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

Absorption

The pharmacokinetics of docetaxel have been evaluated in cancer patients after administration of 20-115 mg/m² in phase I studies. The kinetic profile of docetaxel is dose independent and consistent with a three-compartment pharmacokinetic model with half-lives for the α, β and γ (terminal) phases of 4 min, 36 min and between 11.1 h and 17.5 h, respectively, when sampled up to 24 hours. An additional study assessing the pharmacokinetics of docetaxel at similar doses (75 – 100 mg/m²) in patients, but over a longer time interval (over 22 days) found a longer mean terminal elimination half-life between 91 and 120 hours. The late phase is due, in part, to a relatively slow efflux of docetaxel from the peripheral compartment.

Distribution

Following the administration of a 100 mg/m² dose given as a one-hour infusion a mean peak plasma level of 3.7 µg/ml was obtained with a corresponding AUC of 4.6 h.µg/ml. Mean values for total body clearance and steady-state volume of distribution were 21 l/h/m² and 113 l, respectively. Inter
individual variation in total body clearance was approximately 50%. Docetaxel is more than 95% bound to plasma proteins.

Elimination

A study of $^{14}$C-docetaxel has been conducted in three cancer patients. Docetaxel was eliminated in both the urine and faeces following cytochrome P450-mediated oxidative metabolism of the tert-butyl ester group, within seven days, the urinary and faecal excretion accounted for about 6% and 75% of the administered radioactivity, respectively. About 80% of the radioactivity recovered in faeces is excreted during the first 48 hours as one major inactive metabolite and 3 minor inactive metabolites and very low amounts of unchanged medicinal product.

Special populations

Age and gender

A population pharmacokinetic analysis has been performed with docetaxel in 577 patients. Pharmacokinetic parameters estimated by the model were very close to those estimated from phase I studies. The pharmacokinetics of docetaxel were not altered by the age or sex of the patient.

Hepatic impairment

In a small number of patients (n = 23) with clinical chemistry data suggestive of mild to moderate liver function impairment (ALT, AST ≥ 1.5 times the ULN associated with alkaline phosphatase ≥ 2.5 times the ULN), total clearance was lowered by 27% on average (see section 4.2).

Fluid retention

Docetaxel clearance was not modified in patients with mild to moderate fluid retention and there are no data available in patients with severe fluid retention.

Combination therapy

Doxorubicin

When used in combination, docetaxel does not influence the clearance of doxorubicin and the plasma levels of doxorubicinol (a doxorubicin metabolite). The pharmacokinetics of docetaxel, doxorubicin and cyclophosphamide were not influenced by their co-administration.

Capecitabine

Phase I study evaluating the effect of capecitabine on the pharmacokinetics of docetaxel and vice versa showed no effect by capecitabine on the pharmacokinetics of docetaxel (Cmax and AUC) and no effect by docetaxel on the pharmacokinetics of a relevant capecitabine metabolite 5’-DFUR.

Cisplatin

Clearance of docetaxel in combination therapy with cisplatin was similar to that observed following monotherapy. The pharmacokinetic profile of cisplatin administered shortly after docetaxel infusion is similar to that observed with cisplatin alone.

Cisplatin and 5-fluorouracil

The combined administration of docetaxel, cisplatin and 5-fluorouracil in 12 patients with solid tumours had no influence on the pharmacokinetics of each individual medicinal product.

Prednisone and dexamethasone

The effect of prednisone on the pharmacokinetics of docetaxel administered with standard dexamethasone premedication has been studied in 42 patients.

Prednisone

No effect of prednisone on the pharmacokinetics of docetaxel was observed.

5.3 Preclinical safety data
The carcinogenic potential of docetaxel has not been studied.

Docetaxel has been shown to be genotoxic by an aneugenic mechanism in the \textit{in vitro} micronucleus and chromosome aberration test in CHO-K1 cells and in the \textit{in vivo} micronucleus test in the mouse. However, it did not induce mutagenicity in the Ames test or the CHO/HGPRT gene mutation assay. These results are consistent with the pharmacological activity of docetaxel.

Undesirable effects on the testis observed in rodent toxicity studies suggest that docetaxel may impair male fertility.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Polysorbate 80
Ethanol anhydrous
Citric acid

6.2 Incompatibilities

This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.

6.3 Shelf-life

Unopened vial
3 years

After opening of the vial
Each vial is for single use and should be used immediately after opening. If not used immediately, in-use storage times and conditions are the responsibility of the user.

Once added to the infusion bag
From a microbiological point of view, reconstitution/dilution must take place in controlled and aseptic conditions and the medicinal product should be used immediately. If not used immediately, in-use storage times and conditions are the responsibility of the user.

Once added as recommended into the infusion bag, the docetaxel infusion solution, if stored below 25°C, is stable for 6 hours. It should be used within 6 hours (including the one hour infusion intravenous administration).

In addition, physical and chemical in-use stability of the infusion solution prepared as recommended has been demonstrated in non-PVC bags up to 48 hours when stored between 2 to 8°C.

Docetaxel infusion solution is supersaturated, therefore may crystallize over time. If crystals appear, the solution must no longer be used and shall be discarded.

6.4 Special precautions for storage

Do not store above 25°C.
Store in the original package in order to protect from light.

For storage conditions of the diluted medicinal product, see section 6.3.
6.5 Nature and contents of container

15 ml clear glass (type I) vial with a blue aluminium seal and blue plastic flip-off cap containing 8 ml of concentrate.

Each box contains one vial.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

TAXOTERE is an antineoplastic agent and, as with other potentially toxic compounds, caution should be exercised when handling it and preparing TAXOTERE solutions. The use of gloves is recommended.

If TAXOTERE concentrate or infusion solution should come into contact with skin, wash immediately and thoroughly with soap and water. If TAXOTERE concentrate or infusion solution should come into contact with mucous membranes, wash immediately and thoroughly with water.

Preparation for the intravenous administration

Preparation of the infusion solution

DO NOT use other docetaxel medicinal products consisting of 2 vials (concentrate and solvent) with this medicinal product (TAXOTERE 160 mg/8 ml concentrate for solution for infusion, which contains only 1 vial).

TAXOTERE 160 mg/8 ml concentrate for solution for infusion requires NO prior dilution with a solvent and is ready to add to the infusion solution.

Each vial is of single use and should be used immediately.

If the vials are stored under refrigeration, allow the required number of boxes of TAXOTERE concentrate for solution for infusion to stand below 25°C for 5 minutes before use. More than one vial of TAXOTERE concentrate for solution for infusion may be necessary to obtain the required dose for the patient. Aseptically withdraw the required amount of TAXOTERE concentrate for solution for infusion using a calibrated syringe fitted with a 21G needle.

In TAXOTERE 160 mg/8 ml vial the concentration of docetaxel is 20 mg/ml.

The required volume of TAXOTERE concentrate for solution for infusion must be injected via a single injection (one shot) into a 250 ml infusion bag or bottle containing either 5% glucose solution or sodium chloride 9 mg/ml (0.9%) solution for infusion.

If a dose greater than 190 mg of docetaxel is required, use a larger volume of the infusion vehicle so that a concentration of 0.74 mg/ml docetaxel is not exceeded.

Mix the infusion bag or bottle manually using a rocking motion.

The infusion bag solution should be used within 6 hours below 25°C including the one hour infusion to the patient.

As with all parenteral products, TAXOTERE infusion solution should be visually inspected prior to use, solutions containing a precipitate should be discarded.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.
7. MARKETING AUTHORISATION HOLDER
Sanofi Mature IP, 54 rue La Boétie, 75008 Paris, France

8. MARKETING AUTHORISATION NUMBER
EU/1/95/002/005

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION
Date of first authorisation: 27 November 1995
Date of latest renewal: 27 November 2005

10. DATE OF REVISION OF THE TEXT
Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu.
ANNEX II

A. MANUFACTURERS RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURERS RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer responsible for batch release

Sanofi-Aventis Deutschland GmbH
Industriepark Höchst
65926 Frankfurt am Main
Germany

Sanofi-Aventis Zrt.
(Harbor Park) 1, Campona utca
Budapest 1225
Hungary

The printed package leaflet of the medicinal product must state the name and address of the manufacturer responsible for the release of the concerned batch.

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to restricted medical prescription (see Annex I: Summary of Product Characteristics, section 4.2).

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

- Periodic Safety Update Reports (PSURs)

The marketing authorisation holder shall submit PSUR for this product in accordance with the requirements set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and published on the European medicines web-portal.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

- Risk management plan (RMP)

The marketing authorisation holder (MAH) shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2 of the marketing authorisation and any agreed subsequent updates of the RMP.

An updated RMP should be submitted:
- At the request of the European Medicines Agency;
- Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.
A. LABELLING
### 1. NAME OF THE MEDICINAL PRODUCT

TAXOTERE 20 mg/0.5 ml concentrate and solvent for solution for infusion
docetaxel

### 2. STATEMENT OF ACTIVE SUBSTANCE(S)

1 vial of TAXOTERE 20 mg/0.5 ml concentrate for solution for infusion
   20 mg docetaxel in 0.5 ml polysorbate 80 (40 mg/ml)
   Fill: 24.4 mg/0.61 ml
1 vial of solvent for TAXOTERE
   13% (w/w) ethanol 95% in water for injections
   Fill: 1.98 ml

### 3. LIST OF EXCIPIENTS

TAXOTERE vial: polysorbate 80, citric acid.
Solvent vial: ethanol 95% (see leaflet for further information), water for injections.

### 4. PHARMACEUTICAL FORM AND CONTENTS

Each blister pack of TAXOTERE 20 mg/0.5 ml concentrate and solvent for solution for infusion contains:
- one single-dose vial of concentrate,
- one single-dose vial of solvent.

### 5. METHOD AND ROUTE(S) OF ADMINISTRATION

CAUTION: Dilution required with the entire contents of the solvent vial. See accompanying preparation guide.

Intravenous use

Read the package leaflet before use.

### 6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

### 7. OTHER SPECIAL WARNING(S), IF NECESSARY

CYTOTOXIC
To be administered under the supervision of a physician experienced in the use of cytotoxic agents.

8. **EXPIRY DATE**

EXP:

9. **SPECIAL STORAGE CONDITIONS**

Do not store above 25°C or below 2°C.
Store in the original package in order to protect from light.

10. **SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE**

Single-use vials - discard unused contents appropriately.

11. **NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER**

Sanofi Mature IP, 54 rue La Boétie, 75008 Paris, France

12. **MARKETING AUTHORISATION NUMBER**

EU/1/95/002/001

13. **BATCH NUMBER**

Batch:

14. **GENERAL CLASSIFICATION FOR SUPPLY**

15. **INSTRUCTIONS ON USE**

16. **INFORMATION IN BRAILLE**

Justification for not including Braille accepted.

17. **UNIQUE IDENTIFIER – 2D BARCODE**

Not applicable

18. **UNIQUE IDENTIFIER - HUMAN READABLE DATA**

Not applicable.
MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS
CONCENTRATE and SOLVENT/TAXOTERE 20 mg/0.5 ml

1. NAME OF THE MEDICINAL PRODUCT

TAXOTERE 20 mg/0.5 ml concentrate and solvent for solution for infusion
docetaxel

2. NAME OF THE MARKETING AUTHORISATION HOLDER

Sanofi Mature IP

3. EXPIRY DATE

EXP:

4. BATCH NUMBER

Batch:

5. OTHER

TAXOTERE concentrate

SOLVENT for TAXOTERE
### MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS

**VIAL/TAXOTERE 20 mg/0.5 ml**

1. **NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION**

   TAXOTERE 20 mg/0.5 ml concentrate for solution for infusion
docetaxel
intravenous use

2. **METHOD OF ADMINISTRATION**

   Read the package leaflet before use.

3. **EXPIRY DATE**

   EXP:

4. **BATCH NUMBER**

   Batch:

5. **CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT**

   0.5 ml (Fill 0.61 ml)

6. **OTHER**
<table>
<thead>
<tr>
<th>MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIAL/SOLVENT FOR TAXOTERE 20 mg/0.5 ml</td>
</tr>
</tbody>
</table>

1. **NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION**

SOLVENT for TAXOTERE 20 mg/0.5 ml

2. **METHOD OF ADMINISTRATION**

3. **EXPIRY DATE**

EXP:

4. **BATCH NUMBER**

Batch:

5. **CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT**

13% (w/w) ethanol 95% in water for injections (see leaflet for further information)
1.5 ml (Fill 1.98 ml)

6. **OTHER**
PARTICULARS TO APPEAR ON THE OUTER PACKAGING AND THE IMMEDIATE PACKAGING
CARTON/TAXOTERE 80 mg/2 ml

1. NAME OF THE MEDICINAL PRODUCT

TAXOTERE 80 mg/2 ml concentrate and solvent for solution for infusion
docetaxel

2. STATEMENT OF ACTIVE SUBSTANCE(S)

1 vial of TAXOTERE 80 mg/2 ml concentrate for solution for infusion
   80 mg docetaxel in 2 ml polysorbate 80 (40 mg/ml)
   Fill: 94.4 mg/2.36 ml
1 vial of solvent for TAXOTERE
   13% (w/w) ethanol 95% in water for injections
   Fill: 7.33 ml

3. LIST OF EXCIPIENTS

TAXOTERE vial: polysorbate 80, citric acid.
Solvent vial: ethanol 95% (see leaflet for further information), water for injections.

4. PHARMACEUTICAL FORM AND CONTENTS

Each blister pack of TAXOTERE 80 mg/2 ml concentrate and solvent for solution for infusion contains:
• one single-dose vial of concentrate,
• one single-dose vial of solvent.

5. METHOD AND ROUTE(S) OF ADMINISTRATION

CAUTION: Dilution required with the entire contents of the solvent vial. See accompanying preparation guide.

Intravenous use
Read the package leaflet before use.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

CYTOTOXIC
To be administered under the supervision of a physician experienced in the use of cytotoxic agents.

8. **EXPIRY DATE**

EXP:

9. **SPECIAL STORAGE CONDITIONS**

Do not store above 25°C or below 2°C.
Store in the original package in order to protect from light.

10. **SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE**

Single-use vials - discard unused contents appropriately.

11. **NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER**

Sanofi Mature IP, 54 rue La Boétie, 75008 Paris, France

12. **MARKETING AUTHORISATION NUMBER**

EU/1/95/002/002

13. **BATCH NUMBER**

Batch:

14. **GENERAL CLASSIFICATION FOR SUPPLY**

15. **INSTRUCTIONS ON USE**

16. **INFORMATION IN BRAILLE**

Justification for not including Braille accepted.

17. **UNIQUE IDENTIFIER – 2D BARCODE**

Not applicable

18. **UNIQUE IDENTIFIER - HUMAN READABLE DATA**

Not applicable.
MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS
CONCENTRATE and SOLVENT/TAXOTERE 80 mg/2 ml

1. NAME OF THE MEDICINAL PRODUCT

TAXOTERE 80 mg/2 ml concentrate and solvent for solution for infusion
docetaxel

2. NAME OF THE MARKETING AUTHORISATION HOLDER

Sanofi Mature IP

3. EXPIRY DATE

EXP:

4. BATCH NUMBER

Batch:

5. OTHER

TAXOTERE concentrate
SOLVENT for TAXOTERE
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS

VIAL/TAXOTERE 80 mg/2 ml

1. NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION

TAXOTERE 80 mg/2 ml concentrate for solution for infusion
docetaxel
intravenous use

2. METHOD OF ADMINISTRATION

Read the package leaflet before use.

