ANNEX I

SUMMARY OF PRODUCT CHARACTERISTICS
1. NAME OF THE MEDICINAL PRODUCT

Tracleer 62.5 mg film-coated tablets
Tracleer 125 mg film-coated tablets

2. QUALITATIVE AND QUANTITATIVE COMPOSITION

Tracleer 62.5 mg film-coated tablets
Each film-coated tablet contains 62.5 mg bosentan (as monohydrate).

Tracleer 125 mg film-coated tablets
Each film-coated tablet contains 125 mg bosentan (as monohydrate).

Excipient with known effect
This medicine contains less than 1 mmol sodium (23 mg) per tablet, that is to say essentially ‘sodium-free’.

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM

Film-coated tablet (tablets):

Tracleer 62.5 mg film-coated tablets
Orange-white, round, biconvex, film-coated tablets, embossed with “62,5” on one side.

Tracleer 125 mg film-coated tablets
Orange-white, oval, biconvex, film-coated tablets, embossed with “125” on one side.

4. CLINICAL PARTICULARS

4.1 Therapeutic indications

Treatment of pulmonary arterial hypertension (PAH) to improve exercise capacity and symptoms in patients with WHO functional class III. Efficacy has been shown in:
- Primary (idiopathic and heritable) pulmonary arterial hypertension
- Pulmonary arterial hypertension secondary to scleroderma without significant interstitial pulmonary disease
- Pulmonary arterial hypertension associated with congenital systemic-to-pulmonary shunts and Eisenmenger’s physiology

Some improvements have also been shown in patients with pulmonary arterial hypertension WHO functional class II (see section 5.1).

Tracleer is also indicated to reduce the number of new digital ulcers in patients with systemic sclerosis and ongoing digital ulcer disease (see section 5.1).
4.2 Posology and method of administration

Method of administration

Tablets are to be taken orally morning and evening, with or without food. The film-coated tablets are to be swallowed with water.

Patients should be advised not to swallow the desiccant found in the white high-density polyethylene bottles.

Posology

Pulmonary arterial hypertension

Treatment should only be initiated and monitored by a physician experienced in the treatment of PAH. A Patient Alert Card providing important safety information that patients need to be aware of before and during treatment with Tracleer is included in the pack.

Adults

In adult patients, Tracleer treatment should be initiated at a dose of 62.5 mg twice daily for 4 weeks and then increased to the maintenance dose of 125 mg twice daily. The same recommendations apply to re-introduction of Tracleer after treatment interruption (see section 4.4).

Paediatric population

Paediatric pharmacokinetic data have shown that bosentan plasma concentrations in children with PAH aged from 1 year to 15 years were on average lower than in adult patients and were not increased by increasing the dose of Tracleer above 2 mg/kg body weight or by increasing the dosing frequency from twice daily to three times daily (see section 5.2). Increasing the dose or the dosing frequency will likely not result in additional clinical benefit.

Based on these pharmacokinetic results, when used in children with PAH aged 1 year and older, the recommended starting and maintenance dose is 2 mg/kg morning and evening.

In neonates with persistent pulmonary hypertension of the newborn (PPHN), the benefit of bosentan has not been shown in the standard-of-care treatment. No recommendation on a posology can be made (see sections 5.1 and 5.2).

Management in the event of clinical deterioration of PAH

In the event of clinical deterioration (e.g., decrease in 6-minute walk test distance by at least 10% compared with pre-treatment measurement) despite Tracleer treatment for at least 8 weeks (target dose for at least 4 weeks), alternative therapies should be considered. However, some patients who show no response after 8 weeks of treatment with Tracleer may respond favourably after an additional 4 to 8 weeks of treatment.

In the event of late clinical deterioration despite treatment with Tracleer (i.e., after several months of treatment), the treatment should be re-assessed. Some patients not responding well to 125 mg twice daily of Tracleer may slightly improve their exercise capacity when the dose is increased to 250 mg twice daily. A careful benefit/risk assessment should be made, taking into consideration that the liver toxicity is dose dependent (see sections 4.4 and 5.1).
Discontinuation of treatment

There is limited experience with abrupt discontinuation of Tracleer in patients with PAH. No evidence for acute rebound has been observed. However, to avoid the possible occurrence of harmful clinical deterioration due to potential rebound effect, gradual dose reduction (halving the dose for 3 to 7 days) should be considered. Intensified monitoring is recommended during the discontinuation period. If the decision to withdraw Tracleer is taken, it should be done gradually while an alternative therapy is introduced.

Systemic sclerosis with ongoing digital ulcer disease

Treatment should only be initiated and monitored by a physician experienced in the treatment of systemic sclerosis. A Patient Alert Card providing important safety information that patients need to be aware of before and during treatment with Tracleer is included in the pack.

Adults

Tracleer treatment should be initiated at a dose of 62.5 mg twice daily for 4 weeks and then increased to the maintenance dose of 125 mg twice daily. The same recommendations apply to re-introduction of Tracleer after treatment interruption (see section 4.4).

Controlled clinical study experience in this indication is limited to 6 months (see section 5.1).

The patient’s response to treatment and need for continued therapy should be re-evaluated on a regular basis. A careful benefit/risk assessment should be made, taking into consideration the liver toxicity of bosentan (see sections 4.4 and 4.8).

Paediatric population

There are no data on the safety and efficacy in patients under the age of 18 years. Pharmacokinetic data are not available for Tracleer in young children with this disease.

Special populations

Hepatic impairment

Tracleer is contraindicated in patients with moderate to severe liver dysfunction (see sections 4.3, 4.4 and 5.2). No dose adjustment is needed in patients with mild hepatic impairment (i.e., Child-Pugh class A) (see section 5.2).

Renal impairment

No dose adjustment is required in patients with renal impairment. No dose adjustment is required in patients undergoing dialysis (see section 5.2).

Elderly

No dose adjustment is required in patients over the age of 65 years.

4.3 Contraindications

- Hypersensitivity to the active substance or to any of the excipients listed in section 6.1
- Moderate to severe hepatic impairment, i.e., Child-Pugh class B or C (see section 5.2)
• Baseline values of liver aminotransferases, i.e., aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT), greater than $3 \times$ the upper limit of normal (ULN; see section 4.4)
• Concomitant use of cyclosporine A (see section 4.5)
• Pregnancy (see sections 4.4 and 4.6)
• Women of childbearing potential who are not using reliable methods of contraception (see sections 4.4, 4.5 and 4.6)

4.4 Special warnings and precautions for use

The efficacy of Tracleer has not been established in patients with severe PAH. Transfer to a therapy that is recommended at the severe stage of the disease (e.g., epoprostenol) should be considered if the clinical condition deteriorates (see section 4.2).

The benefit/risk balance of bosentan has not been established in patients with WHO class I functional status of PAH.

Tracleer should only be initiated if the systemic systolic blood pressure is higher than 85 mmHg.

Tracleer has not been shown to have a beneficial effect on the healing of existing digital ulcers.

Liver function

Elevations in liver aminotransferases, i.e., aspartate and alanine aminotransferases (AST and/or ALT), associated with bosentan are dose dependent. Liver enzyme changes typically occur within the first 26 weeks of treatment but may also occur late in treatment (see section 4.8). These increases may be partly due to competitive inhibition of the elimination of bile salts from hepatocytes but other mechanisms, which have not been clearly established, are probably also involved in the occurrence of liver dysfunction. The accumulation of bosentan in hepatocytes leading to cytolysis with potentially severe damage of the liver, or an immunological mechanism, are not excluded. Liver dysfunction risk may also be increased when medicinal products that are inhibitors of the bile salt export pump, e.g., rifampicin, glibenclamide and cyclosporine A (see sections 4.3 and 4.5), are co-administered with bosentan, but limited data are available.

Liver aminotransferase levels must be measured prior to initiation of treatment and subsequently at monthly intervals for the duration of treatment with Tracleer. In addition, liver aminotransferase levels must be measured 2 weeks after any dose increase.

Recommendations in the event of ALT/AST elevations

<table>
<thead>
<tr>
<th>ALT/AST levels</th>
<th>Treatment and monitoring recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 3 and ≤ 5 × ULN</td>
<td>The result should be confirmed by a second liver test; if confirmed, a decision should be made on an individual basis to continue Tracleer, possibly at a reduced dose, or to stop Tracleer administration (see section 4.2). Monitoring of aminotransferase levels should be continued at least every 2 weeks. If the aminotransferase levels return to pre-treatment values continuing or re-introducing Tracleer according to the conditions described below should be considered.</td>
</tr>
<tr>
<td>> 5 and ≤ 8 × ULN</td>
<td>The result should be confirmed by a second liver test; if confirmed, treatment should be stopped and aminotransferase levels monitored at least every 2 weeks. If the aminotransferase levels return to pre-treatment values re-introducing Tracleer according to the conditions described below should be considered.</td>
</tr>
</tbody>
</table>
In the event of associated clinical symptoms of liver injury, i.e., nausea, vomiting, fever, abdominal pain, jaundice, unusual lethargy or fatigue, flu-like syndrome (arthralgia, myalgia, fever), treatment must be stopped and re-introduction of Tracleer is not to be considered.

Re-introduction of treatment
Re-introduction of treatment with Tracleer should only be considered if the potential benefits of treatment with Tracleer outweigh the potential risks and when liver aminotransferase levels are within pre-treatment values. The advice of a hepatologist is recommended. Re-introduction must follow the guidelines detailed in section 4.2. Aminotransferase levels must then be checked within 3 days after re-introduction, then again after a further 2 weeks, and thereafter according to the recommendations above.

ULN = upper limit of normal

Haemoglobin concentration

Treatment with bosentan has been associated with dose-related decreases in haemoglobin concentration (see section 4.8). In placebo-controlled studies, bosentan-related decreases in haemoglobin concentration were not progressive, and stabilised after the first 4–12 weeks of treatment. It is recommended that haemoglobin concentrations be checked prior to initiation of treatment, every month during the first 4 months, and quarterly thereafter. If a clinically relevant decrease in haemoglobin concentration occurs, further evaluation and investigation should be undertaken to determine the cause and need for specific treatment. In the post-marketing period, cases of anaemia requiring red blood cell transfusion have been reported (see section 4.8).