3. EXPIRY DATE

EXP:

4. BATCH NUMBER

Batch:

5. CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT

2 ml (Fill 2.36 ml)

6. OTHER
**MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS**

**VIAL/SOLVENT FOR TAXOTERE 80 mg/2 ml**

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLVENT for TAXOTERE 80 mg/2 ml</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. METHOD OF ADMINISTRATION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>13% (w/w) ethanol 95% in water for injections (see leaflet for further information)</td>
</tr>
<tr>
<td>6 ml (Fill 7.33 ml)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. OTHER</th>
</tr>
</thead>
</table>
PARTICULARS TO APPEAR ON OUTER PACKAGING

OUTER CARTON / TAXOTERE 20 mg/1 ml

1. NAME OF THE MEDICINAL PRODUCT

TAXOTERE 20 mg/1 ml concentrate for solution for infusion
docetaxel

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each ml of concentrate contains 20 mg docetaxel as trihydrate.

One vial of 1 ml of concentrate contains 20 mg of docetaxel.

3. LIST OF EXCIPIENTS

Excipients: polysorbate 80, ethanol anhydrous (see leaflet for further information) and citric acid.

4. PHARMACEUTICAL FORM AND CONTENTS

Concentrate for solution for infusion
1 vial

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Ready to add to infusion solution.
CAUTION: Withdraw the required amount of this docetaxel concentrate (20 mg/ml) from the vial
and add it directly into the infusion solution. See accompanying preparation guide.

Single-use vial.

Read the package leaflet before use.

Intravenous use

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT
OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

CYTOTOXIC
To be administered under the supervision of a physician experienced in the use of cytotoxic agents.
8. **EXPIRY DATE**

EXP:

Shelf life in infusion bag: see the leaflet.

9. **SPECIAL STORAGE CONDITIONS**

Do not store above 25°C.
Store in the original package in order to protect from light.

10. **SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE**

Discard unused contents appropriately in accordance with local requirements.

11. **NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER**

Sanofi Mature IP
54 rue La Boétie
75008 Paris
France

12. **MARKETING AUTHORISATION NUMBER**

EU/1/95/002/003

13. **BATCH NUMBER**

Lot:

14. **GENERAL CLASSIFICATION FOR SUPPLY**

15. **INSTRUCTIONS ON USE**

16. **INFORMATION IN BRAILLE**

Justification for not including Braille accepted.

17. **UNIQUE IDENTIFIER – 2D BARCODE**

Not applicable
18. **UNIQUE IDENTIFIER - HUMAN READABLE DATA**

Not applicable.
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS
VIAL LABEL / TAXOTERE 20 mg/1 ml

1. NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION

TAXOTERE 20 mg/1 ml sterile concentrate
docetaxel
Intravenous use

2. METHOD OF ADMINISTRATION

3. EXPIRY DATE

EXP:

4. BATCH NUMBER

Lot:

5. CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT

6. OTHER

Contains anhydrous ethanol (see leaflet)
PARTICULARS TO APPEAR ON OUTER PACKAGING

OUTER CARTON / TAXOTERE 80 mg/4 ml

1. NAME OF THE MEDICINAL PRODUCT

TAXOTERE 80 mg/4 ml concentrate for solution for infusion
docetaxel

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each ml of concentrate contains 20 mg docetaxel as trihydrate.

One vial of 4 ml of concentrate contains 80 mg of docetaxel.

3. LIST OF EXCIPIENTS

Excipients: polysorbate 80, ethanol anhydrous (see leaflet for further information) and citric acid.

4. PHARMACEUTICAL FORM AND CONTENTS

Concentrate for solution for infusion
1 vial

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Ready to add to infusion solution.
CAUTION: Withdraw the required amount of this docetaxel concentrate (20 mg/ml) from the vial
and add it directly into the infusion solution. See accompanying preparation guide.

Single-use vial.
Read the package leaflet before use.
Intravenous use

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT
   OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

CYTOTOXIC
To be administered under the supervision of a physician experienced in the use of cytotoxic agents.
8. **EXPIRY DATE**

EXP:

Shelf life in infusion bag: see the leaflet.

9. **SPECIAL STORAGE CONDITIONS**

Do not store above 25°C.
Store in the original package in order to protect from light.

10. **SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE**

Discard unused contents appropriately in accordance with local requirements.

11. **NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER**

Sanofi Mature IP
54 rue La Boétie
75008 Paris
France

12. **MARKETING AUTHORISATION NUMBER**

EU/1/95/002/004

13. **BATCH NUMBER**

Lot:

14. **GENERAL CLASSIFICATION FOR SUPPLY**

15. **INSTRUCTIONS ON USE**

16. **INFORMATION IN BRAILLE**

Justification for not including Braille accepted.

17. **UNIQUE IDENTIFIER – 2D BARCODE**

Not applicable
18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

Not applicable.
**MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS**

**VIAL LABEL / TAXOTERE 80 mg/4 ml**

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXOTERE 80 mg/4 ml sterile concentrate</td>
</tr>
<tr>
<td>docetaxel</td>
</tr>
<tr>
<td>Intravenous use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. METHOD OF ADMINISTRATION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6. OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contains anhydrous ethanol (see leaflet)</td>
</tr>
</tbody>
</table>
PARTICULARS TO APPEAR ON OUTER PACKAGING

OUTER CARTON / TAXOTERE 160 mg/8 ml

1. NAME OF THE MEDICINAL PRODUCT

TAXOTERE 160 mg/8 ml concentrate for solution for infusion docetaxel

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each ml of concentrate contains 20 mg docetaxel as trihydrate.

One vial of 8 ml of concentrate contains 160 mg of docetaxel.

3. LIST OF EXCIPIENTS

Excipients: polysorbate 80, ethanol anhydrous (see leaflet for further information) and citric acid.

4. PHARMACEUTICAL FORM AND CONTENTS

Concentrate for solution for infusion

1 vial

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Ready to add to infusion solution.

CAUTION: Withdraw the required amount of this docetaxel concentrate (20 mg/ml) from the vial and add it directly into the infusion solution. See accompanying preparation guide.

Single-use vial.

Read the package leaflet before use.

Intravenous use

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

CYTOTOXIC

To be administered under the supervision of a physician experienced in the use of cytotoxic agents.
8. **EXPIRY DATE**

EXP:

Shelf life in infusion bag: see the leaflet.

9. **SPECIAL STORAGE CONDITIONS**

Do not store above 25°C.
Store in the original package in order to protect from light.

10. **SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE**

Discard unused contents appropriately in accordance with local requirements.

11. **NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER**

Sanofi Mature IP
54 rue La Boétie
75008 Paris
France

12. **MARKETING AUTHORISATION NUMBER**

EU/1/95/002/005

13. **BATCH NUMBER**

Lot:

14. **GENERAL CLASSIFICATION FOR SUPPLY**

15. **INSTRUCTIONS ON USE**

16. **INFORMATION IN BRAILLE**

Justification for not including Braille accepted.

17. **UNIQUE IDENTIFIER – 2D BARCODE**

Not applicable
18. **UNIQUE IDENTIFIER - HUMAN READABLE DATA**

Not applicable.
### Minimum particulars to appear on small immediate packaging units

**Vial label / Taxotere 160 mg/8 ml**

1. **Name of the medicinal product and route(s) of administration**
   
   Taxotere 160 mg/8 ml sterile concentrate
   
   Docetaxel
   
   Intravenous use

2. **Method of administration**

3. **Expiry date**

   Exp:

4. **Batch number**

   Lot:

5. **Contents by weight, by volume or by unit**

6. **Other**

   Contains anhydrous ethanol (see leaflet)
B. PACKAGE LEAFLET
Read all of this leaflet carefully before you start using this medicine because it contains important information for you.

- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor, hospital pharmacist or nurse.
- If you get any side effects talk to your doctor, hospital pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet:
1. What TAXOTERE is and what it is used for
2. What you need to know before you use TAXOTERE
3. How to use TAXOTERE
4. Possible side effects
5. How to store TAXOTERE
6. Contents of the pack and other information

1. What TAXOTERE is and what it is used for

The name of this medicine is TAXOTERE. Its common name is docetaxel. Docetaxel is a substance derived from the needles of yew trees. Docetaxel belongs to the group of anti-cancer medicines called taxoids.

TAXOTERE has been prescribed by your doctor for the treatment of breast cancer, special forms of lung cancer (non-small cell lung cancer), prostate cancer, gastric cancer or head and neck cancer:
- For the treatment of advanced breast cancer, TAXOTERE could be administered either alone or in combination with doxorubicin, or trastuzumab, or capecitabine.
- For the treatment of early breast cancer with or without lymph node involvement, TAXOTERE could be administered in combination with doxorubicin and cyclophosphamide.
- For the treatment of lung cancer, TAXOTERE could be administered either alone or in combination with cisplatin.
- For the treatment of prostate cancer, TAXOTERE is administered in combination with prednisone or prednisolone.
- For the treatment of metastatic gastric cancer, TAXOTERE is administered in combination with cisplatin and 5-fluorouracil.
- For the treatment of head and neck cancer, TAXOTERE is administered in combination with cisplatin and 5-fluorouracil.

2. What you need to know before you use TAXOTERE

You must not be given TAXOTERE:

- if you are allergic (hypersensitive) to docetaxel or any of the other ingredients of TAXOTERE (listed in section 6).
- if the number of white blood cells is too low.
- if you have a severe liver disease.

Warnings and precautions
Before each treatment with TAXOTERE, you will have blood tests to check that you have enough blood cells and sufficient liver function to receive TAXOTERE. In case of white blood cells disturbances, you may experience associated fever or infections.
Tell your doctor, hospital pharmacist, or nurse immediately if you have abdominal pain or tenderness, diarrhoea, rectal haemorrhage, blood in stool or fever. These symptoms may be the first signs of a serious gastrointestinal toxicity, which could be fatal. Your doctor should address them immediately.

Tell your doctor, hospital pharmacist or nurse if you have vision problems. In case of vision problems, in particular blurred vision, you should immediately have your eyes and vision examined.

Tell your doctor, hospital pharmacist or nurse if you have experienced an allergic reaction to previous paclitaxel therapy.

Tell your doctor, hospital pharmacist or nurse if you have heart problems.

If you develop acute or worsening problems with your lungs (fever, shortness of breath or cough), please tell your doctor, hospital pharmacist or nurse immediately. Your doctor may stop your treatment immediately.

You will be asked to take premedication consisting of an oral corticosteroid such as dexamethasone, one day prior to TAXOTERE administration and to continue for one or two days after it in order to minimise certain undesirable effects which may occur after the infusion of TAXOTERE in particular allergic reactions and fluid retention (swelling of the hands, feet, legs or weight gain).

During treatment, you may be given other medicines to maintain the number of your blood cells.

Severe skin problems such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN), Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with TAXOTERE:

- SJS/TEN symptoms may include blistering, peeling or bleeding on any part of your skin (including your lips, eyes, mouth, nose, genitals, hands or feet) with or without a rash. You may also have flu-like symptoms at the same time, such as fever, chills or aching muscles.
- AGEP symptoms may include a red, scaly widespread rash with bumps under the swollen skin (including your skin folds, trunk, and upper extremities) and blisters accompanied by fever.

If you develop severe skin reactions or any of the reactions listed above, immediately contact your doctor or healthcare professional.

Tell your doctor, hospital pharmacist or nurse if you have kidney problems or high levels of uric acid in your blood before initiating TAXOTERE.

TAXOTERE contains alcohol. Discuss with your doctor if you suffer from alcohol dependency, epilepsy or liver impairment. See also section “TAXOTERE contains ethanol (alcohol)” below.

Other medicines and TAXOTERE

Please tell your doctor or hospital pharmacist if you are taking or have recently taken any other medicine, including medicines obtained without a prescription. This is because TAXOTERE or the other medicine may not work as well as expected and you may be more likely to get a side effect. The amount of alcohol in this medicinal product may alter the effects of other medicines.

Pregnancy, breast-feeding and fertility

Ask your doctor for advice before being given any medicine.

TAXOTERE must NOT be administered if you are pregnant unless clearly indicated by your doctor.

You must not become pregnant during treatment and for 2 months after end of treatment with this medicine. You must use an effective method of contraception during treatment and for 2 months after end of treatment, because TAXOTERE may be harmful for the unborn baby. If pregnancy occurs during your treatment, you must immediately inform your doctor.
You must not breast-feed while you are treated with TAXOTERE.

If you are a man being treated with TAXOTERE you must not father a child and must use an effective method of contraception during treatment and for 4 months after end of treatment with this medicine. It is recommended to seek advice on conservation of sperm prior to treatment because docetaxel may alter male fertility.

**Driving and using machines**

The amount of alcohol in this medicinal product may impair your ability to drive or use machines. You may experience side effects of this medicine that may impair your ability to drive, use tools or operate machines (see section 4 Possible side effects). If this happens, do not drive or use any tools or machines before discussing with your doctor, nurse or hospital pharmacist.

**TAXOTERE contains ethanol (alcohol)**

This medicinal product contains 13% (w/w) ethanol 95% v/v (alcohol), i.e. up to 252 mg ethanol 95% v/v per solvent vial, equivalent to 6 ml of beer or 2.6 ml wine.

Harmful for those suffering from alcoholism.
To be taken into account in pregnant or breast-feeding women, in children and in high-risk groups such as patients with liver disease, or epilepsy.

The amount of alcohol in this medicinal product may have effects on the central nervous system (the part of the nervous system that includes the brain and spinal cord).

3. **How to use TAXOTERE**

TAXOTERE will be administered to you by a healthcare professional.

**Usual dose**

The dose will depend on your weight and your general condition. Your doctor will calculate your body surface area in square meters (m²) and will determine the dose you should receive.

**Method and route of administration**

TAXOTERE will be given by infusion into one of your veins (intravenous use). The infusion will last approximately one hour during which you will be in the hospital.

**Frequency of administration**

You should usually receive your infusion once every 3 weeks.

Your doctor may change the dose and frequency of dosing depending on your blood tests, your general condition and your response to TAXOTERE. In particular, please inform your doctor in case of diarrhoea, sores in the mouth, feeling of numbness or pins and needles, fever and give her/him results of your blood tests. Such information will allow her/him to decide whether a dose reduction is needed. If you have any further questions on the use of this medicine, ask your doctor, or hospital pharmacist.

4. **Possible side effects**

Like all medicines, this medicine can cause side effects, although not everybody gets them.
Your doctor will discuss these with you and will explain the potential risks and benefits of your treatment.

The most commonly reported adverse reactions of TAXOTERE alone are: decrease in the number of red blood cells or white blood cells, alopecia, nausea, vomiting, sores in the mouth, diarrhoea and tiredness.

The severity of adverse events of TAXOTERE may be increased when TAXOTERE is given in combination with other chemotherapeutic agents.

During the infusion at the hospital the following allergic reactions may occur (may affect more than 1 in 10 people):

- flushing, skin reactions, itching
- chest tightness; difficulty in breathing
- fever or chills
- back pain
- low blood pressure.

More severe reactions may occur.
If you had an allergic reaction to paclitaxel, you may also experience an allergic reaction to docetaxel, which may be more severe.