Women of childbearing potential

As Tracleer may render hormonal contraceptives ineffective, and taking into account the risk that pulmonary hypertension deteriorates with pregnancy as well as the teratogenic effects observed in animals:

- Tracleer treatment must not be initiated in women of childbearing potential unless they practise reliable contraception and the result of the pre-treatment pregnancy test is negative
- Hormonal contraceptives cannot be the sole method of contraception during treatment with Tracleer
- Monthly pregnancy tests are recommended during treatment to allow early detection of pregnancy

For further information see sections 4.5 and 4.6.

Pulmonary veno-occlusive disease

Cases of pulmonary oedema have been reported with vasodilators (mainly prostacyclins) when used in patients with pulmonary veno-occlusive disease. Consequently, should signs of pulmonary oedema occur when Tracleer is administered in patients with PAH, the possibility of associated veno-occlusive disease should be considered. In the post-marketing period there have been rare reports of pulmonary oedema in patients treated with Tracleer who had a suspected diagnosis of pulmonary veno-occlusive disease.
Pulmonary arterial hypertension patients with concomitant left ventricular failure

No specific study has been performed in patients with pulmonary hypertension and concomitant left ventricular dysfunction. However, 1,611 patients (804 bosentan- and 807 placebo-treated patients) with severe chronic heart failure (CHF) were treated for a mean duration of 1.5 years in a placebo-controlled study (study AC-052-301/302 [ENABLE 1 & 2]). In this study there was an increased incidence of hospitalisation due to CHF during the first 4–8 weeks of treatment with bosentan, which could have been the result of fluid retention. In this study, fluid retention was manifested by early weight gain, decreased haemoglobin concentration and increased incidence of leg oedema. At the end of this study, there was no difference in overall hospitalisations for heart failure nor in mortality between bosentan- and placebo-treated patients. Consequently, it is recommended that patients be monitored for signs of fluid retention (e.g., weight gain), especially if they concomitantly suffer from severe systolic dysfunction. Should this occur, starting treatment with diuretics is recommended, or the dose of existing diuretics should be increased. Treatment with diuretics should be considered in patients with evidence of fluid retention before the start of treatment with Tracleer.

Pulmonary arterial hypertension associated with HIV infection

There is limited clinical study experience with the use of Tracleer in patients with PAH associated with HIV infection, treated with antiretroviral medicinal products (see section 5.1). An interaction study between bosentan and lopinavir+ritonavir in healthy subjects showed increased plasma concentrations of bosentan, with the maximum level during the first 4 days of treatment (see section 4.5). When treatment with Tracleer is initiated in patients who require ritonavir-boosted protease inhibitors, the patient’s tolerability of Tracleer should be closely monitored with special attention, at the beginning of the initiation phase, to the risk of hypotension and to liver function tests. An increased long-term risk of hepatic toxicity and haematological adverse events cannot be excluded when bosentan is used in combination with antiretroviral medicinal products. Due to the potential for interactions related to the inducing effect of bosentan on CYP450 (see section 4.5), which could affect the efficacy of antiretroviral therapy, these patients should also be monitored carefully regarding their HIV infection.

Pulmonary hypertension secondary to chronic obstructive pulmonary disease (COPD)

Safety and tolerability of bosentan was investigated in an exploratory, uncontrolled 12-week study in 11 patients with pulmonary hypertension secondary to severe COPD (stage III of GOLD classification). An increase in minute ventilation and a decrease in oxygen saturation were observed, and the most frequent adverse event was dyspnoea, which resolved with discontinuation of bosentan.

Concomitant use with other medicinal products

Concomitant use of Tracleer and cyclosporine A is contraindicated (see sections 4.3 and 4.5).

Concomitant use of Tracleer with glibenclamide, fluconazole and rifampicin is not recommended. For further details please refer to section 4.5.

Concomitant administration of both a CYP3A4 inhibitor and a CYP2C9 inhibitor with Tracleer should be avoided (see section 4.5).

4.5 Interaction with other medicinal products and other forms of interaction

Bosentan is an inducer of the cytochrome P450 (CYP) isoenzymes CYP2C9 and CYP3A4. In vitro data also suggest an induction of CYP2C19. Consequently, plasma concentrations of substances metabolised by these isoenzymes will be decreased when Tracleer is co-administered. The possibility
of altered efficacy of medicinal products metabolised by these isoenzymes should be considered. The dosage of these products may need to be adjusted after initiation, dose change or discontinuation of concomitant Tracleer treatment.

Bosentan is metabolised by CYP2C9 and CYP3A4. Inhibition of these isoenzymes may increase the plasma concentration of bosentan (see ketoconazole). The influence of CYP2C9 inhibitors on bosentan concentration has not been studied. The combination should be used with caution.

Fluconazole and other inhibitors of both CYP2C9 and CYP3A4: Co-administration with fluconazole, which inhibits mainly CYP2C9, but to some extent also CYP3A4, could lead to large increases in plasma concentrations of bosentan. The combination is not recommended. For the same reason, concomitant administration of both a potent CYP3A4 inhibitor (such as ketoconazole, itraconazole or ritonavir) and a CYP2C9 inhibitor (such as voriconazole) with Tracleer is not recommended.

Cyclosporine A: Co-administration of Tracleer and cyclosporine A (a calcineurin inhibitor) is contraindicated (see section 4.3). When co-administered, initial trough concentrations of bosentan were approximately 30-fold higher than those measured after bosentan alone. At steady state, bosentan plasma concentrations were 3- to 4-fold higher than with bosentan alone. The mechanism of this interaction is most likely inhibition of transport protein-mediated uptake of bosentan into hepatocytes by cyclosporine. The blood concentrations of cyclosporine A (a CYP3A4 substrate) decreased by approximately 50%. This is most likely due to induction of CYP3A4 by bosentan.

Tacrolimus, sirolimus: Co-administration of tacrolimus or sirolimus and Tracleer has not been studied in man but co-administration of tacrolimus or sirolimus and Tracleer may result in increased plasma concentrations of bosentan in analogy to co-administration with cyclosporine A. Concomitant Tracleer may reduce the plasma concentrations of tacrolimus and sirolimus. Therefore, concomitant use of Tracleer and tacrolimus or sirolimus is not advisable. Patients in need of the combination should be closely monitored for adverse events related to Tracleer and for tacrolimus and sirolimus blood concentrations.

Glibenclamide: Co-administration of bosentan 125 mg twice daily for 5 days decreased the plasma concentrations of glibenclamide (a CYP3A4 substrate) by 40%, with potential significant decrease of the hypoglycaemic effect. The plasma concentrations of bosentan were also decreased by 29%. In addition, an increased incidence of elevated aminotransferases was observed in patients receiving concomitant therapy. Both glibenclamide and bosentan inhibit the bile salt export pump, which could explain the elevated aminotransferases. This combination should not be used. No drug-drug interaction data are available with the other sulfonylureas.

Rifampicin: Co-administration in 9 healthy subjects for 7 days of bosentan 125 mg twice daily with rifampicin, a potent inducer of CYP2C9 and CYP3A4, decreased the plasma concentrations of bosentan by 58%, and this decrease could achieve almost 90% in an individual case. As a result, a significantly reduced effect of bosentan is expected when it is co-administered with rifampicin. Concomitant use of rifampicin and Tracleer is not recommended. Data on other CYP3A4 inducers, e.g., carbamazepine, phenobarbital, phenytoin and St. John’s wort are lacking, but their concomitant administration is expected to lead to reduced systemic exposure to bosentan. A clinically significant reduction of efficacy cannot be excluded.

Lopinavir+ritonavir (and other ritonavir-boosted protease inhibitors): Co-administration of bosentan 125 mg twice daily and lopinavir+ritonavir 400+100 mg twice daily for 9.5 days in healthy volunteers resulted in initial trough plasma concentrations of bosentan that were approximately 48-fold higher than those measured after bosentan administered alone. On day 9, plasma concentrations of bosentan were approximately 5-fold higher than with bosentan administered alone. Inhibition by ritonavir of transport protein-mediated uptake into hepatocytes and of CYP3A4, thereby reducing the clearance of
bosentan, most likely causes this interaction. When administered concomitantly with lopinavir+ritonavir, or other ritonavir-boosted protease inhibitors, the patient’s tolerability of Tracleer should be monitored.

After co-administration of bosentan for 9.5 days, the plasma exposures to lopinavir and ritonavir decreased to a clinically non-significant extent (by approximately 14% and 17%, respectively). However, full induction by bosentan might not have been reached and a further decrease of protease inhibitors cannot be excluded. Appropriate monitoring of the HIV therapy is recommended. Similar effects would be expected with other ritonavir-boosted protease inhibitors (see section 4.4).

Other antiretroviral agents: No specific recommendation can be made with regard to other available antiretroviral agents due to the lack of data. Due to the marked hepatotoxicity of nevirapine, which could add to bosentan liver toxicity, this combination is not recommended.

Hormonal contraceptives: Co-administration of bosentan 125 mg twice daily for 7 days with a single dose of oral contraceptive containing norethisterone 1 mg + ethinyl estradiol 35 mcg decreased the AUC of norethisterone and ethinyl estradiol by 14% and 31%, respectively. However, decreases in exposure were as much as 56% and 66%, respectively, in individual subjects. Therefore, hormone-based contraceptives alone, regardless of the route of administration (i.e., oral, injectable, transdermal or implantable forms), are not considered as reliable methods of contraception (see sections 4.4 and 4.6).