The hospital staff will monitor your condition closely during treatment. Tell them immediately if you notice any of these effects.

Between infusions of TAXOTERE the following may occur, and the frequency may vary with the combinations of medicines that are received:

**Very common** (may affect more than 1 in 10 people):

- infections, decrease in the number of red (anaemia), or white blood cells (which are important in fighting infection) and platelets
- fever: if this happens you must tell your doctor immediately
- allergic reactions as described above
- loss of appetite (anorexia)
- insomnia
- feeling of numbness or pins and needles or pain in the joints or muscles
- headache
- alteration in sense of taste
- inflammation of the eye or increased tearing of the eyes
- swelling caused by faulty lymphatic drainage
- shortness of breath
- nasal drainage; inflammation of the throat and nose; cough
- bleeding from the nose
- sores in the mouth
- stomach upsets including nausea, vomiting and diarrhoea, constipation
- abdominal pain
- indigestion
- hair loss: in most cases normal hair growth should return. In some cases (frequency not known) permanent hair loss has been observed
- redness and swelling of the palms of your hands or soles of your feet which may cause your skin to peel (this may also occur on the arms, face, or body)
- change in the colour of your nails, which may detach
- muscle aches and pains; back pain or bone pain
- change or absence of menstrual period
- swelling of the hands, feet, legs
• tiredness; or flu-like symptoms
• weight gain or loss
• infection of the upper respiratory tract.

**Common** (may affect up to 1 in 10 people):
• oral candidiasis
• dehydration
• dizziness
• hearing impaired
• decrease in blood pressure; irregular or rapid heart beat
• heart failure
• oesophagitis
• dry mouth
• difficulty or painful swallowing
• haemorrhage
• raised liver enzymes (hence the need for regular blood tests)
• rises in blood sugar levels (diabetes)
• decrease of the potassium, calcium and/or phosphate in your blood.

**Uncommon** (may affect up to 1 in 100 people):
• fainting
• at the injection site, skin reactions, phlebitis (inflammation of the vein) or swelling
• blood clots.
• acute myeloid leukaemia and myelodysplastic syndrome (types of blood cancer) may occur in patients who are treated with docetaxel together with certain other anticancer treatments.

**Rare** (may affect up to 1 in 1,000 people):
• inflammation of the colon, small intestine, which could be fatal (frequency not known); intestinal perforation.

**Frequency not known** (cannot be estimated from the available data):
• interstitial lung disease (inflammation of the lungs causing coughing and difficulty breathing. Inflammation of the lungs can also develop when docetaxel therapy is used with radiotherapy)
• pneumonia (infection of the lungs)
• pulmonary fibrosis (scarring and thickening in the lungs with shortness of breath)
• blurred vision due to swelling of the retina within the eye (cystoid macular oedema)
• decrease of the sodium and/or magnesium in your blood (electrolyte balance disorders)
• ventricular arrhythmia or ventricular tachycardia (manifested as irregular and/or rapid heartbeat, severe shortness of breath, dizziness, and/or fainting). Some of these symptoms can be serious. If this happens, you must tell your doctor immediately
• injection site reactions at the site of a previous reaction.
• non-Hodgkin lymphoma (a cancer affecting the immune system) and other cancers may occur in patients who are treated with docetaxel together with certain other anticancer treatments.
• Stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) (blistering, peeling or bleeding on any part of your skin (including your lips, eyes, mouth, nose, genitals, hands or feet) with or without a rash. You may also have flu-like symptoms at the same time, such as fever, chills or aching muscles.)
• acute Generalized Exanathematous Pustulosis (AGEP) (red, scaly widespread rash with bumps under the swollen skin (including your skin folds, trunk, and upper extremities) and blisters accompanied by fever.)
• tumour lysis syndrome is a serious condition revealed by changes in blood test such as increased level of uric acid, potassium, phosphorus and decreased level of calcium; and results in symptoms such as seizures, kidney failure (reduced amount or darkening of urine) and heart rhythm disturbance. If this happens, you must tell your doctor immediately.
• myositis (inflammation of the muscles -hot, red and swollen- which produces muscle pain and weakness)

**Reporting of side effects**
If you get any side effects talk to your doctor, hospital pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. **How to store TAXOTERE**

Keep this medicine out of the sight and reach of children.

This medicine should not be used after the expiry date shown on the carton, blister pack and vials.

Do not store above 25°C or below 2°C.
Store in the original package in order to protect from light.

The premix solution should be used immediately after preparation. However the chemical and physical stability of the premix solution has been demonstrated for 8 hours when stored either between 2°C and 8°C or at room temperature (below 25°C).

The infusion solution should be used within 4 hours at room temperature (below 25°C).

6. **Contents of the pack and other information**

**What TAXOTERE concentrate vial contains**
- The active substance is docetaxel (as trihydrate). Each ml of docetaxel solution contains 40 mg of docetaxel (anhydrous). One vial contains 20 mg/0.5 ml docetaxel.
- The other ingredients are polysorbate 80 and citric acid.

**What solvent vial contains**
13% (w/w) ethanol 95% (see section 2) in water for injections.

**What TAXOTERE looks like and contents of the pack**
TAXOTERE 20 mg/0.5 ml concentrate for solution for infusion is a clear viscous, yellow to brown-yellow solution.

Each blister pack contains:
• one single-dose vial of concentrate and,
• one single-dose vial of solvent.

**Marketing Authorisation Holder**
Sanofi Mature IP
54 rue La Boétie
75008 Paris
France

**Manufacturers**
Sanofi-Aventis Deutschland GmbH
Industriepark Höchst
65926 Frankfurt am Main
Germany
For any information about this medicinal product, please contact the local representative of the Marketing Authorisation Holder.

**Belgïë/Belgique/Belgien**  
Sanofi Belgium  
Tél/Tel: +32 (0)2 710 54 00

**България**  
Swixx Biopharma EOOD  
Tel.: +359 (0)2 4942 480

**Česká republika**  
sanofi-aventis, s.r.o.  
Tel: +420 233 086 111

**Danmark**  
Sanofi A/S  
Tlf: +45 45 16 70 00

**Deutschland**  
Sanofi-Aventis Deutschland GmbH  
Tel: 0800 52 52 010  
Tel. aus dem Ausland: +49 69 305 21 131

**Ελλάδα**  
Sanofi-Aventis Μονοπρόσωπη ΑΕΒΕ  
Τηλ: +30 210 900 16 00

**España**  
sanofi-aventis, S.A.  
Tel: +34 93 485 94 00

**France**  
sanofi-aventis France  
Tél: 0 800 222 555  
Appel depuis l’étranger : +33 1 57 63 23 23

**Hrvatska**  
Swixx Biopharma d.o.o.  
Tel: +385 1 2078 500

**Ireland**  
sanofi-aventis Ireland Ltd. T/A SANOFI  
Tel: +353 (0) 1 403 56 00

**Ísland**  
Vistor hf.  
Sími: +354 535 7000

**Italia**  
sanofi S.r.l.  
Tel: 800536389

**Lietuva**  
Swixx Biopharma UAB  
Tel: +370 5 236 91 40

**Luxembourg/Luxemburg**  
Sanofi Belgium  
Tél/Tel: +32 (0)2 710 54 00 (Belgique/Belgien)

**Magyarország**  
sanofi-aventis zrt., Magyarország  
Tel.: +36 1 505 0050

**Malta**  
sanofi S.r.l.  
Tel: +39. 02 39394275

**Nederland**  
Genzyme Europe B.V.  
Tel: +31 20 245 4000

**Norge**  
sanofi-aventis Norge AS  
Tlf: +47 67 10 71 00

**Österreich**  
sanofi-aventis GmbH  
Tel: +43 1 80 185 – 0

**Polska**  
sanofi-aventis Sp. z o.o.  
Tel.: +48 22 280 00 00

**Portugal**  
Sanofi - Produtos Farmacêuticos, Lda.  
Tel: +351 21 35 89 400

**România**  
Sanofi Romania SRL  
Tel: +40 (0) 21 317 31 36

**Slovenija**  
Swixx Biopharma d.o.o.  
Tel: +386 1 235 51 00

**Slovenská republika**  
Swixx Biopharma s.r.o.  
Tel: +421 2 208 33 600

**Suomi/Finland**  
Sanofi Oy  
Puh/Tel: +358 (0) 201 200 300
This leaflet was last revised in.

Other sources of information

Detailed information on this medicine is available on the European Medicines Agency web site: http://www.ema.europa.eu/.
The following information is intended for healthcare professionals only:

PREPARATION GUIDE FOR USE WITH TAXOTERE 20 mg/0.5 ml CONCENTRATE FOR SOLUTION FOR INFUSION AND SOLVENT FOR TAXOTERE

It is important that you read the entire contents of this guide prior to the preparation of either the TAXOTERE premix solution or the TAXOTERE infusion solution

1. FORMULATION

TAXOTERE 20 mg/0.5 ml concentrate for solution for infusion is a clear viscous, yellow to brown-yellow solution containing 40 mg/ml docetaxel (anhydrous) in polysorbate 80 and citric acid. The solvent for TAXOTERE is a 13% w/w solution of ethanol 95% in water for injections.

2. PRESENTATION

TAXOTERE is supplied as single-dose vials.

Each box contains one TAXOTERE vial (20 mg/0.5 ml) and one corresponding solvent for TAXOTERE vial in a blister pack.

TAXOTERE vials should be stored between 2°C and 25°C and protected from light. TAXOTERE should not be used after the expiry date shown on the carton, blister pack and vials.

2.1 TAXOTERE 20 mg/0.5 ml vial

- The TAXOTERE 20 mg/0.5 ml vial is a 7 ml clear glass vial with a green flip-off cap.

- The TAXOTERE 20 mg/0.5 ml vial contains a solution of docetaxel in polysorbate 80 at a concentration of 40 mg/ml.

- Each TAXOTERE 20 mg/0.5 ml vial contains 0.5 ml of a 40 mg/ml solution of docetaxel in polysorbate 80 (fill volume: 24.4 mg/0.61 ml). This volume has been established during the development of TAXOTERE to compensate for liquid loss during preparation of the premix (see section 4) due to foaming, adhesion to the walls of the vial and "dead-volume". This overfill ensures that after dilution with the entire contents of the accompanying solvent for TAXOTERE vial, there is a minimal extractable premix volume of 2 ml containing 10 mg/ml docetaxel which corresponds to the labelled amount of 20 mg/0.5 ml per vial.

2.2 Solvent for TAXOTERE 20 mg/0.5 ml vial

- The solvent for TAXOTERE 20 mg/0.5 ml vial is a 7 ml clear glass vial with a transparent colourless flip-off cap.

- The solvent for TAXOTERE composition is a 13% w/w solution of ethanol 95% in water for injections.

- Each solvent for TAXOTERE 20 mg/0.5 ml vial contains 1.98 ml. This volume has been established based on the fill volume of the TAXOTERE 20 mg/0.5 ml vial. The addition of the entire contents of the solvent vial to the contents of the TAXOTERE 20 mg/0.5 ml vial ensures a premix concentration of 10 mg/ml docetaxel.
3. RECOMMENDATIONS FOR THE SAFE HANDLING

TAXOTERE is an antineoplastic agent and, as with other potentially toxic compounds, caution should be exercised when handling it and preparing TAXOTERE solutions. The use of gloves is recommended.

If TAXOTERE concentrate, premix solution or infusion solution should come into contact with skin, wash immediately and thoroughly with soap and water. If TAXOTERE concentrate, premix solution or infusion solution should come into contact with mucous membranes, wash immediately and thoroughly with water.

4. PREPARATION FOR THE INTRAVENOUS ADMINISTRATION

4.1 Preparation of the TAXOTERE premix solution (10 mg docetaxel/ml)

4.1.1 If the vials are stored under refrigeration, allow the required number of TAXOTERE boxes to stand at room temperature (below 25°C) for 5 minutes.

4.1.2 Using a syringe fitted with a needle, aseptically withdraw the entire contents of the solvent for TAXOTERE vial by partially inverting the vial.

4.1.3 Inject the entire contents of the syringe into the corresponding TAXOTERE vial.

4.1.4 Remove the syringe and needle and mix manually by repeated inversions for at least 45 seconds. Do not shake.
4.1.5 Allow the premix vial to stand for 5 minutes at room temperature (below 25°C) and then check that the solution is homogenous and clear (foaming is normal even after 5 minutes due to the presence of polysorbate 80 in the formulation).

The premix solution contains 10 mg/ml docetaxel and should be used immediately after preparation. However the chemical and physical stability of the premix solution has been demonstrated for 8 hours when stored either between +2°C and +8°C or at room temperature (below 25°C).

4.2 Preparation of the infusion solution

4.2.1 More than one premix vial may be necessary to obtain the required dose for the patient. Based on the required dose for the patient expressed in mg, aseptically withdraw the corresponding premix volume containing 10 mg/ml docetaxel from the appropriate number of premix vials using graduated syringes fitted with a needle. For example, a dose of 140 mg docetaxel would require 14 ml docetaxel premix solution.

4.2.2 Inject the required premix volume into a 250 ml infusion bag or bottle containing either 5% glucose solution or sodium chloride 9 mg/ml (0.9%) solution for infusion. If a dose greater than 200 mg of docetaxel is required, use a larger volume of the infusion vehicle so that a concentration of 0.74 mg/ml docetaxel is not exceeded.

4.2.3 Mix the infusion bag or bottle manually using a rocking motion.

4.2.4 The TAXOTERE infusion solution should be used within 4 hours and should be aseptically administered as a 1-hour infusion under room temperature (below 25°C) and normal lighting conditions.

4.2.5 As with all parenteral products, TAXOTERE premix solution and infusion solution should be visually inspected prior to use, solutions containing a precipitate should be discarded.
5. DISPOSAL

All materials that have been utilised for dilution and administration should be disposed of according to standard procedures. Do not throw away any medicines via wastewater. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.
Read all of this leaflet carefully before you start using this medicine because it contains important information for you.
- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor, hospital pharmacist or nurse.
- If you get any side effects talk to your doctor, hospital pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet:
1. What TAXOTERE is and what it is used for
2. What you need to know before you use TAXOTERE
3. How to use TAXOTERE
4. Possible side effects
5. How to store TAXOTERE
6. Contents of the pack and other information

1. What TAXOTERE is and what it is used for

The name of this medicine is TAXOTERE. Its common name is docetaxel. Docetaxel is a substance derived from the needles of yew trees.

Docetaxel belongs to the group of anti-cancer medicines called taxoids.

TAXOTERE has been prescribed by your doctor for the treatment of breast cancer, special forms of lung cancer (non-small cell lung cancer), prostate cancer, gastric cancer or head and neck cancer:
- For the treatment of advanced breast cancer, TAXOTERE could be administered either alone or in combination with doxorubicin, or trastuzumab, or capecitabine.
- For the treatment of early breast cancer with or without lymph node involvement, TAXOTERE could be administered in combination with doxorubicin and cyclophosphamide.
- For the treatment of lung cancer, TAXOTERE could be administered either alone or in combination with cisplatin.
- For the treatment of prostate cancer, TAXOTERE is administered in combination with prednisone or prednisolone.
- For the treatment of metastatic gastric cancer, TAXOTERE is administered in combination with cisplatin and 5-fluorouracil.
- For the treatment of head and neck cancer, TAXOTERE is administered in combination with cisplatin and 5-fluorouracil.

2. What you need to know before you use TAXOTERE

You must not be given TAXOTERE:

- if you are allergic (hypersensitive) to docetaxel or any of the other ingredients of TAXOTERE (listed in section 6).
- if the number of white blood cells is too low.
- if you have a severe liver disease.
Warnings and precautions

Before each treatment with TAXOTERE, you will have blood tests to check that you have enough blood cells and sufficient liver function to receive TAXOTERE. In case of white blood cells disturbances, you may experience associated fever or infections.

Tell your doctor, hospital pharmacist, or nurse immediately if you have abdominal pain or tenderness, diarrhoea, rectal haemorrhage, blood in stool or fever. These symptoms may be the first signs of a serious gastrointestinal toxicity, which could be fatal. Your doctor should address them immediately.

Tell your doctor, hospital pharmacist or nurse if you have vision problems. In case of vision problems, in particular blurred vision, you should immediately have your eyes and vision examined.

Tell your doctor, hospital pharmacist or nurse if you have experienced an allergic reaction to previous paclitaxel therapy.

Tell your doctor, hospital pharmacist or nurse if you have heart problems.

If you develop acute or worsening problems with your lungs (fever, shortness of breath or cough), please tell your doctor, hospital pharmacist or nurse immediately. Your doctor may stop your treatment immediately.

You will be asked to take premedication consisting of an oral corticosteroid such as dexamethasone, one day prior to TAXOTERE administration and to continue for one or two days after it in order to minimise certain undesirable effects which may occur after the infusion of TAXOTERE in particular allergic reactions and fluid retention (swelling of the hands, feet, legs or weight gain).

During treatment, you may be given other medicines to maintain the number of your blood cells.

Severe skin problems such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN), Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with TAXOTERE:
- SJS/TEN symptoms may include blistering, peeling or bleeding on any part of your skin (including your lips, eyes, mouth, nose, genitals, hands or feet) with or without a rash. You may also have flu-like symptoms at the same time, such as fever, chills or aching muscles.
- AGEP symptoms may include a red, scaly widespread rash with bumps under the swollen skin (including your skin folds, trunk, and upper extremities) and blisters accompanied by fever.

If you develop severe skin reactions or any of the reactions listed above, immediately contact your doctor or healthcare professional.

Tell your doctor, hospital pharmacist or nurse if you have kidney problems or high levels of uric acid in your blood before initiating TAXOTERE.

TAXOTERE contains alcohol. Discuss with your doctor if you suffer from alcohol dependency, epilepsy or liver impairment. See also section “TAXOTERE contains ethanol (alcohol)” below.

Other medicines and TAXOTERE

Please tell your doctor or hospital pharmacist if you are taking or have recently taken any other medicine, including medicines obtained without a prescription. This is because TAXOTERE or the other medicine may not work as well as expected and you may be more likely to get a side effect. The amount of alcohol in this medicinal product may alter the effects of other medicines.

Pregnancy, breast-feeding and fertility

Ask your doctor for advice before being given any medicine.

TAXOTERE must NOT be administered if you are pregnant unless clearly indicated by your doctor.
You must not become pregnant during treatment and for 2 months after end of treatment with this medicine. You must use an effective method of contraception during treatment and for 2 months after end of treatment, because TAXOTERE may be harmful for the unborn baby. If pregnancy occurs during your treatment, you must immediately inform your doctor.

You must not breast-feed while you are treated with TAXOTERE.

If you are a man being treated with TAXOTERE you must not father a child and must use an effective method of contraception during treatment and for 4 months after end of treatment with this medicine. It is recommended to seek advice on conservation of sperm prior to treatment because docetaxel may alter male fertility.

**Driving and using machines**

The amount of alcohol in this medicinal product may impair your ability to drive or use machines. You may experience side effects of this medicine that may impair your ability to drive, use tools or operate machines (see section 4 Possible side effects). If this happens, do not drive or use any tools or machines before discussing with your doctor, nurse or hospital pharmacist.

**TAXOTERE contains ethanol (alcohol)**

This medicinal product contains 13% (w/w) ethanol 95% v/v (alcohol), i.e. up to 932 mg ethanol 95% v/v per solvent vial, equivalent to 23 ml of beer or 9.5 ml wine.

Harmful for those suffering from alcoholism.

To be taken into account in pregnant or breast-feeding women, in children and in high-risk groups such as patients with liver disease, or epilepsy.

The amount of alcohol in this medicinal product may have effects on the central nervous system (the part of the nervous system that includes the brain and spinal cord).

3. **How to use TAXOTERE**

TAXOTERE will be administered to you by a healthcare professional.

**Usual dose**

The dose will depend on your weight and your general condition. Your doctor will calculate your body surface area in square meters (m²) and will determine the dose you should receive.

**Method and route of administration**

TAXOTERE will be given by infusion into one of your veins (intravenous use). The infusion will last approximately one hour during which you will be in the hospital.

**Frequency of administration**

You should usually receive your infusion once every 3 weeks.

Your doctor may change the dose and frequency of dosing depending on your blood tests, your general condition and your response to TAXOTERE. In particular, please inform your doctor in case of diarrhoea, sores in the mouth, feeling of numbness or pins and needles, fever and give her/him results of your blood tests. Such information will allow her/him to decide whether a dose reduction is
needed. If you have any further questions on the use of this medicine, ask your doctor, or hospital pharmacist.

4. Possible side effects

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Your doctor will discuss these with you and will explain the potential risks and benefits of your treatment.

The most commonly reported adverse reactions of TAXOTERE alone are: decrease in the number of red blood cells or white blood cells, alopecia, nausea, vomiting, sores in the mouth, diarrhoea and tiredness.

The severity of adverse events of TAXOTERE may be increased when TAXOTERE is given in combination with other chemotherapeutic agents.

During the infusion at the hospital the following allergic reactions may occur (may affect more than 1 in 10 people):
- flushing, skin reactions, itching
- chest tightness; difficulty in breathing
- fever or chills
- back pain
- low blood pressure.

More severe reactions may occur.
If you had an allergic reaction to paclitaxel, you may also experience an allergic reaction to docetaxel, which may be more severe.

The hospital staff will monitor your condition closely during treatment. Tell them immediately if you notice any of these effects.

Between infusions of TAXOTERE the following may occur, and the frequency may vary with the combinations of medicines that are received:

**Very common** (may affect more than 1 in 10 people):
- infections, decrease in the number of red (anaemia), or white blood cells (which are important in fighting infection) and platelets
- fever: if this happens you must tell your doctor immediately
- allergic reactions as described above
- loss of appetite (anorexia)
- insomnia
- feeling of numbness or pins and needles or pain in the joints or muscles
- headache
- alteration in sense of taste
- inflammation of the eye or increased tearing of the eyes
- swelling caused by faulty lymphatic drainage
- shortness of breath
- nasal drainage; inflammation of the throat and nose; cough
- bleeding from the nose
- sores in the mouth
- stomach upsets including nausea, vomiting and diarrhoea, constipation
- abdominal pain
- indigestion
- hair loss: in most cases normal hair growth should return. In some cases (frequency not known) permanent hair loss has been observed
• redness and swelling of the palms of your hands or soles of your feet which may cause your skin to peel (this may also occur on the arms, face, or body)
• change in the colour of your nails, which may detach
• muscle aches and pains; back pain or bone pain
• change or absence of menstrual period
• swelling of the hands, feet, legs
• tiredness; or flu-like symptoms
• weight gain or loss.
• infection of the upper respiratory tract.

Common (may affect up to 1 in 10 people):
• oral candidiasis
• dehydration
• dizziness
• hearing impaired
• decrease in blood pressure; irregular or rapid heart beat
• heart failure
• oesophagitis
• dry mouth
• difficulty or painful swallowing
• haemorrhage
• raised liver enzymes (hence the need for regular blood tests)
• rises in blood sugar levels (diabetes)
• decrease of the potassium, calcium and/or phosphate in your blood.

Uncommon (may affect up to 1 in 100 people):
• fainting
• at the injection site, skin reactions, phlebitis (inflammation of the vein) or swelling
• blood clots
• acute myeloid leukaemia and myelodysplastic syndrome (types of blood cancer) may occur in patients who are treated with docetaxel together with certain other anticancer treatments.

Rare (may affect up to 1 in 1,000 people):
• inflammation of the colon, small intestine, which could be fatal (frequency not known); intestinal perforation.

Frequency not known (cannot be estimated from the available data):
• interstitial lung disease (inflammation of the lungs causing coughing and difficulty breathing. Inflammation of the lungs can also develop when docetaxel therapy is used with radiotherapy)
• pneumonia (infection of the lungs)
• pulmonary fibrosis (scarring and thickening in the lungs with shortness of breath)
• blurred vision due to swelling of the retina within the eye (cystoid macular oedema)
• decrease of the sodium and/or magnesium in your blood (electrolyte balance disorders)
• ventricular arrhythmia or ventricular tachycardia (manifested as irregular and/or rapid heartbeat, severe shortness of breath, dizziness, and/or fainting). Some of these symptoms can be serious. If this happens, you must tell your doctor immediately
• injection site reactions at the site of a previous reaction.
• non-Hodgkin lymphoma (a cancer affecting the immune system) and other cancers may occur in patients who are treated with docetaxel together with certain other anticancer treatments.
• Stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) (blistering, peeling or bleeding on any part of your skin (including your lips, eyes, mouth, nose, genitals, hands or feet) with or without a rash. You may also have flu-like symptoms at the same time, such as fever, chills or aching muscles.)
• acute Generalized Exanthematous Pustulosis (AGEP) (red, scaly widespread rash with bumps under the swollen skin (including your skin folds, trunk, and upper extremities) and blisters accompanied by fever.)

• tumour lysis syndrome is a serious condition revealed by changes in blood test such as increased level of uric acid, potassium, phosphorus and decreased level of calcium; and results in symptoms such as seizures, kidney failure (reduced amount or darkening of urine) and heart rhythm disturbance. If this happens, you must tell your doctor immediately.

• myositis (inflammation of the muscles -hot, red and swollen- which produces muscle pain and weakness)

Reporting of side effects
If you get any side effects talk to your doctor, hospital pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. How to store TAXOTERE

Keep this medicine out of the sight and reach of children.

This medicine should not be used after the expiry date shown on the carton, blister pack and vials.

Do not store above 25°C or below 2°C.
Store in the original package in order to protect from light.

The premix solution should be used immediately after preparation. However the chemical and physical stability of the premix solution has been demonstrated for 8 hours when stored either between 2°C and 8°C or at room temperature (below 25°C).

The infusion solution should be used within 4 hours at room temperature (below 25°C).

6. Contents of the pack and other information

What TAXOTERE concentrate vial contains
- The active substance is docetaxel (as trihydrate). Each ml of docetaxel solution contains 40 mg of docetaxel (anhydrous). One vial contains 80 mg/2 ml docetaxel.
- The other ingredients are polysorbate 80 and citric acid.

What solvent vial contains
13% (w/w) ethanol 95% (see section 2) in water for injections.

What TAXOTERE looks like and contents of the pack
TAXOTERE 80 mg/2 ml concentrate for solution for infusion is a clear viscous, yellow to brown-yellow solution.

Each blister pack contains:
• one single-dose vial of concentrate and,
• one single-dose vial of solvent.

Marketing Authorisation Holder
Sanofi Mature IP
54 rue La Boétie
75008 Paris
France
Manufacturers
Sanofi-Aventis Deutschland GmbH
Industriepark Höchst
65926 Frankfurt am Main
Germany

For any information about this medicinal product, please contact the local representative of the Marketing Authorisation Holder.

België/Belgique/Belgien
Sanofi Belgium
Tél/Tel: +32 (0)2 710 54 00

България
Swixx Biopharma EOOD
Тел.: +359 (0)2 4942 480

Česká republika
sanofi-aventis, s.r.o.
Tel: +420 233 086 111

Danmark
Sanofi A/S
Tlf: +45 45 16 70 00

Deutschland
Sanofi-Aventis Deutschland GmbH
Tel: 0800 52 52 010
Tel. aus dem Ausland: +49 69 305 21 131

Eesti
Swixx Biopharma OÜ
Tel: +372 640 10 30

Ελλάδα
Sanofi-Aventis Μονοπρόσωπη ΑΕΒΕ
Τηλ.: +30 210 900 16 00

España
sanofi-aventis, S.A.
Tel: +34 93 485 94 00

France
sanofi-aventis France
Tél: 0 800 222 555
Appel depuis l’étranger : +33 1 57 63 23 23

Hrvatska
Swixx Biopharma d.o.o.
Tel: +385 1 2078 500

Ireland
sanofi-aventis Ireland Ltd. T/A SANOFI
Tel: +353 (0) 1 403 56 00

Lietuva
Swixx Biopharma UAB
Tel: +370 5 236 91 40

Luxembourg/Luxemburg
Sanofi Belgium
Tél/Tel: +32 (0)2 710 54 00 (Belgique/Belgien)

Magyarország
sanofi-aventis zrt., Magyarország
Tel.: +36 1 505 0050

Malta
sanofi S.r.l.
Tel: +39. 02 39394275

Nederland
Genzyme Europe B.V.
Tel: +31 20 245 4000

Norge
sanofi-aventis Norge AS
Tlf: +47 67 10 71 00

Österreich
sanofi-aventis GmbH
Tel: +43 1 80 185 – 0

Polska
sanofi-aventis Sp. z o.o.
Tel.: +48 22 280 00 00

Portugal
Sanofi - Produtos Farmacêuticos, Lda.
Tel: +351 21 35 89 400

România
Sanofi Romania SRL
Tel: +40 (0) 21 317 31 36

Slovenija
Swixx Biopharma d.o.o.
Tel: +386 1 235 51 00
Ísland
Vistor hf.
Sími: +354 535 7000

Slovenská republika
Swixx Biopharma s.r.o.
Tel: +421 2 208 33 600

Italia
sanofi S.r.l.
Tel: 800536389

Suomi/Finland
Sanofi Oy
Puh/Tel: +358 (0) 201 200 300

Κύπρος
C.A. Papaellinas Ltd.
Τηλ: +357 22 741741

Sverige
Sanofi AB
Tel: +46 (0)8 634 50 00

Latvija
Swixx Biopharma SIA
Tel: +371 6616 47 50

United Kingdom (Northern Ireland)
sanofi-aventis Ireland Ltd. T/A SANOFI
Tel: +44 (0) 800 035 2525

This leaflet was last revised in .

Other sources of information

Detailed information on this medicine is available on the European Medicines Agency web site: http://www.ema.europa.eu/.
The following information is intended for healthcare professionals only:

**PREPARATION GUIDE FOR USE WITH TAXOTERE 80 mg/2 ml CONCENTRATE FOR SOLUTION FOR INFUSION AND SOLVENT FOR TAXOTERE**

*It is important that you read the entire contents of this guide prior to the preparation of either the TAXOTERE premix solution or the TAXOTERE infusion solution*

1. **FORMULATION**

TAXOTERE 80 mg/2 ml concentrate for solution for infusion is a clear viscous, yellow to brown-yellow solution containing 40 mg/ml docetaxel (anhydrous) in polysorbate 80 and citric acid. The solvent for TAXOTERE is a 13% w/w solution of ethanol 95% in water for injections.

2. **PRESENTATION**

TAXOTERE is supplied as single-dose vials.

Each box contains one TAXOTERE vial (80 mg/2 ml) and one corresponding solvent for TAXOTERE vial in a blister pack.