Warfarin: Co-administration of bosentan 500 mg twice daily for 6 days decreased the plasma concentrations of both S-warfarin (a CYP2C9 substrate) and R-warfarin (a CYP3A4 substrate) by 29% and 38%, respectively. Clinical experience with concomitant administration of bosentan with warfarin in patients with PAH did not result in clinically relevant changes in International Normalised Ratio (INR) or warfarin dose (baseline versus end of the clinical studies). In addition, the frequency of changes in warfarin dose during the studies due to changes in INR or due to adverse events was similar among bosentan- and placebo-treated patients. No dose adjustment is needed for warfarin and similar oral anticoagulant agents when bosentan is initiated, but intensified monitoring of INR is recommended, especially during bosentan initiation and the up-titration period.

Simvastatin: Co-administration of bosentan 125 mg twice daily for 5 days decreased the plasma concentrations of simvastatin (a CYP3A4 substrate) and its active β-hydroxy acid metabolite by 34% and 46%, respectively. The plasma concentrations of bosentan were not affected by concomitant simvastatin. Monitoring of cholesterol levels and subsequent dosage adjustment should be considered.

Ketoconazole: Co-administration for 6 days of bosentan 62.5 mg twice daily with ketoconazole, a potent CYP3A4 inhibitor, increased the plasma concentrations of bosentan approximately 2-fold. No dose adjustment of Tracleer is considered necessary. Although not demonstrated through in vivo studies, similar increases in bosentan plasma concentrations are expected with the other potent CYP3A4 inhibitors (such as itraconazole or ritonavir). However, when combined with a CYP3A4 inhibitor, patients who are poor metabolisers of CYP2C9 are at risk of increases in bosentan plasma concentrations that may be of higher magnitude, thus leading to potential harmful adverse events.

Epoprostenol: Limited data obtained from a study (AC-052-356 [BREATHE-3]) in which 10 paediatric patients received the combination of bosentan and epoprostenol indicate that after both single- and multiple-dose administration, the C_{max} and AUC values of bosentan were similar in patients with or without continuous infusion of epoprostenol (see section 5.1).

Sildenafil: Co-administration of bosentan 125 mg twice daily (steady state) with sildenafil 80 mg three times a day (at steady state) concomitantly administered during 6 days in healthy volunteers resulted
in a 63% decrease in the sildenafil AUC and a 50% increase in the bosentan AUC. Caution is recommended in the case of co-administration.

Tadalafil: Bosentan (125 mg twice daily) reduced tadalafil (40 mg once per day) systemic exposure by 42% and C_{max} by 27% following multiple dose co-administration. Tadalafil did not affect the exposure (AUC and C_{max}) of bosentan or its metabolites.

Digoxin: Co-administration for 7 days of bosentan 500 mg twice daily with digoxin decreased the AUC, C_{max} and C_{min} of digoxin by 12%, 9% and 23%, respectively. The mechanism for this interaction may be induction of P-glycoprotein. This interaction is unlikely to be of clinical relevance.

Paediatric population

Interaction studies have only been performed in adults.

4.6 Fertility, pregnancy and lactation

Pregnancy

Studies in animals have shown reproductive toxicity (teratogenicity, embryotoxicity; see section 5.3). There are no reliable data on the use of Tracleer in pregnant women. The potential risk for humans is still unknown. Tracleer is contraindicated in pregnancy (see section 4.3).

Women of childbearing potential

Before the initiation of Tracleer treatment in women of childbearing potential, the absence of pregnancy should be checked, appropriate advice on reliable methods of contraception provided, and reliable contraception initiated. Patients and prescribers must be aware that due to potential pharmacokinetic interactions, Tracleer may render hormonal contraceptives ineffective (see section 4.5). Therefore, women of childbearing potential must not use hormonal contraceptives (including oral, injectable, transdermal or implantable forms) as the sole method of contraception but must use an additional or an alternative reliable method of contraception. If there is any doubt about what contraceptive advice should be given to the individual patient, consultation with a gynaecologist is recommended. Because of possible hormonal contraception failure during Tracleer treatment, and also bearing in mind the risk that pulmonary hypertension severely deteriorates with pregnancy, monthly pregnancy tests during treatment with Tracleer are recommended to allow early detection of pregnancy.

Breast-feeding

It is not known whether bosentan is excreted into human breast milk. Breast-feeding is not recommended during treatment with Tracleer.

Fertility

Animal studies showed testicular effects (see section 5.3). In a clinical study investigating the effects of bosentan on testicular function in male PAH patients, six of the 24 subjects (25%) had a decreased sperm concentration of at least 50% from baseline at 6 months of treatment with bosentan. Based on these findings and preclinical data, it cannot be excluded that bosentan may have a detrimental effect on spermatogenesis in men. In male children, a long-term impact on fertility after treatment with bosentan cannot be excluded.
4.7 Effects on ability to drive and use machines

No specific studies have been conducted to assess the direct effect of Tracleer on the ability to drive and use machines. However, Tracleer may induce hypotension, with symptoms of dizziness, blurred vision or syncope that could affect the ability to drive or use machines.

4.8 Undesirable effects

In 20 placebo-controlled studies, conducted in a variety of therapeutic indications, a total of 2,486 patients were treated with bosentan at daily doses ranging from 100 mg to 2,000 mg and 1,838 patients were treated with placebo. The mean treatment duration was 45 weeks. Adverse reactions were defined as events occurring in at least 1% of patients on bosentan and at a frequency at least 0.5% more than on placebo. The most frequent adverse reactions are headache (11.5%), oedema / fluid retention (13.2%), abnormal liver function test (10.9%) and anaemia / haemoglobin decrease (9.9%).

Treatment with bosentan has been associated with dose-dependent elevations in liver aminotransferases and decreases in haemoglobin concentration (see section 4.4).

Adverse reactions observed in 20 placebo-controlled studies and post-marketing experience with bosentan are ranked according to frequency using the following convention: very common (≥ 1/10); common (≥ 1/100 to < 1/10); uncommon (≥ 1/1,000 to < 1/100); rare (≥ 1/10,000 to < 1/1,000); very rare (< 1/10,000); not known (cannot be estimated from the available data).

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. No clinically relevant differences in adverse reactions were observed between the overall dataset and the approved indications.

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Frequency</th>
<th>Adverse reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Common</td>
<td>Anaemia, haemoglobin decrease, (see section 4.4)</td>
</tr>
<tr>
<td></td>
<td>Not known</td>
<td>Anaemia or haemoglobin decreases requiring red blood cell transfusion¹</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Thrombocytopenia¹</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Neutropenia, leukopenia¹</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Common</td>
<td>Hypersensitivity reactions (including dermatitis, pruritus and rash)²</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td>Anaphylaxis and/or angioedema¹</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Very common</td>
<td>Headache³</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Syncope¹⁴</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Not known</td>
<td>Blurred vision¹</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Common</td>
<td>Palpitations¹,⁴</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Common</td>
<td>Flushing</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Hypotension¹,⁴</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Common</td>
<td>Nasal congestion¹</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Common</td>
<td>Gastrooesophageal reflux disease, Diarrhoea</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>Very common</td>
<td>Abnormal liver function test (see section 4.4)</td>
</tr>
</tbody>
</table>
Uncommon Aminotransferase elevations associated with hepatitis (including possible exacerbation of underlying hepatitis) and/or jaundice\(^1\) (see section 4.4)

Rare Liver cirrhosis, liver failure\(^1\)

<table>
<thead>
<tr>
<th>Skin and subcutaneous disorders</th>
<th>Common</th>
<th>Erythema</th>
</tr>
</thead>
<tbody>
<tr>
<td>General disorders and administration site conditions</td>
<td>Very common</td>
<td>Oedema, fluid retention(^5)</td>
</tr>
</tbody>
</table>

\(^1\) Data derived from post-marketing experience, frequencies based on statistical modelling of placebo-controlled clinical trial data.

\(^2\) Hypersensitivity reactions were reported in 9.9% of patients on bosentan and 9.1% of patients on placebo.

\(^3\) Headache was reported in 11.5% of patients on bosentan and 9.8% of patients on placebo.

\(^4\) These types of reactions can also be related to the underlying disease.

\(^5\) Oedema or fluid retention was reported in 13.2% of patients on bosentan and 10.9% of patients on placebo.

In the post-marketing period rare cases of unexplained hepatic cirrhosis were reported after prolonged therapy with Tracleer in patients with multiple co-morbidities and therapies with medicinal products. There have also been rare reports of liver failure. These cases reinforce the importance of strict adherence to the monthly schedule for monitoring of liver function for the duration of treatment with Tracleer (see section 4.4).

Paediatric population

Uncontrolled clinical studies in paediatric patients

The safety profile in the first paediatric uncontrolled study performed with the film-coated tablet (BREATHE-3: n = 19, median age 10 years [range 3–15 years], open-label bosentan 2 mg/kg twice daily; treatment duration 12 weeks) was similar to that observed in the pivotal trials in adult patients with PAH. In BREATHE-3, the most frequent adverse reactions were flushing (21%), headache, and abnormal liver function test (each 16%).

A pooled analysis of uncontrolled paediatric studies conducted in PAH with the bosentan 32 mg dispersible tablet formulation (FUTURE 1/2, FUTURE 3/Extension) included a total of 100 children treated with bosentan 2 mg/kg twice daily (n = 33), 2 mg/kg three times daily (n = 31), or 4 mg/kg twice daily (n = 36). At enrolment, six patients were between 3 months and 1 year old, 15 children were between 1 and less than 2 years old, and 79 were between 2 and 12 years old. The median treatment duration was 71.8 weeks (range 0.4–258 weeks).

The safety profile in this pooled analysis of uncontrolled paediatric studies was similar to that observed in the pivotal trials in adult patients with PAH except for infections, which were more frequently reported than in adults (69.0% vs 41.3%). This difference in infection frequency may in part be due to the longer median treatment exposure in the paediatric set (median 71.8 weeks) compared with the adult set (median 17.4 weeks). The most frequent adverse events were upper respiratory tract infections (25%), pulmonary (arterial) hypertension (20%), nasopharyngitis (17%), pyrexia (15%), vomiting (13%), bronchitis (10%), abdominal pain (10%), and diarrhoea (10%). There was no relevant difference in adverse event frequencies between patients above and below the age of 2 years; however, this is based on only 21 children less than 2 years, including 6 patients between 3 months to 1 year of age. Adverse events of liver abnormalities and anaemia/haemoglobin decrease occurred in 9% and 5% of patients, respectively.