TAXOTERE vials should be stored between 2°C and 25°C and protected from light. TAXOTERE should not be used after the expiry date shown on the carton, blister pack and vials.

2.1 **TAXOTERE 80 mg/2 ml vial**

- The TAXOTERE 80 mg/2 ml vial is a 15 ml clear glass vial with a red flip-off cap.

- The TAXOTERE 80 mg/2 ml vial contains a solution of docetaxel in polysorbate 80 at a concentration of 40 mg/ml.

- Each TAXOTERE 80 mg/2 ml vial contains 2.0 ml of a 40 mg/ml solution of docetaxel in polysorbate 80 (fill volume: 94.4 mg/2.36 ml). This volume has been established during the development of TAXOTERE to compensate for liquid loss during preparation of the premix (see section 4) due to foaming, adhesion to the walls of the vial and "dead-volume". This overfill ensures that after dilution with the entire contents of the accompanying solvent for TAXOTERE vial, there is a minimal extractable premix volume of 8 ml containing 10 mg/ml docetaxel which corresponds to the labelled amount of 80 mg/2 ml per vial.

2.2 **Solvent for TAXOTERE 80 mg/2 ml vial**

- The solvent for TAXOTERE 80 mg/2 ml vial is a 15 ml clear glass vial with a transparent colourless flip-off cap.

- The solvent for TAXOTERE composition is a 13% w/w solution of ethanol 95% in water for injections.

- Each solvent for TAXOTERE 80 mg/2 ml vial contains 7.33 ml. This volume has been established based on the fill volume of the TAXOTERE 80 mg/2 ml vial. The addition of the entire contents of the solvent vial to the contents of the TAXOTERE 80 mg/2 ml vial ensures a premix concentration of 10 mg/ml docetaxel.
3. RECOMMENDATIONS FOR THE SAFE HANDLING

TAXOTERE is an antineoplastic agent and, as with other potentially toxic compounds, caution should be exercised when handling it and preparing TAXOTERE solutions. The use of gloves is recommended.

If TAXOTERE concentrate, premix solution or infusion solution should come into contact with skin, wash immediately and thoroughly with soap and water. If TAXOTERE concentrate, premix solution or infusion solution should come into contact with mucous membranes, wash immediately and thoroughly with water.

4. PREPARATION FOR THE INTRAVENOUS ADMINISTRATION

4.1 Preparation of the TAXOTERE premix solution (10 mg docetaxel/ml)

4.1.1 If the vials are stored under refrigeration, allow the required number of TAXOTERE boxes to stand at room temperature (below 25°C) for 5 minutes.

4.1.2 Using a syringe fitted with a needle, aseptically withdraw the entire contents of the solvent for TAXOTERE vial by partially inverting the vial.

4.1.3 Inject the entire contents of the syringe into the corresponding TAXOTERE vial.

4.1.4 Remove the syringe and needle and mix manually by repeated inversions for at least 45 seconds. Do not shake.
4.1.5 Allow the premix vial to stand for 5 minutes at room temperature (below 25°C) and then check that the solution is homogenous and clear (foaming is normal even after 5 minutes due to the presence of polysorbate 80 in the formulation).

The premix solution contains 10 mg/ml docetaxel and should be used immediately after preparation. However the chemical and physical stability of the premix solution has been demonstrated for 8 hours when stored either between +2°C and +8°C or at room temperature (below 25°C).

4.2 Preparation of the infusion solution

4.2.1 More than one premix vial may be necessary to obtain the required dose for the patient. Based on the required dose for the patient expressed in mg, aseptically withdraw the corresponding premix volume containing 10 mg/ml docetaxel from the appropriate number of premix vials using graduated syringes fitted with a needle. For example, a dose of 140 mg docetaxel would require 14 ml docetaxel premix solution.

4.2.2 Inject the required premix volume into a 250 ml infusion bag or bottle containing either 5% glucose solution or sodium chloride 9 mg/ml (0.9%) solution for infusion. If a dose greater than 200 mg of docetaxel is required, use a larger volume of the infusion vehicle so that a concentration of 0.74 mg/ml docetaxel is not exceeded.

4.2.3 Mix the infusion bag or bottle manually using a rocking motion.

4.2.4 The TAXOTERE infusion solution should be used within 4 hours and should be aseptically administered as a 1-hour infusion under room temperature (below 25°C) and normal lighting conditions.

4.2.5 As with all parenteral products, TAXOTERE premix solution and infusion solution should be visually inspected prior to use, solutions containing a precipitate should be discarded.
5. DISPOSAL

All materials that have been utilised for dilution and administration should be disposed of according to standard procedures. Do not throw away any medicines via wastewater. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.
What is in this leaflet:

1. What TAXOTERE is and what it is used for
2. What you need to know before you use TAXOTERE
3. How to use TAXOTERE
4. Possible side effects
5. How to store TAXOTERE
6. Contents of the pack and other information

1. What TAXOTERE is and what it is used for

The name of this medicine is TAXOTERE. Its common name is docetaxel. Docetaxel is a substance derived from the needles of yew trees.

Docetaxel belongs to the group of anti-cancer medicines called taxoids.

TAXOTERE has been prescribed by your doctor for the treatment of breast cancer, special forms of lung cancer (non-small cell lung cancer), prostate cancer, gastric cancer or head and neck cancer:
- For the treatment of advanced breast cancer, TAXOTERE could be administered either alone or in combination with doxorubicin, or trastuzumab, or capecitabine.
- For the treatment of early breast cancer with or without lymph node involvement, TAXOTERE could be administered in combination with doxorubicin and cyclophosphamide.
- For the treatment of lung cancer, TAXOTERE could be administered either alone or in combination with cisplatin.
- For the treatment of prostate cancer, TAXOTERE is administered in combination with prednisone or prednisolone.
- For the treatment of metastatic gastric cancer, TAXOTERE is administered in combination with cisplatin and 5-fluorouracil.
- For the treatment of head and neck cancer, TAXOTERE is administered in combination with cisplatin and 5-fluorouracil.

2. What you need to know before you use TAXOTERE

You must not be given TAXOTERE:

- if you are allergic (hypersensitive) to docetaxel or any of the other ingredients of TAXOTERE (listed in section 6).
- if the number of white blood cells is too low.
- if you have a severe liver disease.
Warnings and precautions
Before each treatment with TAXOTERE, you will have blood tests to check that you have enough blood cells and sufficient liver function to receive TAXOTERE. In case of white blood cells disturbances, you may experience associated fever or infections.

Tell your doctor, hospital pharmacist, or nurse immediately if you have abdominal pain or tenderness, diarrhoea, rectal haemorrhage, blood in stool or fever. These symptoms may be the first signs of a serious gastrointestinal toxicity, which could be fatal. Your doctor should address them immediately.

Tell your doctor, hospital pharmacist or nurse if you have vision problems. In case of vision problems, in particular blurred vision, you should immediately have your eyes and vision examined.

Tell your doctor, hospital pharmacist or nurse if you have experienced an allergic reaction to previous paclitaxel therapy.

Tell your doctor, hospital pharmacist or nurse if you have heart problems.

If you develop acute or worsening problems with your lungs (fever, shortness of breath or cough), please tell your doctor, hospital pharmacist or nurse immediately. Your doctor may stop your treatment immediately.

You will be asked to take premedication consisting of an oral corticosteroid such as dexamethasone, one day prior to TAXOTERE administration and to continue for one or two days after it in order to minimise certain undesirable effects which may occur after the infusion of TAXOTERE in particular allergic reactions and fluid retention (swelling of the hands, feet, legs or weight gain).

During treatment, you may be given other medicines to maintain the number of your blood cells.

Severe skin problems such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN), Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with TAXOTERE:

- SJS/TEN symptoms may include blistering, peeling or bleeding on any part of your skin (including your lips, eyes, mouth, nose, genitals, hands or feet) with or without a rash. You may also have flu-like symptoms at the same time, such as fever, chills or aching muscles.
- AGEP symptoms may include a red, scaly widespread rash with bumps under the swollen skin (including your skin folds, trunk, and upper extremities) and blisters accompanied by fever.

If you develop severe skin reactions or any of the reactions listed above, immediately contact your doctor or healthcare professional.

Tell your doctor, hospital pharmacist or nurse if you have kidney problems or high levels of uric acid in your blood before initiating TAXOTERE.

TAXOTERE contains alcohol. Discuss with your doctor if you suffer from alcohol dependency, epilepsy or liver impairment. See also section “TAXOTERE contains ethanol (alcohol)” below.

Other medicines and TAXOTERE
Please tell your doctor or hospital pharmacist if you are taking or have recently taken any other medicine, including medicines obtained without a prescription. This is because TAXOTERE or the other medicine may not work as well as expected and you may be more likely to get a side effect. The amount of alcohol in this medicinal product may alter the effects of other medicines.

Pregnancy, breast-feeding and fertility
Ask your doctor for advice before being given any medicine.

TAXOTERE must NOT be administered if you are pregnant unless clearly indicated by your doctor.
You must not become pregnant during treatment and for 2 months after end of treatment with this medicine. You must use an effective method of contraception during treatment and for 2 months after end of treatment, because TAXOTERE may be harmful for the unborn baby. If pregnancy occurs during your treatment, you must immediately inform your doctor.

You must not breast-feed while you are treated with TAXOTERE.

If you are a man being treated with TAXOTERE you must not father a child and must use an effective method of contraception during treatment and for 4 months after end of treatment with this medicine. It is recommended to seek advice on conservation of sperm prior to treatment because docetaxel may alter male fertility.

Driving and using machines

The amount of alcohol in this medicinal product may impair your ability to drive or use machines. You may experience side effects of this medicine that may impair your ability to drive, use tools or operate machines (see section 4 Possible side effects). If this happens, do not drive or use any tools or machines before discussing with your doctor, nurse or hospital pharmacist.

TAXOTERE contains ethanol (alcohol)

This medicinal product contains 50 vol % ethanol anhydrous (alcohol), i.e. up to 395 mg ethanol anhydrous per vial, equivalent to 10 ml of beer or 4 ml wine.

Harmful for those suffering from alcoholism.
To be taken into account in pregnant or breast-feeding women, in children and high-risk groups such as patients with liver disease, or epilepsy.

The amount of alcohol in this medicinal product may have effects on the central nervous system (the part of the nervous system that includes the brain and spinal cord).

3. How to use TAXOTERE

TAXOTERE will be administered to you by a healthcare professional.

Usual dose

The dose will depend on your weight and your general condition. Your doctor will calculate your body surface area in square meters (m²) and will determine the dose you should receive.

Method and route of administration

TAXOTERE will be given by infusion into one of your veins (intravenous use). The infusion will last approximately one hour during which you will be in the hospital.

Frequency of administration

You should usually receive your infusion once every 3 weeks.

Your doctor may change the dose and frequency of dosing depending on your blood tests, your general condition and your response to TAXOTERE. In particular, please inform your doctor in case of diarrhoea, sores in the mouth, feeling of numbness or pins and needles, fever and give her/him results of your blood tests. Such information will allow her/him to decide whether a dose reduction is needed. If you have any further questions on the use of this medicine, ask your doctor, or hospital pharmacist.
4. **Possible side effects**

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Your doctor will discuss these with you and will explain the potential risks and benefits of your treatment.

The most commonly reported adverse reactions of TAXOTERE alone are: decrease in the number of red blood cells or white blood cells, alopecia, nausea, vomiting, sores in the mouth, diarrhoea and tiredness.

The severity of adverse events of TAXOTERE may be increased when TAXOTERE is given in combination with other chemotherapeutic agents.

During the infusion at the hospital the following allergic reactions may occur (may affect more than 1 in 10 people):
- flushing, skin reactions, itching
- chest tightness; difficulty in breathing
- fever or chills
- back pain
- low blood pressure.

More severe reactions may occur.

If you had an allergic reaction to paclitaxel, you may also experience an allergic reaction to docetaxel, which may be more severe.

The hospital staff will monitor your condition closely during treatment. Tell them immediately if you notice any of these effects.

Between infusions of TAXOTERE the following may occur, and the frequency may vary with the combinations of medicines that are received

**Very common** (may affect more than 1 in 10 people):
- infections, decrease in the number of red (anaemia), or white blood cells (which are important in fighting infection) and platelets
- fever: if this happens you must tell your doctor immediately
- allergic reactions as described above
- loss of appetite (anorexia)
- insomnia
- feeling of numbness or pins and needles or pain in the joints or muscles
- headache
- alteration in sense of taste
- inflammation of the eye or increased tearing of the eyes
- swelling caused by faulty lymphatic drainage
- shortness of breath
- nasal drainage; inflammation of the throat and nose; cough
- bleeding from the nose
- sores in the mouth
- stomach upsets including nausea, vomiting and diarrhoea, constipation
- abdominal pain
- indigestion
- hair loss: in most cases normal hair growth should return. In some cases (frequency not known) permanent hair loss has been observed
redness and swelling of the palms of your hands or soles of your feet which may cause your skin
to peel (this may also occur on the arms, face, or body)
• change in the colour of your nails, which may detach
• muscle aches and pains; back pain or bone pain
• change or absence of menstrual period
• swelling of the hands, feet, legs
• tiredness; or flu-like symptoms
• weight gain or loss.
• infection of the upper respiratory tract.

**Common** (may affect up to 1 in 10 people):
• oral candidiasis
• dehydration
• dizziness
• hearing impaired
• decrease in blood pressure; irregular or rapid heart beat
• heart failure
• oesophagitis
• dry mouth
• difficulty or painful swallowing
• haemorrhage
• raised liver enzymes (hence the need for regular blood tests)
• rises in blood sugar levels (diabetes)
• decrease of the potassium, calcium and/or phosphate in your blood.

**Uncommon** (may affect up to 1 in 100 people):
• fainting
• at the injection site, skin reactions, phlebitis (inflammation of the vein) or swelling
• blood clots.
• acute myeloid leukaemia and myelodysplastic syndrome (types of blood cancer) may occur in
patients who are treated with docetaxel together with certain other anticancer treatments.

**Rare** (may affect up to 1 in 1,000 people):
• inflammation of the colon, small intestine, which could be fatal (frequency not known); intestinal
perforation.

**Frequency not known** (cannot be estimated from the available data):
• interstitial lung disease (inflammation of the lungs causing coughing and difficulty breathing.
Inflammation of the lungs can also develop when docetaxel therapy is used with radiotherapy)
• pneumonia (infection of the lungs)
• pulmonary fibrosis (scarring and thickening in the lungs with shortness of breath)
• blurred vision due to swelling of the retina within the eye (cystoid macular oedema)
• decrease of the sodium and/or magnesium in your blood (electrolyte balance disorders)
• ventricular arrhythmia or ventricular tachycardia (manifested as irregular and/or rapid heartbeat,
severe shortness of breath, dizziness, and/or fainting). Some of these symptoms can be serious. If
this happens, you must tell your doctor immediately
• injection site reactions at the site of a previous reaction.
• non-Hodgkin lymphoma (a cancer affecting the immune system) and other cancers may occur in
patients who are treated with docetaxel together with certain other anticancer treatments.
• Stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) (blistering, peeling or
bleeding on any part of your skin (including your lips, eyes, mouth, nose, genitals, hands or feet)
with or without a rash. You may also have flu-like symptoms at the same time, such as fever, chills
or aching muscles.)
• acute Generalized Exanthematous Pustulosis (AGEP) (red, scaly widespread rash with bumps under the swollen skin (including your skin folds, trunk, and upper extremities) and blisters accompanied by fever.)
• tumour lysis syndrome is a serious condition revealed by changes in blood test such as increased level of uric acid, potassium, phosphorus and decreased level of calcium; and results in symptoms such as seizures, kidney failure (reduced amount or darkening of urine) and heart rhythm disturbance. If this happens, you must tell your doctor immediately.
• myositis (inflammation of the muscles -hot, red and swollen- which produces muscle pain and weakness)

Reporting of side effects
If you get any side effects talk to your doctor, hospital pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. How to store TAXOTERE

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the outer carton and on the label of the vial after EXP. The expiry date refers to the last day of that month.