In a randomised placebo-controlled study, conducted in PPHN patients (FUTURE-4), a total of 13 neonates were treated with the bosentan dispersible tablet formulation at a dose of 2 mg/kg twice daily (8 patients were on placebo). The median bosentan and placebo treatment duration was,
respectively, 4.5 days (range 0.5–10.0 days) and 4.0 days (range 2.5–6.5 days). The most frequent adverse events in the bosentan- and placebo-treated patients were, respectively, anaemia or haemoglobin decrease (7 and 2 patients), generalised oedema (3 and 0 patients), and vomiting (2 and 0 patients).

Laboratory abnormalities

Liver test abnormalities

In the clinical programme, dose-dependent elevations in liver aminotransferases generally occurred within the first 26 weeks of treatment, usually developed gradually, and were mainly asymptomatic. In the post-marketing period rare cases of liver cirrhosis and liver failure have been reported.

The mechanism of this adverse effect is unclear. These elevations in aminotransferases may reverse spontaneously while continuing treatment with the maintenance dose of Tracleer or after dose reduction, but interruption or cessation may be necessary (see section 4.4).

In the 20 integrated placebo-controlled studies, elevations in liver aminotransferases ≥ 3 × ULN were observed in 11.2% of the bosentan-treated patients as compared to 2.4% of the placebo-treated patients. Elevations to ≥ 8 × ULN were seen in 3.6% of the bosentan-treated patients and 0.4% of the placebo-treated patients. Elevations in aminotransferases were associated with elevated bilirubin (≥ 2 × ULN) without evidence of biliary obstruction in 0.2% (5 patients) on bosentan and 0.3% (6 patients) on placebo.

In the pooled analysis of 100 PAH children from uncontrolled paediatric studies FUTURE 1/2 and FUTURE 3/Extension, elevations in liver aminotransferases ≥ 3×ULN were observed in 2% of patients.

In the FUTURE-4 study including 13 neonates with PPHN treated with bosentan 2 mg/kg twice daily for less than 10 days (range 0.5–10.0 days), there were no cases of liver aminotransferases ≥ 3×ULN during treatment, but one case of hepatitis occurred 3 days after the end of bosentan treatment.

Haemoglobin

In the adult placebo-controlled studies, a decrease in haemoglobin concentration to below 10 g/dL from baseline was reported in 8.0% of bosentan-treated patients and 3.9% of placebo-treated patients (see section 4.4).

In the pooled analysis of 100 PAH children from uncontrolled paediatric studies FUTURE 1/2 and FUTURE 3/Extension, a decrease in haemoglobin concentration from baseline to below 10 g/dL was reported in 10.0% of patients. There was no decrease to below 8 g/dL.

In the FUTURE-4 study, 6 out of 13 bosentan-treated neonates with PPHN experienced a decrease in haemoglobin from within the reference range at baseline to below the lower limit of normal during the treatment.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.
4.9 Overdose

Bosentan has been administered as a single dose of up to 2 400 mg to healthy subjects and up to 2 000 mg/day for 2 months in patients with a disease other than pulmonary hypertension. The most common adverse reaction was headache of mild to moderate intensity.

Massive overdose may result in pronounced hypotension requiring active cardiovascular support. In the post-marketing period there was one reported overdose of 10 000 mg of Tracleer taken by an adolescent male patient. He had symptoms of nausea, vomiting, hypotension, dizziness, sweating and blurred vision. He recovered completely within 24 hours with blood pressure support. Note: bosentan is not removed through dialysis.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: other antihypertensives, ATC code: C02KX01

Mechanism of action

Bosentan is a dual endothelin receptor antagonist (ERA) with affinity for both endothelin A and B (ET\textsubscript{A} and ET\textsubscript{B}) receptors. Bosentan decreases both pulmonary and systemic vascular resistance resulting in increased cardiac output without increasing heart rate.

The neurohormone endothelin-1 (ET-1) is one of the most potent vasoconstrictors known and can also promote fibrosis, cell proliferation, cardiac hypertrophy and remodelling, and is pro-inflammatory. These effects are mediated by endothelin binding to ET\textsubscript{A} and ET\textsubscript{B} receptors located in the endothelium and vascular smooth muscle cells. ET-1 concentrations in tissues and plasma are increased in several cardiovascular disorders and connective tissue diseases, including PAH, scleroderma, acute and chronic heart failure, myocardial ischaemia, systemic hypertension and atherosclerosis, suggesting a pathogenic role of ET-1 in these diseases. In PAH and heart failure, in the absence of endothelin receptor antagonism, elevated ET-1 concentrations are strongly correlated with the severity and prognosis of these diseases.

Bosentan competes with the binding of ET-1 and other ET peptides to both ET\textsubscript{A} and ET\textsubscript{B} receptors, with a slightly higher affinity for ET\textsubscript{A} receptors ($K_i = 4.1–43$ nanomolar) than for ET\textsubscript{B} receptors ($K_i = 38–730$ nanomolar). Bosentan specifically antagonises ET receptors and does not bind to other receptors.

Efficacy

Animal models

In animal models of pulmonary hypertension, chronic oral administration of bosentan reduced pulmonary vascular resistance and reversed pulmonary vascular and right ventricular hypertrophy. In an animal model of pulmonary fibrosis, bosentan reduced collagen deposition in the lungs.

Efficacy in adult patients with pulmonary arterial hypertension

Two randomised, double-blind, multi-centre, placebo-controlled studies have been conducted in 32 (study AC-052-351) and 213 (study AC-052-352 [BREATHE-1]) adult patients with WHO functional class III–IV PAH (primary pulmonary hypertension or pulmonary hypertension secondary
mainly to scleroderma). After 4 weeks of bosentan 62.5 mg twice daily, the maintenance doses studied in these studies were 125 mg twice daily in AC-052-351, and 125 mg twice daily and 250 mg twice daily in AC-052-352.

Bosentan was added to patients’ current therapy, which could include a combination of anticoagulants, vasodilators (e.g., calcium channel blockers), diuretics, oxygen and digoxin, but not epoprostenol. Control was placebo plus current therapy.

The primary endpoint for each study was change in 6-minute walk distance at 12 weeks for the first study and 16 weeks for the second study. In both studies, treatment with bosentan resulted in significant increases in exercise capacity. The placebo-corrected increases in walk distance compared with baseline were 76 metres (p = 0.02; t-test) and 44 metres (p = 0.0002; Mann-Whitney U test) at the primary endpoint of each study, respectively. The differences between the two groups, 125 mg twice daily and 250 mg twice daily, were not statistically significant but there was a trend towards improved exercise capacity in the group treated with 250 mg twice daily.

The improvement in walk distance was apparent after 4 weeks of treatment, was clearly evident after 8 weeks of treatment and was maintained for up to 28 weeks of double-blind treatment in a subset of the patient population.

In a retrospective responder analysis based on change in walking distance, WHO functional class and dyspnoea of the 95 patients randomised to bosentan 125 mg twice daily in the placebo-controlled studies, it was found that at week 8, 66 patients had improved, 22 were stable and 7 had deteriorated. Of the 22 patients stable at week 8, 6 improved at week 12/16 and 4 deteriorated compared with baseline. Of the 7 patients who deteriorated at week 8, 3 improved at week 12/16 and 4 deteriorated compared with baseline.

Invasive haemodynamic parameters were assessed in the first study only. Treatment with bosentan led to a significant increase in cardiac index associated with a significant reduction in pulmonary artery pressure, pulmonary vascular resistance and mean right atrial pressure.

A reduction in symptoms of PAH was observed with bosentan treatment. Dyspnoea measurement during walk tests showed an improvement in bosentan-treated patients. In the AC-052-352 study, 92% of the 213 patients were classified at baseline as WHO functional class III and 8% as class IV. Treatment with bosentan led to a WHO functional class improvement in 42.4% of patients (placebo 30.4%). The overall change in WHO functional class during both studies was significantly better among bosentan-treated patients as compared with placebo-treated patients. Treatment with bosentan was associated with a significant reduction in the rate of clinical worsening compared with placebo at 28 weeks (10.7% vs 37.1%, respectively; p = 0.0015).

In a randomised, double-blind, multi-centre, placebo-controlled study (AC-052-364 [EARLY]), 185 PAH patients in WHO functional class II (mean baseline 6-minute walk distance of 435 metres) received bosentan 62.5 mg twice daily for 4 weeks followed by 125 mg twice daily (n = 93), or placebo (n = 92) for 6 months. Enrolled patients were PAH-treatment-naïve (n = 156) or on a stable dose of sildenafil (n = 29). The co-primary endpoints were percentage change from baseline in pulmonary vascular resistance (PVR) and change from baseline in 6-minute walk distance to Month 6 versus placebo. The table below illustrates the pre-specified protocol analyses.

<table>
<thead>
<tr>
<th></th>
<th>PVR (dyn.sec/cm(^5))</th>
<th>6-Minute Walk Distance (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo (n=88)</td>
<td>Bosentan (n=80)</td>
</tr>
<tr>
<td>Baseline (BL); mean (SD)</td>
<td>802 (365)</td>
<td>851 (535)</td>
</tr>
<tr>
<td>Change from BL; mean (SD)</td>
<td>128 (465)</td>
<td>–69 (475)</td>
</tr>
<tr>
<td>Treatment effects</td>
<td>–22.6%</td>
<td>19</td>
</tr>
</tbody>
</table>

15
Treatemnt with bosentan was associated with a reduction in the rate of clinical worsening, defined as a composite of symptomatic progression, hospitalisation for PAH and death, compared with placebo (proportional risk reduction 77%, 95% confidence interval [CI] 20–94%, p = 0.0114). The treatment effect was driven by improvement in the component symptomatic progression. There was one hospitalisation related to PAH worsening in the bosentan group and three hospitalisations in the placebo group. Only one death occurred in each treatment group during the 6-month double-blind study period, therefore no conclusion can be drawn on survival.

Long-term data were generated from all 173 patients who were treated with bosentan in the controlled phase and/or were switched from placebo to bosentan in the open-label extension phase of the EARLY study. The mean duration of exposure to bosentan treatment was 3.6 ± 1.8 years (up to 6.1 years), with 73% of patients treated for at least 3 years and 62% for at least 4 years. Patients could receive additional PAH treatment as required in the open-label extension. The majority of patients were diagnosed with idiopathic or heritable PAH (61%). Overall, 78% of patients remained in WHO functional class II. Kaplan-Meier estimates of survival were 90% and 85% at 3 and 4 years after the start of treatment, respectively. At the same timepoints, 88% and 79% of patients remained free from PAH worsening (defined as all-cause death, lung transplantation, atrial septostomy or start of intravenous or subcutaneous prostanoid treatment). The relative contributions of previous placebo treatment in the double-blind phase and of other medications started during the open-label extension period are unknown.

In a prospective, multi-centre, randomised, double-blind, placebo-controlled study (AC-052-405 [BREATHE-5]), patients with PAH WHO functional class III and Eisenmenger physiology associated with congenital heart disease received bosentan 62.5 mg twice daily for 4 weeks, then 125 mg twice daily for a further 12 weeks (n = 37, of whom 31 had a predominantly right to left, bidirectional shunt). The primary objective was to show that bosentan did not worsen hypoxaemia. After 16 weeks, the mean oxygen saturation was increased in the bosentan group by 1.0% (95% CI –0.7%–2.8%) as compared to the placebo group (n = 17), showing that bosentan did not worsen hypoxaemia. The mean pulmonary vascular resistance was significantly reduced in the bosentan group (with a predominant effect observed in the subgroup of patients with bidirectional intracardiac shunt). After 16 weeks, the mean placebo-corrected increase in 6-minute walk distance was 53 metres (p = 0.0079), reflecting improvement in exercise capacity. Twenty-six patients continued to receive bosentan in the 24-week open-label extension phase (AC-052-409) of the BREATHE-5 study (mean duration of treatment = 24.4±2.0 weeks) and, in general, efficacy was maintained.

An open-label, non-comparative study (AC-052-362 [BREATHE-4]) was performed in 16 patients with WHO functional class III PAH associated with HIV infection. Patients were treated with bosentan 62.5 mg twice daily for 4 weeks followed by 125 mg twice daily for a further 12 weeks. After 16 weeks’ treatment, there were significant improvements from baseline in exercise capacity: the mean increase in 6-minute walk distance was 91.4 metres from 332.6 metres on average at baseline (p < 0.001). No formal conclusion can be drawn regarding the effects of bosentan on antiretroviral drug efficacy (see also section 4.4).

There are no studies to demonstrate beneficial effects of Tracleer treatment on survival. However, long-term vital status was recorded for all 235 patients who were treated with bosentan in the two pivotal placebo-controlled studies (AC-052-351 and AC-052-352) and/or their two uncontrolled, open-label extensions. The mean duration of exposure to bosentan was 1.9 years ± 0.7 years (min: 0.1 years; max: 3.3 years) and patients were observed for a mean of 2.0±0.6 years. The majority of patients were diagnosed as primary pulmonary hypertension (72%) and were in WHO functional class
III (84%). In this total population, Kaplan-Meier estimates of survival were 93% and 84% 1 and 2 years after the start of treatment with bosentan, respectively. Survival estimates were lower in the subgroup of patients with PAH secondary to systemic sclerosis. The estimates may have been influenced by the initiation of epoprostenol treatment in 43/235 patients.

Studies performed in children with pulmonary arterial hypertension

BREATHE-3 (AC-052-356)
Bosentan film-coated tablets were evaluated in an open-label uncontrolled study in 19 paediatric patients with PAH aged 3 to 15 years. This study was primarily designed as a pharmacokinetic study (see section 5.2). Patients had primary pulmonary hypertension (10 patients) or PAH related to congenital heart diseases (9 patients) and were in WHO functional class II (n = 15, 79%) or class III (n = 4, 21%) at baseline. Patients were divided into three body-weight groups and dosed with bosentan at approximately 2 mg/kg twice daily for 12 weeks. Half of the patients in each group were already being treated with intravenous epoprostenol and the dose of epoprostenol remained constant for the duration of the study.

Haemodynamics were measured in 17 patients. The mean increase from baseline in cardiac index was 0.5 L/min/m², the mean decrease in mean pulmonary arterial pressure was 8 mmHg, and the mean decrease in PVR was 389 dyn·sec·cm⁻⁵. These haemodynamic improvements from baseline were similar with or without co-administration of epoprostenol. Changes in exercise test parameters at week 12 from baseline were highly variable and none were significant.

FUTURE 1/2 (AC-052-365/AC-052-367)
FUTURE 1 was an open-label, uncontrolled study that was conducted with the dispersible tablet formulation of bosentan administered at a maintenance dose of 4 mg/kg twice daily to 36 patients from 2 to 11 years of age. It was primarily designed as a pharmacokinetic study (see section 5.2). At baseline, patients had idiopathic (31 patients [86%]) or familial (5 patients [14%]) PAH, and were in WHO functional class II (n = 23, 64%) or class III (n = 13, 36%). In the FUTURE 1 study, the median exposure to study treatment was 13.1 weeks (range: 8.4 to 21.1). 33 of these patients were provided with continued treatment with bosentan dispersible tablets at a dose of 4 mg/kg twice daily in the FUTURE 2 uncontrolled extension phase for a median overall treatment duration of 2.3 years (range: 0.2 to 5.0 years). At baseline in FUTURE 1, 9 patients were taking epoprostenol. 9 patients were newly initiated on PAH-specific medication during the study. The Kaplan-Meier event-free estimate for worsening of PAH (death, lung transplantation, or hospitalisation for PAH worsening) at 2 years was 78.9%. The Kaplan-Meier estimate of overall survival at 2 years was 91.2%.

FUTURE 3 (AC-052-373)
In this open-label randomised study with the bosentan 32 mg dispersible tablet formulation, 64 children with stable PAH from 3 months to 11 years of age were randomised to 24 weeks’ bosentan treatment 2 mg/kg twice daily (n = 33) or 2 mg/kg three times daily (n = 31). 43 (67.2%) were ≥ 2 years to 11 years old, 15 (23.4%) were between 1 and 2 years old, and 6 (9.4%) were between 3 months and 1 year old. The study was primarily designed as a pharmacokinetic study (see section 5.2), and efficacy endpoints were only exploratory. The aetiology of PAH, according to Dana Point classification, included idiopathic PAH (46%), heritable PAH (3%), associated PAH after corrective cardiac surgery (38%), and PAH related to congenital heart disease associated with systemic-to-pulmonary shunts, including Eisenmenger syndrome (13%). Patients were in WHO functional class I (n = 19, 29 %), class II (n = 27, 42%) or class III (n = 18, 28%) at start of study treatment. At study entry, patients were treated with PAH medications (most frequently phosphodiesterase type-5 inhibitor [sildenafil] alone [35.9%], bosentan alone [10.9%], and a combination of bosentan, iloprost, and sildenafil [10.9%]) and continued their PAH treatment during the study.
At study start, less than half of the patients included (45.3% [29/64]) had bosentan treatment alone not combined with other PAH medication. 40.6% (26/64) remained on bosentan monotherapy during the 24 weeks of study treatment without experiencing PAH worsening. The analysis on the global population included (64 patients) showed that the majority had remained at least stable (i.e., without deterioration) based on non-paediatric-specific WHO functional class assessment (97% twice daily, 100% three times daily) and physician’s global clinical impression (94% twice daily, 93% three times daily) during the treatment period. The Kaplan-Meier event-free estimate for worsening of PAH (death, lung transplantation, or hospitalisation for PAH worsening) at 24 weeks was 96.9% and 96.7% in the twice daily and three times daily groups, respectively.

There was no evidence of any clinical benefit with 2 mg/kg three times daily as compared to 2 mg/kg twice daily dosing.

Study performed in neonates with persistent pulmonary hypertension of the newborn (PPHN):

FUTURE 4 (AC-052-391)
This was a double-blind, placebo-controlled, randomised study in pre-term or term neonates (gestational age 36–42 weeks) with PPHN. Patients with suboptimal response to inhaled nitric oxide (iNO) despite at least 4 hours of continuous treatment were treated with bosentan dispersible tablets at 2 mg/kg twice daily (N = 13) or placebo (N = 8) via nasogastric tube as add-on therapy on top of iNO until complete weaning of iNO or until treatment failure (defined as need for extra-corporeal membrane oxygenation [ECMO] or initiation of alternative pulmonary vasodilator), and for a maximum of 14 days.

The median exposure to study treatment was 4.5 (range: 0.5–10.0) days in the bosentan group and 4.0 (range: 2.5–6.5) days in the placebo group.

The results did not indicate an additional benefit of bosentan in this population:
- The median time to complete weaning from iNO was 3.7 days (95% confidence limits [CLs] 1.17, 6.95) on bosentan and 2.9 days (95% CLs 1.26, 4.23) on placebo (p = 0.34).
- The median time to complete weaning from mechanical ventilation was 10.8 days (95% CLs 3.21, 12.21 days) on bosentan and 8.6 days (95% CLs 3.71, 9.66 days) on placebo (p = 0.24).
- One patient in the bosentan group had treatment failure (need for ECMO as per protocol definition), which was declared based on increasing Oxygenation Index values within 8 h after the first study drug dose. This patient recovered within the 60-day follow-up period.

Combination with epoprostenol

The combination of bosentan and epoprostenol has been investigated in two studies: AC-052-355 (BREATHE-2) and AC-052-356 (BREATHE-3). AC-052-355 was a multi-centre, randomised, double-blind, parallel-group study of bosentan versus placebo in 33 patients with severe PAH who were receiving concomitant epoprostenol therapy. AC-052-356 was an open-label, uncontrolled study; 10 of the 19 paediatric patients were on concomitant bosentan and epoprostenol therapy during the 12-week study. The safety profile of the combination was not different from the one expected with each component and the combination therapy was well tolerated in children and adults. The clinical benefit of the combination has not been demonstrated.