Do not store above 25°C.
Store in the original package in order to protect from light.

Use the vial immediately after its opening. If not used immediately, in-use storage times and conditions are the responsibility of the user.

From a microbiological point of view, reconstitution/dilution must take place in controlled and aseptic conditions.

Use immediately the medicine once added into the infusion bag. If not used immediately, in-use storage times and conditions are the responsibility of the user and would normally not be longer than 6 hours below 25°C including the one hour infusion.

Physical and chemical in-use stability of the infusion solution prepared as recommended has been demonstrated in non-PVC bags up to 48 hours when stored between 2 to 8°C.

Docetaxel infusion solution is supersaturated, therefore may crystallize over time. If crystals appear, the solution must no longer be used and shall be discarded.

Do not throw away any medicines via wastewater. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.

6. Contents of the pack and other information

What TAXOTERE contains
- The active substance is docetaxel (as trihydrate). Each ml of concentrate for solution for infusion contains 20 mg docetaxel.
- The other ingredients are polysorbate 80, ethanol anhydrous (see section 2) and citric acid.

What TAXOTERE looks like and contents of the pack
TAXOTERE concentrate for solution for infusion is a pale yellow to brownish-yellow solution. The concentrate is supplied in a 7 ml clear colourless glass vial with a green aluminium seal and a green plastic flip-off cap.
Each box contains one vial of 1 ml concentrate (20 mg docetaxel).

**Marketing Authorisation Holder**
Sanofi Mature IP
54 rue La Boétie
75008 Paris
France

**Manufacturers**
Sanofi-Aventis Deutschland GmbH
Industriepark Höchst
65926 Frankfurt am Main
Germany

Or
Sanofi-Aventis Zrt.
(Harbor Park) 1, Campona utca
Budapest 1225
Hungary

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder.

**België/Belgique/Belgien**
Sanofi Belgium
Tél/Tel: +32 (0)2 710 54 00

**Lietuva**
Swixx Biopharma UAB
Tel: +370 5 236 91 40

**България**
Swixx Biopharma EOOD
Tel.: +359 (0)2 4942 480

**Luxembourg/Luxemburg**
Sanofi Belgium
Tél/Tel: +32 (0)2 710 54 00 (Belgique/Belgien)

**Česká republika**
sanofi-aventis, s.r.o.
Tel: +420 233 086 111

**Magyarország**
sanofi-aventis zrt., Magyarország
Tel.: +36 1 505 0050

**Дanmark**
SanofiA/S
Tlf: +45 45 16 70 00

**Malta**
sanofi S.r.l.
Tel: +39. 02 39394275

**Deutschland**
Sanofi-Aventis Deutschland GmbH
Tel: 0800 52 52 010
Tel. aus dem Ausland: +49 69 305 21 131

**Nederland**
Genzyme Europe B.V.
Tel: +31 20 245 4000

**Eesti**
Swixx Biopharma OÜ
Tel: +372 640 10 30

**Norge**
sanofi-aventis Norge AS
Tlf: +47 67 10 71 00

**Ελλάδα**
Sanofi-Aventis Μονοπρόσωπη ΑΕΒΕ
Τηλ.: +30 210 900 16 00

**Österreich**
sanofi-aventis GmbH
Tel: +43 1 80 185 – 0

**España**
sanofi-aventis, S.A.
Tel: +34 93 485 94 00

**Polska**
sanofi-aventis Sp. z o.o.
Tel.: +48 22 280 00 00
France  
sanofi-aventis France  
Tél: 0 800 222 555  
Appel depuis l’étranger : +33 1 57 63 23 23

Portugal  
Sanofi Produtos Farmacêuticos, Lda.  
Tel: +351 21 35 89 400

Hrvatska  
Swixxx Biopharma d.o.o.  
Tel: +385 1 2078 500

România  
Sanofi Romania SRL  
Tel: +40 (0) 21 317 31 36

Ireland  
sanofi-aventis Ireland Ltd. T/A SANOFI  
Tel: +353 (0) 1 403 56 00

Slovenija  
Swixxx Biopharma d.o.o.  
Tel: +386 1 235 51 00

Ísland  
Vistor hf.  
Sími: +354 535 7000

Slovenská republika  
Swixxx Biopharma s.r.o.  
Tel: +421 2 208 33 600

Italia  
sanofi S.r.l.  
Tel: 800536389

Suomi/Finland  
Sanofi Oy  
Puh/Tel: +358 (0) 201 200 300

Κύπρος  
C.A. Papaellinas Ltd.  
Τηλ: +357 22 741741

Sverige  
Sanofi AB  
Tel: +46 (0) 8 634 50 00

Latvija  
Swixxx Biopharma SIA  
Tel: +371 6616 47 50

United Kingdom (Northern Ireland)  
sanofi-aventis Ireland Ltd. T/A SANOFI  
Tel: +44 (0) 800 035 2525

This leaflet was last revised in

Other sources of information

Detailed information on this medicine is available on the European Medicines Agency web site:  
The following information is intended for healthcare professionals only:

**PREPARATION GUIDE FOR USE WITH TAXOTERE 20 mg/1 ml CONCENTRATE FOR SOLUTION FOR INFUSION**

*It is important that you read the entire contents of this guide prior to the preparation of the TAXOTERE infusion solution.*

**Recommendations for the safe handling**

Docetaxel is an antineoplastic agent and, as with other potentially toxic compounds, caution should be exercised when handling it and preparing its solutions. The use of gloves is recommended.

If TAXOTERE concentrate or infusion solution should come into contact with skin, wash immediately and thoroughly with soap and water. If it should come into contact with mucous membranes, wash immediately and thoroughly with water.

**Preparation of the intravenous administration**

**Preparation of the infusion solution**

*DO NOT use other docetaxel medicinal products consisting of 2 vials (concentrate and solvent) with this medicinal product (TAXOTERE 20 mg/1 ml concentrate for solution for infusion, which contains only 1 vial).*

**TAXOTERE 20 mg/1 ml concentrate for solution for infusion requires NO prior dilution with a solvent and is ready to add to the infusion solution.**

- Each vial is for single use and should be used immediately after opening. If not used immediately, in-use storage times and conditions are the responsibility of the user. More than one vial of concentrate for solution for infusion may be necessary to obtain the required dose for the patient. For example, a dose of 140 mg docetaxel would require 7 ml docetaxel concentrate for solution.
- Aseptically withdraw the required amount of concentrate for solution for infusion with a calibrated syringe fitted with a 21G needle.

**In TAXOTERE 20 mg/1 ml vial the concentration of docetaxel is 20 mg/ml.**

- Then, inject via a single injection (one shot) into a 250 ml infusion bag or bottle containing either 5% glucose solution or sodium chloride 9 mg/ml (0.9%) solution for infusion. If a dose greater than 190 mg of docetaxel is required, use a larger volume of the infusion vehicle so that a concentration of 0.74 mg/ml docetaxel is not exceeded.
- Mix the infusion bag or bottle manually using a rocking motion.
- From a microbiological point of view, reconstitution/dilution must take place in controlled and aseptic conditions and the infusion solution should be used immediately. If not used immediately, in-use storage times and conditions are the responsibility of the user.

Once added as recommended into the infusion bag, the docetaxel infusion solution, if stored below 25°C, is stable for 6 hours. It should be used within 6 hours (including the one hour infusion intravenous administration).

In addition, physical and chemical in-use stability of the infusion solution prepared as recommended has been demonstrated in non-PVC bags up to 48 hours when stored between 2°C to 8°C.

Docetaxel infusion solution is supersaturated, therefore may crystallize over time. If crystals appear, the solution must no longer be used and shall be discarded.

- As with all parenteral products, infusion solution should be visually inspected prior to use, solutions containing a precipitate should be discarded.

**Disposal**

All materials that have been utilised for dilution and administration should be disposed of according to standard procedures. Do not throw away any medicines via wastewater. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.
Read all of this leaflet carefully before you start using this medicine because it contains important information for you.

- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor, hospital pharmacist or nurse.
- If you get any side effects talk to your doctor, hospital pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet:

1. What TAXOTERE is and what it is used for
2. What you need to know before you use TAXOTERE
3. How to use TAXOTERE
4. Possible side effects
5. How to store TAXOTERE
6. Contents of the pack and other information

1. What TAXOTERE is and what it is used for

The name of this medicine is TAXOTERE. Its common name is docetaxel. Docetaxel is a substance derived from the needles of yew trees. Docetaxel belongs to the group of anti-cancer medicines called taxoids.

TAXOTERE has been prescribed by your doctor for the treatment of breast cancer, special forms of lung cancer (non-small cell lung cancer), prostate cancer, gastric cancer or head and neck cancer:
- For the treatment of advanced breast cancer, TAXOTERE could be administered either alone or in combination with doxorubicin, or trastuzumab, or capecitabine.
- For the treatment of early breast cancer with or without lymph node involvement, TAXOTERE could be administered in combination with doxorubicin and cyclophosphamide.
- For the treatment of lung cancer, TAXOTERE could be administered either alone or in combination with cisplatin.
- For the treatment of prostate cancer, TAXOTERE is administered in combination with prednisone or prednisolone.
- For the treatment of metastatic gastric cancer, TAXOTERE is administered in combination with cisplatin and 5-fluorouracil.
- For the treatment of head and neck cancer, TAXOTERE is administered in combination with cisplatin and 5-fluorouracil.

2. What you need to know before you use TAXOTERE

You must not be given TAXOTERE:

- if you are allergic (hypersensitive) to docetaxel or any of the other ingredients of TAXOTERE (listed in section 6).
- if the number of white blood cells is too low.
- if you have a severe liver disease.
Warnings and precautions
Before each treatment with TAXOTERE, you will have blood tests to check that you have enough blood cells and sufficient liver function to receive TAXOTERE. In case of white blood cells disturbances, you may experience associated fever or infections.

Tell your doctor, hospital pharmacist, or nurse immediately if you have abdominal pain or tenderness, diarrhoea, rectal haemorrhage, blood in stool or fever. These symptoms may be the first signs of a serious gastrointestinal toxicity, which could be fatal. Your doctor should address them immediately.

Tell your doctor, hospital pharmacist or nurse if you have vision problems. In case of vision problems, in particular blurred vision, you should immediately have your eyes and vision examined.

Tell your doctor, hospital pharmacist or nurse if you have experienced an allergic reaction to previous paclitaxel therapy.

Tell your doctor, hospital pharmacist or nurse if you have heart problems.

If you develop acute or worsening problems with your lungs (fever, shortness of breath or cough), please tell your doctor, hospital pharmacist or nurse immediately. Your doctor may stop your treatment immediately.

You will be asked to take premedication consisting of an oral corticosteroid such as dexamethasone, one day prior to TAXOTERE administration and to continue for one or two days after it in order to minimise certain undesirable effects which may occur after the infusion of TAXOTERE in particular allergic reactions and fluid retention (swelling of the hands, feet, legs or weight gain).

During treatment, you may be given other medicines to maintain the number of your blood cells.

Severe skin problems such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN), Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with TAXOTERE:
- SJS/TEN symptoms may include blistering, peeling or bleeding on any part of your skin (including your lips, eyes, mouth, nose, genitals, hands or feet) with or without a rash. You may also have flu-like symptoms at the same time, such as fever, chills or aching muscles.
- AGEP symptoms may include a red, scaly widespread rash with bumps under the swollen skin (including your skin folds, trunk, and upper extremities) and blisters accompanied by fever.

If you develop severe skin reactions or any of the reactions listed above, immediately contact your doctor or healthcare professional.

Tell your doctor, hospital pharmacist or nurse if you have kidney problems or high levels of uric acid in your blood before initiating TAXOTERE.

TAXOTERE contains alcohol. Discuss with your doctor if you suffer from alcohol dependency, epilepsy or liver impairment. See also section “TAXOTERE contains ethanol (alcohol)” below.

Other medicines and TAXOTERE
Please tell your doctor or hospital pharmacist if you are taking or have recently taken any other medicine, including medicines obtained without a prescription. This is because TAXOTERE or the other medicine may not work as well as expected and you may be more likely to get a side effect. The amount of alcohol in this medicinal product may alter the effects of other medicines.

Pregnancy, breast-feeding and fertility
Ask your doctor for advice before being given any medicine.

TAXOTERE must NOT be administered if you are pregnant unless clearly indicated by your doctor.
You must not become pregnant during treatment and for 2 months after end of treatment with this medicine. You must use an effective method of contraception during treatment and for 2 months after end of treatment, because TAXOTERE may be harmful for the unborn baby. If pregnancy occurs during your treatment, you must immediately inform your doctor.

You must not breast-feed while you are treated with TAXOTERE.

If you are a man being treated with TAXOTERE you must not father a child and must use an effective method of contraception during treatment and for 4 months after end of treatment with this medicine. It is recommended to seek advice on conservation of sperm prior to treatment because docetaxel may alter male fertility.

**Driving and using machines**

The amount of alcohol in this medicinal product may impair your ability to drive or use machines. You may experience side effects of this medicine that may impair your ability to drive, use tools or operate machines (see section 4 Possible side effects). If this happens, do not drive or use any tools or machines before discussing with your doctor, nurse or hospital pharmacist.

**TAXOTERE contains ethanol (alcohol)**

This medicinal product contains 50 vol % ethanol anhydrous (alcohol), i.e. up to 1.58 g ethanol anhydrous per vial, equivalent to 40 ml of beer or 17 ml wine.

Harmful for those suffering from alcoholism.
To be taken into account in pregnant or breast-feeding women, in children and high-risk groups such as patients with liver disease, or epilepsy.

The amount of alcohol in this medicinal product may have effects on the central nervous system (the part of the nervous system that includes the brain and spinal cord).

3. **How to use TAXOTERE**

TAXOTERE will be administered to you by a healthcare professional.

**Usual dose**

The dose will depend on your weight and your general condition. Your doctor will calculate your body surface area in square meters (m²) and will determine the dose you should receive.

**Method and route of administration**

TAXOTERE will be given by infusion into one of your veins (intravenous use). The infusion will last approximately one hour during which you will be in the hospital.

**Frequency of administration**

You should usually receive your infusion once every 3 weeks.

Your doctor may change the dose and frequency of dosing depending on your blood tests, your general condition and your response to TAXOTERE. In particular, please inform your doctor in case of diarrhoea, sores in the mouth, feeling of numbness or pins and needles, fever and give her/him results of your blood tests. Such information will allow her/him to decide whether a dose reduction is needed. If you have any further questions on the use of this medicine, ask your doctor, or hospital pharmacist.
4. **Possible side effects**

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Your doctor will discuss these with you and will explain the potential risks and benefits of your treatment.