Systemic sclerosis with digital ulcer disease

Two randomised, double-blind, multi-centre, placebo-controlled studies have been conducted in 122 (study AC-052-401 [RAPIDS-1]) and 190 (study AC-052-331 [RAPIDS-2]) adult patients with systemic sclerosis and digital ulcer disease (either ongoing digital ulcers or a history of digital ulcers within the previous year). In study AC-052-331, patients had to have at least one digital ulcer of recent
onset, and across the two studies 85% of patients had ongoing digital ulcer disease at baseline. After 4 weeks of bosentan 62.5 mg twice daily, the maintenance dose studied in both these studies was 125 mg twice daily. The duration of double-blind therapy was 16 weeks in study AC-052-401, and 24 weeks in study AC-052-331.

Background treatments for systemic sclerosis and digital ulcers were permitted if they remained constant for at least 1 month prior to the start of treatment and during the double-blind study period.

The number of new digital ulcers from baseline to study endpoint was a primary endpoint in both studies. Treatment with bosentan resulted in fewer new digital ulcers for the duration of therapy, compared with placebo. In study AC-052-401, during 16 weeks of double-blind therapy, patients in the bosentan group developed a mean of 1.4 new digital ulcers vs 2.7 new digital ulcers in the placebo group (p = 0.0042). In study AC-052-331, during 24 weeks of double-blind therapy, the corresponding figures were 1.9 vs 2.7 new digital ulcers, respectively (p = 0.0351). In both studies, patients on bosentan were less likely to develop multiple new digital ulcers during the study and took longer to develop each successive new digital ulcer than did those on placebo. The effect of bosentan on reduction of the number of new digital ulcers was more pronounced in patients with multiple digital ulcers.

No effect of bosentan on time to healing of digital ulcers was observed in either study.

5.2 Pharmacokinetic properties

The pharmacokinetics of bosentan have mainly been documented in healthy subjects. Limited data in patients show that the exposure to bosentan in adult PAH patients is approximately 2-fold greater than in healthy adult subjects.

In healthy subjects, bosentan displays dose- and time-dependent pharmacokinetics. Clearance and volume of distribution decrease with increased intravenous doses and increase with time. After oral administration, the systemic exposure is proportional to dose up to 500 mg. At higher oral doses, C$_{max}$ and AUC increase less than proportionally to the dose.

Absorption

In healthy subjects, the absolute bioavailability of bosentan is approximately 50% and is not affected by food. The maximum plasma concentrations are attained within 3–5 hours.

Distribution

Bosentan is highly bound (> 98%) to plasma proteins, mainly albumin. Bosentan does not penetrate into erythrocytes.

A volume of distribution (V$_{ss}$) of about 18 litres was determined after an intravenous dose of 250 mg.

Biotransformation and elimination

After a single intravenous dose of 250 mg, the clearance was 8.2 L/h. The terminal elimination half-life (t$_{1/2}$) is 5.4 hours.

Upon multiple dosing, plasma concentrations of bosentan decrease gradually to 50–65% of those seen after single dose administration. This decrease is probably due to auto-induction of metabolising liver enzymes. Steady-state conditions are reached within 3–5 days.
Bosentan is eliminated by biliary excretion following metabolism in the liver by the cytochrome P450 isoenzymes, CYP2C9 and CYP3A4. Less than 3% of an administered oral dose is recovered in urine.

Bosentan forms three metabolites and only one of these is pharmacologically active. This metabolite is mainly excreted unchanged via the bile. In adult patients, the exposure to the active metabolite is greater than in healthy subjects. In patients with evidence of the presence of cholestasis, the exposure to the active metabolite may be increased.

Bosentan is an inducer of CYP2C9 and CYP3A4 and possibly also of CYP2C19 and the P-glycoprotein. In vitro, bosentan inhibits the bile salt export pump in hepatocyte cultures.

In vitro data demonstrated that bosentan had no relevant inhibitory effect on the CYP isoenzymes tested (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2D6, 2E1, 3A4). Consequently, bosentan is not expected to increase the plasma concentrations of medicinal products metabolised by these isoenzymes.

Pharmacokinetics in special populations

Based on the investigated range of each variable, it is not expected that the pharmacokinetics of bosentan will be influenced by gender, body weight, race, or age in the adult population to any relevant extent.

Children

Pharmacokinetics were studied in paediatric patients in 4 clinical studies (BREATHE-3, FUTURE 1, FUTURE-3 and FUTURE-4; see section 5.1). Due to limited data in children below 2 years of age, pharmacokinetics remain not well characterised in this age category.

Study AC-052-356 (BREATHE-3) evaluated the pharmacokinetics of single and multiple oral doses of the film-coated tablet formulation of bosentan in 19 children aged from 3 to 15 years with PAH who were dosed on the basis of body weight with 2 mg/kg twice daily. In this study, the exposure to bosentan decreased with time in a manner consistent with the known auto-induction properties of bosentan. The mean AUC (CV%) values of bosentan in paediatric patients treated with 31.25, 62.5 or 125 mg twice daily were 3 496 (49), 5 428 (79), and 6 124 (27) ng h/mL, respectively, and were lower than the value of 8 149 (47) ng h/mL observed in adult patients with PAH receiving 125 mg twice daily. At steady state, the systemic exposures in paediatric patients weighing 10–20 kg, 20–40 kg and > 40 kg were 43%, 67% and 75%, respectively, of the adult systemic exposure.

In study AC-052-365 (FUTURE 1), dispersible tablets were administered in 36 PAH children aged from 2 to 11 years. No dose proportionality was observed, as steady-state bosentan plasma concentrations and AUCs were similar at oral doses of 2 and 4 mg/kg (AUC:\(\tau\): 3 577 ng h/mL and 3 371 ng h/mL for 2 mg/kg twice daily and 4 mg/kg twice daily, respectively). The average exposure to bosentan in these paediatric patients was about half the exposure in adult patients at the 125 mg twice daily maintenance dose but showed a large overlap with the exposures in adults.

In study AC-052-373 (FUTURE 3), using dispersible tablets, the exposure to bosentan in the patients treated with 2 mg/kg twice daily was comparable to that in the FUTURE 1 study. In the overall population (n = 31), 2 mg/kg twice daily resulted in a daily exposure of 8 535 ng h/mL; AUC\(\tau\) was 4 268 ng h/mL (CV: 61%). In patients between 3 months and 2 years the daily exposure was 7 879 ng h/mL; AUC\(\tau\) was 3 939 ng h/mL (CV: 72%). In patients between 3 months and 1 year (n = 2) AUC\(\tau\) was 5 914 ng h/mL (CV: 85%), and in patients between 1 and 2 years (n = 7) AUC\(\tau\) was 3 507 ng h/mL (CV: 70%). In the patients above 2 years (n = 22) the daily exposure was 8 820 ng h/mL; AUC\(\tau\) was 4 410 ng h/mL (CV: 58%). Dosing bosentan 2 mg/kg three times daily did not increase exposure; daily exposure was 7 275 ng h/mL (CV: 83%, n = 27).
Based on the findings in studies BREATHE-3, FUTURE 1, and FUTURE-3, it appears that the exposure to bosentan reaches a plateau at lower doses in paediatric patients than in adults, and that doses higher than 2 mg/kg twice daily (4 mg/kg twice daily or 2 mg/kg three times daily) will not result in greater exposure to bosentan in paediatric patients.

In study AC-052-391 (FUTURE 4) conducted in neonates, bosentan concentrations increased slowly and continuously over the first dosing interval, resulting in low exposure (AUC0-12 in whole blood: 164 ng h/mL, n = 11). At steady state, AUCτ was 6 165 ng h/mL (CV: 133%, n = 7), which is similar to the exposure observed in adult PAH patients receiving 125 mg twice daily and taking into account a blood/plasma distribution ratio of 0.6.

The consequences of these findings regarding hepatotoxicity are unknown. Gender and concomitant use of intravenous epoprostenol had no significant effect on the pharmacokinetics of bosentan.

Hepatic impairment

In patients with mildly impaired liver function (Child-Pugh class A) no relevant changes in the pharmacokinetics have been observed. The steady-state AUC of bosentan was 9% higher and the AUC of the active metabolite, Ro 48-5033, was 33% higher in patients with mild hepatic impairment than in healthy volunteers.

The impact of moderately impaired liver function (Child-Pugh class B) on the pharmacokinetics of bosentan and its primary metabolite Ro 48-5033 was investigated in a study including 5 patients with pulmonary hypertension associated with portal hypertension and Child-Pugh class B hepatic impairment, and 3 patients with PAH from other causes and normal liver function. In the patients with Child-Pugh class B liver impairment, the mean (95% CI) steady-state AUC of bosentan was 360 (212–613) ng h/mL, i.e., 4.7 times higher, and the mean (95% CI) AUC of the active metabolite Ro 48-5033 was 106 (58.4–192) ng h/mL, i.e., 12.4 times higher than in the patients with normal liver function (bosentan: mean [95% CI] AUC: 76.1 [9.07–638] ng h/mL; Ro 48-5033: mean [95% CI] AUC 8.57 [1.28–57.2] ng-h/mL). Though the number of patients included was limited and with high variability, these data indicate a marked increase in the exposure to bosentan and its primary metabolite Ro 48-5033 in patients with moderate liver function impairment (Child-Pugh class B).

The pharmacokinetics of bosentan have not been studied in patients with Child-Pugh class C hepatic impairment. Tracleer is contraindicated in patients with moderate to severe hepatic impairment, i.e., Child-Pugh class B or C (see section 4.3).