The most commonly reported adverse reactions of TAXOTERE alone are: decrease in the number of red blood cells or white blood cells, alopecia, nausea, vomiting, sores in the mouth, diarrhoea and tiredness.

The severity of adverse events of TAXOTERE may be increased when TAXOTERE is given in combination with other chemotherapeutic agents.

During the infusion at the hospital the following allergic reactions may occur (may affect more than 1 in 10 people):
- flushing, skin reactions, itching
- chest tightness; difficulty in breathing
- fever or chills
- back pain
- low blood pressure.

More severe reactions may occur. If you had an allergic reaction to paclitaxel, you may also experience an allergic reaction to docetaxel, which may be more severe.

The hospital staff will monitor your condition closely during treatment. Tell them immediately if you notice any of these effects.

Between infusions of TAXOTERE the following may occur, and the frequency may vary with the combinations of medicines that are received

**Very common** (may affect more than 1 in 10 people):
- infections, decrease in the number of red (anaemia), or white blood cells (which are important in fighting infection) and platelets
- fever: if this happens you must tell your doctor immediately
- allergic reactions as described above
- loss of appetite (anorexia)
- insomnia
- feeling of numbness or pins and needles or pain in the joints or muscles
- headache
- alteration in sense of taste
- inflammation of the eye or increased tearing of the eyes
- swelling caused by faulty lymphatic drainage
- shortness of breath
- nasal drainage; inflammation of the throat and nose; cough
- bleeding from the nose
- sores in the mouth
- stomach upsets including nausea, vomiting and diarrhoea, constipation
- abdominal pain
- indigestion
- hair loss: in most cases normal hair growth should return. In some cases (frequency not known) permanent hair loss has been observed
• redness and swelling of the palms of your hands or soles of your feet which may cause your skin to peel (this may also occur on the arms, face, or body)
• change in the colour of your nails, which may detach
• muscle aches and pains; back pain or bone pain
• change or absence of menstrual period
• swelling of the hands, feet, legs
• tiredness; or flu-like symptoms
• weight gain or loss.
• infection of the upper respiratory tract.

Common (may affect up to 1 in 10 people):
• oral candidiasis
• dehydration
• dizziness
• hearing impaired
• decrease in blood pressure; irregular or rapid heart beat
• heart failure
• oesophagitis
• dry mouth
• difficulty or painful swallowing
• haemorrhage
• raised liver enzymes (hence the need for regular blood tests)
• rises in blood sugar levels (diabetes)
• decrease of the potassium, calcium and/or phosphate in your blood.

Uncommon (may affect up to 1 in 100 people):
• fainting
• at the injection site, skin reactions, phlebitis (inflammation of the vein) or swelling
• blood clots.
• acute myeloid leukaemia and myelodysplastic syndrome (types of blood cancer) may occur in patients who are treated with docetaxel together with certain other anticancer treatments.

Rare (may affect up to 1 in 1,000 people):
• inflammation of the colon, small intestine, which could be fatal (frequency not known); intestinal perforation.

Frequency not known (cannot be estimated from the available data):
• interstitial lung disease (inflammation of the lungs causing coughing and difficulty breathing. Inflammation of the lungs can also develop when docetaxel therapy is used with radiotherapy)
• pneumonia (infection of the lungs)
• pulmonary fibrosis (scarring and thickening in the lungs with shortness of breath)
• blurred vision due to swelling of the retina within the eye (cystoid macular oedema)
• decrease of the sodium and/or magnesium in your blood (electrolyte balance disorders)
• ventricular arrhythmia or ventricular tachycardia (manifested as irregular and/or rapid heartbeat, severe shortness of breath, dizziness, and/or fainting). Some of these symptoms can be serious. If this happens, you must tell your doctor immediately
• injection site reactions at the site of a previous reaction.
• non-Hodgkin lymphoma (a cancer affecting the immune system) and other cancers may occur in patients who are treated with docetaxel together with certain other anticancer treatments.
• stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) (blistering, peeling or bleeding on any part of your skin (including your lips, eyes, mouth, nose, genitals, hands or feet) with or without a rash. You may also have flu-like symptoms at the same time, such as fever, chills or aching muscles.)
• acute Generalized Exanthematous Pustulosis (AGEP) (red, scaly widespread rash with bumps under the swollen skin (including your skin folds, trunk, and upper extremities) and blisters accompanied by fever.)
• tumour lysis syndrome is a serious condition revealed by changes in blood test such as increased level of uric acid, potassium, phosphorus and decreased level of calcium; and results in symptoms such as seizures, kidney failure (reduced amount or darkening of urine) and heart rhythm disturbance. If this happens, you must tell your doctor immediately.
• myositis (inflammation of the muscles -hot, red and swollen- which produces muscle pain and weakness)

Reporting of adverse effects
If you get any side effects talk to your doctor, hospital pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. How to store TAXOTERE

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the outer carton and on the label of the vial after EXP. The expiry date refers to the last day of that month.

Do not store above 25°C.
Store in the original package in order to protect from light.

Use the vial immediately after its opening. If not used immediately, in-use storage times and conditions are the responsibility of the user.

From a microbiological point of view, reconstitution/dilution must take place in controlled and aseptic conditions.

Use immediately the medicine once added into the infusion bag. If not used immediately, in-use storage times and conditions are the responsibility of the user and would normally not be longer than 6 hours below 25°C including the one hour infusion.

Physical and chemical in-use stability of the infusion solution prepared as recommended has been demonstrated in non-PVC bags up to 48 hours when stored between 2 to 8°C.

Docetaxel infusion solution is supersaturated, therefore may cristallize over time. If crystals appear, the solution must no longer be used and shall be discarded.

Do not throw away any medicines via wastewater. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.

6. Contents of the pack and other information

What TAXOTERE contains
- The active substance is docetaxel (as trihydrate). Each ml of concentrate for solution for infusion contains 20 mg docetaxel.
- The other ingredients are polysorbate 80, ethanol anhydrous (see section 2) and citric acid.

What TAXOTERE looks like and contents of the pack
TAXOTERE concentrate for solution for infusion is a pale yellow to brownish-yellow solution.
The concentrate is supplied in a 7 ml clear colourless glass vial with a magenta aluminium seal and a magenta plastic flip-off cap.

Each box contains one vial of 4 ml concentrate (80 mg docetaxel).

Marketing Authorisation Holder
Sanofi Mature IP
54 rue La Boétie
75008 Paris
France

Manufacturers
Sanofi-Aventis Deutschland GmbH
Industriepark Höchst
65926 Frankfurt am Main
Germany

Or
Sanofi-Aventis Zrt.
(Harbor Park) 1, Campona utca
Budapest 1225
Hungary

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder.

België/Belgique/Belgien
Sanofi Belgium
Tél/Tel: +32 (0)2 710 54 00

Lietuva
Swixx Biopharma UAB
Tel: +370 5 236 91 40

България
Swixx Biopharma EOOD
тел.: +359 (0)2 4942 480

Luxembourg/Luxemburg
Sanofi Belgium
Tél/Tel: +32 (0)2 710 54 00 (Belgique/Belgien)

Česká republika
Sanofi-aventis, s.r.o.
Tel: +420 233 086 111

Magyarország
Sanofi-aventis zrt., Magyarország
Tel.: +36 1 505 0050

Danmark
Sanofi A/S
Tlf: +45 45 16 70 00

Malta
Sanofi S.r.l.
Tel: +39 02 39394275

Deutschland
Sanofi-Aventis Deutschland GmbH
Tel: 0800 52 52 010
Tel. aus dem Ausland: +49 69 305 21 131

Nederland
Genzyme Europe B.V.
Tel: +20 245 4000

Eesti
Swixx Biopharma OÜ
Tel: +372 640 10 30

Norge
Sanofi-aventis Norge AS
Tlf: +47 67 10 71 00

Σελήνη
Sanofi-Aventis Μονοπρόσωπη AEVE
Τηλ.: +30 210 900 16 00

Österreich
Sanofi-aventis GmbH
Tel: +43 1 80 185 – 0
España
sanofi-aventis, S.A.
Tel: +34 93 485 94 00

France
sanofi-aventis France
Tel: 0 800 222 555
Appel depuis l'étranger : +33 1 57 63 23 23

Hrvatska
Swixx Biopharma d.o.o.
Tel: +385 1 2078 500

Ireland
sanofi-aventis Ireland Ltd. T/A SANOFI
Tel: +353 (0) 1 403 56 00

Ísland
Vistor hf.
Sími: +354 535 7000

Italia
sanofi S.r.l.
Tel: 800536389

Kύπρος
C.A. Papaellinas Ltd.
Τηλ: +357 22 741741

Latvija
Swixx Biopharma SIA
Tel: +371 6616 47 50

Polska
sanofi-aventis Sp. z o.o.
Tel.: +48 22 280 00 00

Portugal
Sanofi - Produtos Farmacêuticos, Lda.
Tel: +351 21 35 89 400

România
Sanofi Romania SRL
Tel: +40 (0) 21 317 31 36

Slovenija
Swixx Biopharma d.o.o.
Tel: +386 1 235 51 00

Slovenská republika
Swixx Biopharma s.r.o.
Tel: +421 2 208 33 600

Suomi/Finland
Sanofi Oy
Puh/Tel: +358 (0) 201 200 300

Sverige
Sanofi AB
Tel: +46 (0)8 634 50 00

United Kingdom (Northern Ireland)
sanofi-aventis Ireland Ltd. T/A SANOFI
Tel: +44 (0) 800 035 2525

This leaflet was last revised in

Other sources of information

Detailed information on this medicine is available on the European Medicines Agency web site: http://www.ema.europa.eu/.
The following information is intended for healthcare professionals only:

PREPARATION GUIDE FOR USE WITH TAXOTERE 80 mg/4 ml CONCENTRATE FOR SOLUTION FOR INFUSION

It is important that you read the entire contents of this guide prior to the preparation of the TAXOTERE infusion solution.

Recommendations for the safe handling
Docetaxel is an antineoplastic agent and, as with other potentially toxic compounds, caution should be exercised when handling it and preparing its solutions. The use of gloves is recommended.

If TAXOTERE concentrate or infusion solution should come into contact with skin, wash immediately and thoroughly with soap and water. If it should come into contact with mucous membranes, wash immediately and thoroughly with water.

Preparation of the intravenous administration

Preparation of the infusion solution
DO NOT use other docetaxel medicinal products consisting of 2 vials (concentrate and solvent) with this medicinal product (TAXOTERE 80 mg/4 ml concentrate for solution for infusion, which contains only 1 vial).

TAXOTERE 80 mg/4 ml concentrate for solution for infusion requires NO prior dilution with a solvent and is ready to add to the infusion solution.

- Each vial is for single use and should be used immediately after opening. If not used immediately, in-use storage times and conditions are the responsibility of the user. More than one vial of concentrate for solution for infusion may be necessary to obtain the required dose for the patient. For example, a dose of 140 mg docetaxel would require 7 ml docetaxel concentrate for solution.
- Aseptically withdraw the required amount of concentrate for solution for infusion with a calibrated syringe fitted with a 21G needle.

In TAXOTERE 80 mg/4 ml vial the concentration of docetaxel is 20 mg/ml.

- Then, inject via a single injection (one shot) into a 250 ml infusion bag or bottle containing either 5% glucose solution or sodium chloride 9 mg/ml (0.9%) solution for infusion. If a dose greater than 190 mg of docetaxel is required, use a larger volume of the infusion vehicle so that a concentration of 0.74 mg/ml docetaxel is not exceeded.
- Mix the infusion bag or bottle manually using a rocking motion.
- From a microbiological point of view, reconstitution/dilution must take place in controlled and aseptic conditions and the infusion solution should be used immediately. If not used immediately, in-use storage times and conditions are the responsibility of the user. Once added as recommended into the infusion bag, the docetaxel infusion solution, if stored below 25°C, is stable for 6 hours. It should be used within 6 hours (including the one hour infusion intravenous administration).
- In addition, physical and chemical in-use stability of the infusion solution prepared as recommended has been demonstrated in non-PVC bags up to 48 hours when stored between 2°C to 8°C.
- Docetaxel infusion solution is supersaturated, therefore may crystallize over time. If crystals appear, the solution must no longer be used and shall be discarded.
- As with all parenteral products, infusion solution should be visually inspected prior to use, solutions containing a precipitate should be discarded.

Disposal
All materials that have been utilised for dilution and administration should be disposed of according to standard procedures. Do not throw away any medicines via wastewater. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.
Read all of this leaflet carefully before you start using this medicine because it contains important information for you.
- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor, hospital pharmacist or nurse.
- If you get any side effects talk to your doctor, hospital pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet:

1. What TAXOTERE is and what it is used for
2. What you need to know before you use TAXOTERE
3. How to use TAXOTERE
4. Possible side effects
5. How to store TAXOTERE
6. Contents of the pack and other information

1. What TAXOTERE is and what it is used for

The name of this medicine is TAXOTERE. Its common name is docetaxel. Docetaxel is a substance derived from the needles of yew trees. Docetaxel belongs to the group of anti-cancer medicines called taxoids.

TAXOTERE has been prescribed by your doctor for the treatment of breast cancer, special forms of lung cancer (non-small cell lung cancer), prostate cancer, gastric cancer or head and neck cancer:
- For the treatment of advanced breast cancer, TAXOTERE could be administered either alone or in combination with doxorubicin, or trastuzumab, or capecitabine.
- For the treatment of early breast cancer with or without lymph node involvement, TAXOTERE could be administered in combination with doxorubicin and cyclophosphamide.
- For the treatment of lung cancer, TAXOTERE could be administered either alone or in combination with cisplatin.
- For the treatment of prostate cancer, TAXOTERE is administered in combination with prednisone or prednisolone.
- For the treatment of metastatic gastric cancer, TAXOTERE is administered in combination with cisplatin and 5-fluorouracil.
- For the treatment of head and neck cancer, TAXOTERE is administered in combination with cisplatin and 5-fluorouracil.

2. What you need to know before you use TAXOTERE

You must not be given TAXOTERE:

- if you are allergic (hypersensitive) to docetaxel or any of the other ingredients of TAXOTERE (listed in section 6).
- if the number of white blood cells is too low.
- if you have a severe liver disease.
Warnings and precautions

Before each treatment with TAXOTERE, you will have blood tests to check that you have enough blood cells and sufficient liver function to receive TAXOTERE. In case of white blood cells disturbances, you may experience associated fever or infections.

Tell your doctor, hospital pharmacist, or nurse immediately if you have abdominal pain or tenderness, diarrhoea, rectal haemorrhage, blood in stool or fever. These symptoms may be the first signs of a serious gastrointestinal toxicity, which could be fatal. Your doctor should address them immediately.

Tell your doctor, hospital pharmacist or nurse if you have vision problems. In case of vision problems, in particular blurred vision, you should immediately have your eyes and vision examined.

Tell your doctor, hospital pharmacist or nurse if you have experienced an allergic reaction to previous paclitaxel therapy.

Tell your doctor, hospital pharmacist or nurse if you have heart problems.

If you develop acute or worsening problems with your lungs (fever, shortness of breath or cough), please tell your doctor, hospital pharmacist or nurse immediately. Your doctor may stop your treatment immediately.