Renal impairment

In patients with severe renal impairment (creatinine clearance 15–30 mL/min), plasma concentrations of bosentan decreased by approximately 10%. Plasma concentrations of bosentan metabolites increased about 2-fold in these patients as compared with subjects with normal renal function. No dose adjustment is required in patients with renal impairment. There is no specific clinical experience in patients undergoing dialysis. Based on physicochemical properties and the high degree of protein binding, bosentan is not expected to be removed from the circulation by dialysis to any significant extent (see section 4.2).

5.3 Preclinical safety data

A 2-year carcinogenicity study in mice showed an increased combined incidence of hepatocellular adenomas and carcinomas in males, but not in females, at plasma concentrations about 2 to 4 times the plasma concentrations achieved at the therapeutic dose in humans. In rats, oral administration of
bosentan for 2 years produced a small, significant increase in the combined incidence of thyroid follicular cell adenomas and carcinomas in males, but not in females, at plasma concentrations about 9 to 14 times the plasma concentrations achieved at the therapeutic dose in humans. Bosentan was negative in tests for genotoxicity. There was evidence of a mild thyroid hormonal imbalance induced by bosentan in rats. However, there was no evidence of bosentan affecting thyroid function (thyroxine, TSH) in humans.

The effect of bosentan on mitochondrial function is unknown.

Bosentan has been shown to be teratogenic in rats at plasma levels higher than 1.5 times the plasma concentrations achieved at the therapeutic dose in humans. Teratogenic effects, including malformations of the head and face and of the major vessels, were dose dependent. The similarities of the pattern of malformations observed with other ET receptor antagonists and in ET knock-out mice indicate a class effect. Appropriate precautions must be taken for women of childbearing potential (see sections 4.3, 4.4 and 4.6).

Development of testicular tubular atrophy and impaired fertility has been linked with chronic administration of endothelin receptor antagonists in rodents.

In fertility studies in male and female rats, no effects on sperm count, motility and viability, or on mating performance or fertility were observed at exposures that were 21 and 43 times the expected therapeutic level in humans, respectively; nor was there any adverse effect on the development of the pre-implantation embryo or on implantation.

Slightly increased incidence of testicular tubular atrophy was observed in rats given bosentan orally at doses as low as 125 mg/kg/day (about 4 times the maximum recommended human dose [MRHD] and the lowest doses tested) for two years but not at doses as high as 1 500 mg/kg/day (about 50 times the MRHD) for 6 months. In a juvenile rat toxicity study, where rats were treated from Day 4 post partum up to adulthood, decreased absolute weights of testes and epididymides, and reduced number of sperm in epididymides were observed after weaning. The NOAEL was 21 times (at Day 21 post partum) and 2.3 times (Day 69 post partum) the human therapeutic exposure, respectively.

However, no effects on general development, growth, sensory, cognitive function and reproductive performance were detected at 7 (males) and 19 (females) times the human therapeutic exposure at Day 21 post partum. At adult age (Day 69 post partum), no effects of bosentan were detected at 1.3 (males) and 2.6 (females) times the therapeutic exposure in children with PAH.

6. **PHARMACEUTICAL PARTICULARS**

6.1 List of excipients

Tablet core:
Maize starch
Pregelatinised starch
Sodium starch glycolate (Type A)
Povidone
Glycerol dibehenate
Magnesium stearate

Film coat:
Hypromellose
Glycerol triacetate
Talc
Titanium dioxide (E171)
Iron oxide yellow (E172)
Iron oxide red (E172)
Ethylcellulose

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

4 years
For white high-density polyethylene bottles, use within 30 days after the first opening.

6.4 Special precautions for storage

For PVC/PE/PVDC/aluminium-blisters:
Do not store above 25°C.

For white high-density polyethylene bottles:
This medicinal product does not require any special storage conditions.
For storage conditions after first opening of the medicinal product, see section 6.3.

6.5 Nature and contents of container

Tracleer 62.5 mg film-coated tablets
PVC/PE/PVDC/aluminium-blisters containing 14 film-coated tablets.
Cartons contain 14, 56 or 112 film-coated tablets.

White high-density polyethylene bottles with a silica gel desiccant containing 56 film-coated tablets.
Cartons contain 56 film-coated tablets.

Tracleer 125 mg film-coated tablets
PVC/PE/PVDC/aluminium-blisters containing 14 film-coated tablets.
Cartons contain 56 or 112 film-coated tablets.

White high-density polyethylene bottles with a silica gel desiccant containing 56 film-coated tablets.
Cartons contain 56 film-coated tablets.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

No special requirements for disposal.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.
7. **MARKETING AUTHORISATION HOLDER**

Janssen-Cilag International NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

8. **MARKETING AUTHORISATION NUMBERS**

Tracleer 62.5 mg film-coated tablets
EU/1/02/220/001
EU/1/02/220/002
EU/1/02/220/003
EU/1/02/220/007

Tracleer 125 mg film-coated tablets
EU/1/02/220/004
EU/1/02/220/005
EU/1/02/220/008

9. **DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION**

Date of first authorisation: 15 May 2002
Date of latest renewal: 20 April 2012

10. **DATE OF REVISION OF THE TEXT**

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu/.
1. **NAME OF THE MEDICINAL PRODUCT**
Tracleer 32 mg dispersible tablets

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**
Each dispersible tablet contains 32 mg bosentan (as monohydrate).

Excipients with known effect
Each dispersible tablet contains 3.7 mg of aspartame (E951).

This medicine contains less than 1 mmol sodium (23 mg) per tablet, that is to say essentially ‘sodium-free’.

For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**
Dispersible tablet:

Pale yellow to off-white, clover-shape tablets, quadrisected on one side and debossed with “32” on the other side. The dispersible tablet can be divided into four equal parts.

4. **CLINICAL PARTICULARS**

4.1 **Therapeutic indications**
Treatment of pulmonary arterial hypertension (PAH) to improve exercise capacity and symptoms in patients with WHO functional class III. Efficacy has been shown in:

- Primary (idiopathic and heritable) pulmonary arterial hypertension
- Pulmonary arterial hypertension secondary to scleroderma without significant interstitial pulmonary disease
- Pulmonary arterial hypertension associated with congenital systemic-to-pulmonary shunts and Eisenmenger’s physiology

Some improvements have also been shown in patients with pulmonary arterial hypertension WHO functional class II (see section 5.1).

Tracleer is also indicated to reduce the number of new digital ulcers in patients with systemic sclerosis and ongoing digital ulcer disease (see section 5.1).

4.2 **Posology and method of administration**

Method of administration

Tablets are to be taken orally morning and evening, with or without food.
The dispersible tablets should be added to a little water on a spoon, and the liquid stirred to aid dissolution, before swallowing. A little more water should be added to the spoon and swallowed by the patient, to make sure all of the medicine has been administered. If possible, a glass of water should be taken to ensure that all the medicine has been ingested. If necessary, the dispersible tablet can be divided by breaking it along the lines cut into the surface (see section 6.6).

The dispersible tablet has been studied only in paediatric patients. A bioavailability comparison between dispersible tablets and film-coated tablets performed in adult subjects indicated lower exposure to bosentan with the dispersible tablet (see section 5.2). Thus its use in adults should be reserved for patients who cannot take the film-coated tablet.

Posology

Pulmonary arterial hypertension

Treatment should only be initiated and monitored by a physician experienced in the treatment of PAH. A Patient Alert Card providing important safety information that patients need to be aware of before and during treatment with Tracleer is included in the pack.

Adults

In adult patients, Tracleer treatment should be initiated at a dose of 62.5 mg twice daily for 4 weeks and then increased to the maintenance dose of 125 mg twice daily. The same recommendations apply to re-introduction of Tracleer after treatment interruption (see section 4.4).

Paediatric population

Paediatric pharmacokinetic data have shown that bosentan plasma concentrations in children with PAH aged from 1 year to 15 years were on average lower than in adult patients and were not increased by increasing the dose of Tracleer above 2 mg/kg body weight or by increasing the dosing frequency from twice daily to three times daily (see section 5.2). Increasing the dose or the dosing frequency will likely not result in additional clinical benefit.

Based on these pharmacokinetic results, when used in children with PAH aged 1 year and older, the recommended starting and maintenance dose is 2 mg/kg morning and evening.

In neonates with persistent pulmonary hypertension of the newborn (PHN), the benefit of bosentan has not been shown in the standard-of-care treatment. No recommendation on a posology can be made (see sections 5.1 and 5.2).

Management in the event of clinical deterioration of PAH

In the event of clinical deterioration (e.g., decrease in 6-minute walk test distance by at least 10% compared with pre-treatment measurement) despite Tracleer treatment for at least 8 weeks (target dose for at least 4 weeks), alternative therapies should be considered. However, some patients who show no response after 8 weeks of treatment with Tracleer may respond favourably after an additional 4 to 8 weeks of treatment.

In the event of late clinical deterioration despite treatment with Tracleer (i.e., after several months of treatment), the treatment should be re-assessed. Some patients not responding well to 125 mg twice daily of Tracleer may slightly improve their exercise capacity when the dose is increased to 250 mg twice daily. A careful benefit/risk assessment should be made, taking into consideration that the liver toxicity is dose dependent (see sections 4.4 and 5.1).
Discontinuation of treatment

There is limited experience with abrupt discontinuation of Tracleer in patients with PAH. No evidence for acute rebound has been observed. However, to avoid the possible occurrence of harmful clinical deterioration due to potential rebound effect, gradual dose reduction (halving the dose for 3 to 7 days) should be considered. Intensified monitoring is recommended during the discontinuation period. If the decision to withdraw Tracleer is taken, it should be done gradually while an alternative therapy is introduced.

Systemic sclerosis with ongoing digital ulcer disease

Treatment should only be initiated and monitored by a physician experienced in the treatment of systemic sclerosis.
A Patient Alert Card providing important safety information that patients need to be aware of before and during treatment with Tracleer is included in the pack.

Adults
Tracleer treatment should be initiated at a dose of 62.5 mg twice daily for 4 weeks and then increased to the maintenance dose of 125 mg twice daily. The same recommendations apply to re-introduction of Tracleer after treatment interruption (see section 4.4).