You will be asked to take premedication consisting of an oral corticosteroid such as dexamethasone, one day prior to TAXOTERE administration and to continue for one or two days after it in order to minimise certain undesirable effects which may occur after the infusion of TAXOTERE in particular allergic reactions and fluid retention (swelling of the hands, feet, legs or weight gain).

During treatment, you may be given other medicines to maintain the number of your blood cells.

Severe skin problems such as Stevens-Johnson Syndrome (SJS), Toxic Epidermal Necrolysis (TEN), Acute Generalized Exanthematous Pustulosis (AGEP) have been reported with TAXOTERE:

- SJS/TEN symptoms may include blistering, peeling or bleeding on any part of your skin (including your lips, eyes, mouth, nose, genitals, hands or feet) with or without a rash. You may also have flu-like symptoms at the same time, such as fever, chills or aching muscles.
- AGEP symptoms may include a red, scaly widespread rash with bumps under the swollen skin (including your skin folds, trunk, and upper extremities) and blisters accompanied by fever.

If you develop severe skin reactions or any of the reactions listed above, immediately contact your doctor or healthcare professional.

Tell your doctor, hospital pharmacist or nurse if you have kidney problems or high levels of uric acid in your blood before initiating TAXOTERE.

TAXOTERE contains alcohol. Discuss with your doctor if you suffer from alcohol dependency, epilepsy or liver impairment. See also section “TAXOTERE contains ethanol (alcohol)” below.

Other medicines and TAXOTERE

Please tell your doctor or hospital pharmacist if you are taking or have recently taken any other medicine, including medicines obtained without a prescription. This is because TAXOTERE or the other medicine may not work as well as expected and you may be more likely to get a side effect. The amount of alcohol in this medicinal product may alter the effects of other medicines.

Pregnancy, breast-feeding and fertility

Ask your doctor for advice before being given any medicine.

TAXOTERE must NOT be administered if you are pregnant unless clearly indicated by your doctor.
You must not become pregnant during treatment and for 2 months after end of treatment with this medicine. You must use an effective method of contraception during treatment and for 2 months after end of treatment, because TAXOTERE may be harmful for the unborn baby. If pregnancy occurs during your treatment, you must immediately inform your doctor.

You must not breast-feed while you are treated with TAXOTERE.

If you are a man being treated with TAXOTERE you must not father a child and must use an effective method of contraception during treatment and for 4 months after end of treatment with this medicine. It is recommended to seek advice on conservation of sperm prior to treatment because docetaxel may alter male fertility.

Driving and using machines

The amount of alcohol in this medicinal product may impair your ability to drive or use machines. You may experience side effects of this medicine that may impair your ability to drive, use tools or operate machines (see section 4 Possible side effects). If this happens, do not drive or use any tools or machines before discussing with your doctor, nurse or hospital pharmacist.

TAXOTERE contains ethanol (alcohol)

This medicinal product contains 50 vol % ethanol anhydrous (alcohol), i.e. up to 3.16 g ethanol anhydrous per vial, equivalent to 80 ml of beer or 33 ml wine.

Harmful for those suffering from alcoholism.
To be taken into account in pregnant or breast-feeding women, in children and high-risk groups such as patients with liver disease, or epilepsy.

The amount of alcohol in this medicinal product may have effects on the central nervous system (the part of the nervous system that includes the brain and spinal cord).

3. How to use TAXOTERE

TAXOTERE will be administered to you by a healthcare professional.

Usual dose

The dose will depend on your weight and your general condition. Your doctor will calculate your body surface area in square meters (m²) and will determine the dose you should receive.

Method and route of administration

TAXOTERE will be given by infusion into one of your veins (intravenous use). The infusion will last approximately one hour during which you will be in the hospital.

Frequency of administration

You should usually receive your infusion once every 3 weeks.

Your doctor may change the dose and frequency of dosing depending on your blood tests, your general condition and your response to TAXOTERE. In particular, please inform your doctor in case of diarrhoea, sores in the mouth, feeling of numbness or pins and needles, fever and give her/him results of your blood tests. Such information will allow her/him to decide whether a dose reduction is needed. If you have any further questions on the use of this medicine, ask your doctor, or hospital pharmacist.
4. Possible side effects

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Your doctor will discuss these with you and will explain the potential risks and benefits of your treatment.

The most commonly reported adverse reactions of TAXOTERE alone are: decrease in the number of red blood cells or white blood cells, alopecia, nausea, vomiting, sores in the mouth, diarrhoea and tiredness.

The severity of adverse events of TAXOTERE may be increased when TAXOTERE is given in combination with other chemotherapeutic agents.

During the infusion at the hospital the following allergic reactions may occur (may affect more than 1 in 10 people):

- flushing, skin reactions, itching
- chest tightness; difficulty in breathing
- fever or chills
- back pain
- low blood pressure.

More severe reactions may occur. If you had an allergic reaction to paclitaxel, you may also experience an allergic reaction to docetaxel, which may be more severe.

The hospital staff will monitor your condition closely during treatment. Tell them immediately if you notice any of these effects.

Between infusions of TAXOTERE the following may occur, and the frequency may vary with the combinations of medicines that are received

Very common (may affect more than 1 in 10 people):

- infections, decrease in the number of red (anaemia), or white blood cells (which are important in fighting infection) and platelets
- fever: if this happens you must tell your doctor immediately
- allergic reactions as described above
- loss of appetite (anorexia)
- insomnia
- feeling of numbness or pins and needles or pain in the joints or muscles
- headache
- alteration in sense of taste
- inflammation of the eye or increased tearing of the eyes
- swelling caused by faulty lymphatic drainage
- shortness of breath
- nasal drainage; inflammation of the throat and nose; cough
- bleeding from the nose
- sores in the mouth
- stomach upsets including nausea, vomiting and diarrhoea, constipation
- abdominal pain
- indigestion
- hair loss: in most cases normal hair growth should return. In some cases (frequency not known) permanent hair loss has been observed
• redness and swelling of the palms of your hands or soles of your feet which may cause your skin to peel (this may also occur on the arms, face, or body)
• change in the colour of your nails, which may detach
• muscle aches and pains; back pain or bone pain
• change or absence of menstrual period
• swelling of the hands, feet, legs
• tiredness; or flu-like symptoms
• weight gain or loss.
• infection of the upper respiratory tract.

Common (may affect up to 1 in 10 people):
• oral candidiasis
• dehydration
• dizziness
• hearing impaired
• decrease in blood pressure; irregular or rapid heart beat
• heart failure
• oesophagitis
• dry mouth
• difficulty or painful swallowing
• haemorrhage
• raised liver enzymes (hence the need for regular blood tests)
• rises in blood sugar levels (diabetes)
• decrease of the potassium, calcium and/or phosphate in your blood.

Uncommon (may affect up to 1 in 100 people):
• fainting
• at the injection site, skin reactions, phlebitis (inflammation of the vein) or swelling
• blood clots.
• acute myeloid leukaemia and myelodysplastic syndrome (types of blood cancer) may occur in patients who are treated with docetaxel together with certain other anticancer treatments.

Rare (may affect up to 1 in 1,000 people):
• inflammation of the colon, small intestine, which could be fatal (frequency not known); intestinal perforation.

Frequency not known (cannot be estimated from the available data):
• interstitial lung disease (inflammation of the lungs causing coughing and difficulty breathing. Inflammation of the lungs can also develop when docetaxel therapy is used with radiotherapy)
• pneumonia (infection of the lungs)
• pulmonary fibrosis (scarring and thickening in the lungs with shortness of breath)
• blurred vision due to swelling of the retina within the eye (cystoid macular oedema)
• decrease of the sodium and/or magnesium in your blood (electrolyte balance disorders)
• ventricular arrhythmia or ventricular tachycardia (manifested as irregular and/or rapid heartbeat, severe shortness of breath, dizziness, and/or fainting). Some of these symptoms can be serious. If this happens, you must tell your doctor immediately
• injection site reactions at the site of a previous reaction.
• non-Hodgkin lymphoma (a cancer affecting the immune system) and other cancers may occur in patients who are treated with docetaxel together with certain other anticancer treatments.
• stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) (blistering, peeling or bleeding on any part of your skin (including your lips, eyes, mouth, nose, genitals, hands or feet) with or without a rash. You may also have flu-like symptoms at the same time, such as fever, chills or aching muscles.)
• acute Generalized Exanthematous Pustulosis (AGEP) (red, scaly widespread rash with bumps under the swollen skin (including your skin folds, trunk, and upper extremities) and blisters accompanied by fever.)
• tumour lysis syndrome is a serious condition revealed by changes in blood test such as increased level of uric acid, potassium, phosphorus and decreased level of calcium; and results in symptoms such as seizures, kidney failure (reduced amount or darkening of urine) and heart rhythm disturbance. If this happens, you must tell your doctor immediately.
• myositis (inflammation of the muscles -hot, red and swollen- which produces muscle pain and weakness)

Reporting of side effects
If you get any side effects talk to your doctor, hospital pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. How to store TAXOTERE

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the outer carton and on the label of the vial after EXP. The expiry date refers to the last day of that month.

Do not store above 25°C.
Store in the original package in order to protect from light.

Use the vial immediately after its opening. If not used immediately, in-use storage times and conditions are the responsibility of the user.

From a microbiological point of view, reconstitution/dilution must take place in controlled and aseptic conditions.

Use immediately the medicine once added into the infusion bag. If not used immediately, in-use storage times and conditions are the responsibility of the user and would normally not be longer than 6 hours below 25°C including the one hour infusion.

Physical and chemical in-use stability of the infusion solution prepared as recommended has been demonstrated in non-PVC bags up to 48 hours when stored between 2 to 8°C.

Docetaxel infusion solution is supersaturated, therefore may cristallize over time. If crystals appear, the solution must no longer be used and shall be discarded.

Do not throw away any medicines via wastewater. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.

6. Contents of the pack and other information

What TAXOTERE contains
- The active substance is docetaxel (as trihydrate). Each ml of concentrate for solution for infusion contains 20 mg docetaxel.
- The other ingredients are polysorbate 80, ethanol anhydrous (see section 2) and citric acid.

What TAXOTERE looks like and contents of the pack
TAXOTERE concentrate for solution for infusion is a pale yellow to brownish-yellow solution.
The concentrate is supplied in a 15 ml clear colourless glass vial with a blue aluminium seal and a blue plastic flip-off cap.

Each box contains one vial of 8 ml concentrate (160 mg docetaxel).

**Marketing Authorisation Holder**
Sanofi Mature IP  
54 rue La Boétie  
75008 Paris  
France

**Manufacturers**
Sanofi-Aventis Deutschland GmbH  
Industriepark Höchst  
65926 Frankfurt am Main  
Germany

Or  
Sanofi-Aventis Zrt.  
(Harbor Park) 1, Campona utca  
Budapest 1225  
Hungary

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder.

**België/Belgique/Belgien**  
Sanofi Belgium  
Tél/Tel: +32 (0)2 710 54 00

**Литва**  
Swixx Biopharma UAB  
Tel: +370 5 236 91 40

**Литовская республика**  
Swixx Biopharma OÜ  
Tel: +372 640 10 30

**Дания**  
Sanofi A/S  
Tlf: +45 45 16 70 00

**Дания**  
Sanofi-Aventis Deutschland GmbH  
Tel: 0800 52 52 010  
Tel. aus dem Ausland: +49 69 305 21 131

**Эстония**  
Swixx Biopharma OÜ  
Tel: +372 640 10 30

**Германия**  
Sanofi-Aventis Deutschland GmbH  
Tel: +49 69 305 21 131

**Нидерланды**  
Genzyme Europe B.V.  
Tel: +31 20 245 4000

**Норвегия**  
sanofi-aventis Norge AS  
Tlf: +47 67 10 71 00

**Австрия**  
sanofi-aventis GmbH  
Tel: +43 1 80 185 – 0
España
sanofi-aventis, S.A.
Tel: +34 93 485 94 00

France
sanofi-aventis France
Tél: 0 800 222 555
Appel depuis l’étranger : +33 1 57 63 23 23

Hrvatska
Swixx Biopharma d.o.o.
Tel: +385 1 2078 500

Ireland
sanofi-aventis Ireland Ltd. T/A SANOFI
Tel: +353 (0) 1 403 56 00

Ísland
Vistor hf.
Sími: +354 535 7000

Italia
sanofi S.r.l.
Tel: 800536389

Kύπρος
C.A. Papaellinas Ltd.
Τηλ: +357 22 741741

Latvija
Swixx Biopharma SIA
Tel: +371 6616 47 50

This leaflet was last revised in

Other sources of information

Detailed information on this medicine is available on the European Medicines Agency web site:
The following information is intended for healthcare professionals only:

PREPARATION GUIDE FOR USE WITH TAXOTERE 160 mg/8 ml CONCENTRATE FOR SOLUTION FOR INFUSION

It is important that you read the entire contents of this guide prior to the preparation of the TAXOTERE infusion solution.

Recommendations for the safe handling
Docetaxel is an antineoplastic agent and, as with other potentially toxic compounds, caution should be exercised when handling it and preparing its solutions. The use of gloves is recommended.

If TAXOTERE concentrate or infusion solution should come into contact with skin, wash immediately and thoroughly with soap and water. If it should come into contact with mucous membranes, wash immediately and thoroughly with water.

Preparation of the intravenous administration

Preparation of the infusion solution
DO NOT use other docetaxel medicinal products consisting of 2 vials (concentrate and solvent) with this medicinal product (TAXOTERE 160 mg/8 ml concentrate for solution for infusion, which contains only 1 vial).

TAXOTERE 160 mg/8 ml concentrate for solution for infusion requires NO prior dilution with a solvent and is ready to add to the infusion solution.

- Each vial is for single use and should be used immediately after opening. If not used immediately, in-use storage times and conditions are the responsibility of the user. More than one vial of concentrate for solution for infusion may be necessary to obtain the required dose for the patient. For example, a dose of 140 mg docetaxel would require 7 ml docetaxel concentrate for solution.
- Aseptically withdraw the required amount of concentrate for solution for infusion with a calibrated syringe fitted with a 21G needle.
- In TAXOTERE 160 mg/8 ml vial the concentration of docetaxel is 20 mg/ml.
  - Then, inject via a single injection (one shot) into a 250 ml infusion bag or bottle containing either 5% glucose solution or sodium chloride 9 mg/ml (0.9%) solution for infusion. If a dose greater than 190 mg of docetaxel is required, use a larger volume of the infusion vehicle so that a concentration of 0.74 mg/ml docetaxel is not exceeded.
  - Mix the infusion bag or bottle manually using a rocking motion.
  - From a microbiological point of view, reconstitution/dilution must take place in controlled and aseptic conditions and the infusion solution should be used immediately. If not used immediately, in-use storage times and conditions are the responsibility of the user. Once added as recommended into the infusion bag, the docetaxel infusion solution, if stored below 25°C, is stable for 6 hours. It should be used within 6 hours (including the one hour infusion intravenous administration).
  - In addition, physical and chemical in-use stability of the infusion solution prepared as recommended has been demonstrated in non-PVC bags up to 48 hours when stored between 2°C to 8°C.
  - Docetaxel infusion solution is supersaturated, therefore may crystallize over time. If crystals appear, the solution must no longer be used and shall be discarded.
  - As with all parenteral products, infusion solution should be visually inspected prior to use, solutions containing a precipitate should be discarded.

Disposal
All materials that have been utilised for dilution and administration should be disposed of according to standard procedures. Do not throw away any medicines via wastewater. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.