Controlled clinical study experience in this indication is limited to 6 months (see section 5.1).

The patient’s response to treatment and need for continued therapy should be re-evaluated on a regular basis. A careful benefit/risk assessment should be made, taking into consideration the liver toxicity of bosentan (see sections 4.4 and 4.8).

Paediatric population
There are no data on the safety and efficacy in patients under the age of 18 years. Pharmacokinetic data are not available for Tracleer in young children with this disease.

Special populations

Hepatic impairment
Tracleer is contraindicated in patients with moderate to severe liver dysfunction (see sections 4.3, 4.4 and 5.2). No dose adjustment is needed in patients with mild hepatic impairment (i.e., Child-Pugh class A) (see section 5.2).

Renal impairment
No dose adjustment is required in patients with renal impairment. No dose adjustment is required in patients undergoing dialysis (see section 5.2).

Elderly
No dose adjustment is required in patients over the age of 65 years.

4.3 Contraindications

- Hypersensitivity to the active substance or to any of the excipients listed in section 6.1
- Moderate to severe hepatic impairment, i.e., Child-Pugh class B or C (see section 5.2)
Baseline values of liver aminotransferases, i.e., aspartate aminotransferase (AST) and/or alanine aminotransferase (ALT), greater than $3 \times$ the upper limit of normal (ULN; see section 4.4)

Concomitant use of cyclosporine A (see section 4.5)

Pregnancy (see sections 4.4 and 4.6)

Women of childbearing potential who are not using reliable methods of contraception (see sections 4.4, 4.5 and 4.6)

4.4 Special warnings and precautions for use

The efficacy of Tracleer has not been established in patients with severe PAH. Transfer to a therapy that is recommended at the severe stage of the disease (e.g., epoprostenol) should be considered if the clinical condition deteriorates (see section 4.2).

The benefit/risk balance of bosentan has not been established in patients with WHO class I functional status of PAH.

Tracleer should only be initiated if the systemic systolic blood pressure is higher than 85 mmHg.

Tracleer has not been shown to have a beneficial effect on the healing of existing digital ulcers.

Liver function

Elevations in liver aminotransferases, i.e., aspartate and alanine aminotransferases (AST and/or ALT), associated with bosentan are dose dependent. Liver enzyme changes typically occur within the first 26 weeks of treatment but may also occur late in treatment (see section 4.8). These increases may be partly due to competitive inhibition of the elimination of bile salts from hepatocytes but other mechanisms, which have not been clearly established, are probably also involved in the occurrence of liver dysfunction. The accumulation of bosentan in hepatocytes leading to cytolysis with potentially severe damage of the liver, or an immunological mechanism, are not excluded. Liver dysfunction risk may also be increased when medicinal products that are inhibitors of the bile salt export pump, e.g., rifampicin, glibenclamide and cyclosporine A (see sections 4.3 and 4.5), are co-administered with bosentan, but limited data are available.

Liver aminotransferase levels must be measured prior to initiation of treatment and subsequently at monthly intervals for the duration of treatment with Tracleer. In addition, liver aminotransferase levels must be measured 2 weeks after any dose increase.

Recommendations in the event of ALT/AST elevations

<table>
<thead>
<tr>
<th>ALT/AST levels</th>
<th>Treatment and monitoring recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 3 and $\leq 5 \times$ ULN</td>
<td>The result should be confirmed by a second liver test; if confirmed, a decision should be made on an individual basis to continue Tracleer, possibly at a reduced dose, or to stop Tracleer administration (see section 4.2). Monitoring of aminotransferase levels should be continued at least every 2 weeks. If the aminotransferase levels return to pre-treatment values continuing or re-introducing Tracleer according to the conditions described below should be considered.</td>
</tr>
<tr>
<td>> 5 and $\leq 8 \times$ ULN</td>
<td>The result should be confirmed by a second liver test; if confirmed, treatment should be stopped and aminotransferase levels monitored at least every 2 weeks. If the aminotransferase levels return to pre-treatment values re-introducing Tracleer according to the conditions described below should be considered.</td>
</tr>
</tbody>
</table>
Treatment must be stopped and re-introduction of Tracleer is not to be considered.

In the event of associated clinical symptoms of liver injury, i.e., nausea, vomiting, fever, abdominal pain, jaundice, unusual lethargy or fatigue, flu-like syndrome (arthralgia, myalgia, fever), treatment must be stopped and re-introduction of Tracleer is not to be considered.

Re-introduction of treatment
Re-introduction of treatment with Tracleer should only be considered if the potential benefits of treatment with Tracleer outweigh the potential risks and when liver aminotransferase levels are within pre-treatment values. The advice of a hepatologist is recommended. Re-introduction must follow the guidelines detailed in section 4.2. Aminotransferase levels must then be checked within 3 days after re-introduction, then again after a further 2 weeks, and thereafter according to the recommendations above.

ULN = upper limit of normal

Haemoglobin concentration

Treatment with bosentan has been associated with dose-related decreases in haemoglobin concentration (see section 4.8). In placebo-controlled studies, bosentan-related decreases in haemoglobin concentration were not progressive, and stabilised after the first 4–12 weeks of treatment. It is recommended that haemoglobin concentrations be checked prior to initiation of treatment, every month during the first 4 months, and quarterly thereafter. If a clinically relevant decrease in haemoglobin concentration occurs, further evaluation and investigation should be undertaken to determine the cause and need for specific treatment. In the post-marketing period, cases of anaemia requiring red blood cell transfusion have been reported (see section 4.8).

Women of childbearing potential

As Tracleer may render hormonal contraceptives ineffective, and taking into account the risk that pulmonary hypertension deteriorates with pregnancy as well as the teratogenic effects observed in animals:

- Tracleer treatment must not be initiated in women of childbearing potential unless they practise reliable contraception and the result of the pre-treatment pregnancy test is negative
- Hormonal contraceptives cannot be the sole method of contraception during treatment with Tracleer
- Monthly pregnancy tests are recommended during treatment to allow early detection of pregnancy

For further information see sections 4.5 and 4.6.

Pulmonary veno-occlusive disease

Cases of pulmonary oedema have been reported with vasodilators (mainly prostacyclins) when used in patients with pulmonary veno-occlusive disease. Consequently, should signs of pulmonary oedema occur when Tracleer is administered in patients with PAH, the possibility of associated veno-occlusive disease should be considered. In the post-marketing period there have been rare reports of pulmonary oedema in patients treated with Tracleer who had a suspected diagnosis of pulmonary veno-occlusive disease.
Pulmonary arterial hypertension patients with concomitant left ventricular failure

No specific study has been performed in patients with pulmonary hypertension and concomitant left ventricular dysfunction. However, 1,611 patients (804 bosentan- and 807 placebo-treated patients) with severe chronic heart failure (CHF) were treated for a mean duration of 1.5 years in a placebo-controlled study (study AC-052-301/302 [ENABLE 1 & 2]). In this study there was an increased incidence of hospitalisation due to CHF during the first 4–8 weeks of treatment with bosentan, which could have been the result of fluid retention. In this study, fluid retention was manifested by early weight gain, decreased haemoglobin concentration and increased incidence of leg oedema. At the end of this study, there was no difference in overall hospitalisations for heart failure nor in mortality between bosentan- and placebo-treated patients. Consequently, it is recommended that patients be monitored for signs of fluid retention (e.g., weight gain), especially if they concomitantly suffer from severe systolic dysfunction. Should this occur, starting treatment with diuretics is recommended, or the dose of existing diuretics should be increased. Treatment with diuretics should be considered in patients with evidence of fluid retention before the start of treatment with Tracleer.

Pulmonary arterial hypertension associated with HIV infection

There is limited clinical study experience with the use of Tracleer in patients with PAH associated with HIV infection, treated with antiretroviral medicinal products (see section 5.1). An interaction study between bosentan and lopinavir+ritonavir in healthy subjects showed increased plasma concentrations of bosentan, with the maximum level during the first 4 days of treatment (see section 4.5). When treatment with Tracleer is initiated in patients who require ritonavir-boosted protease inhibitors, the patient’s tolerability of Tracleer should be closely monitored with special attention, at the beginning of the initiation phase, to the risk of hypotension and to liver function tests. An increased long-term risk of hepatic toxicity and haematological adverse events cannot be excluded when bosentan is used in combination with antiretroviral medicinal products. Due to the potential for interactions related to the inducing effect of bosentan on CYP450 (see section 4.5), which could affect the efficacy of antiretroviral therapy, these patients should also be monitored carefully regarding their HIV infection.

Pulmonary hypertension secondary to chronic obstructive pulmonary disease (COPD)

Safety and tolerability of bosentan was investigated in an exploratory, uncontrolled 12-week study in 11 patients with pulmonary hypertension secondary to severe COPD (stage III of GOLD classification). An increase in minute ventilation and a decrease in oxygen saturation were observed, and the most frequent adverse event was dyspnoea, which resolved with discontinuation of bosentan.

Concomitant use with other medicinal products

Concomitant use of Tracleer and cyclosporine A is contraindicated (see sections 4.3 and 4.5).

Concomitant use of Tracleer with glibenclamide, fluconazole and rifampicin is not recommended. For further details please refer to section 4.5.

Concomitant administration of both a CYP3A4 inhibitor and a CYP2C9 inhibitor with Tracleer should be avoided (see section 4.5).

Excipient

Tracleer 32 mg dispersible tablets contain a source of phenylalanine (Aspartame – E951). This may be harmful for people with phenylketonuria. Neither non-clinical nor clinical data are available to assess aspartame use in infants below 12 weeks of age.
4.5 Interaction with other medicinal products and other forms of interaction

Bosentan is an inducer of the cytochrome P450 (CYP) isoenzymes CYP2C9 and CYP3A4. *In vitro* data also suggest an induction of CYP2C19. Consequently, plasma concentrations of substances metabolised by these isoenzymes will be decreased when Tracleer is co-administered. The possibility of altered efficacy of medicinal products metabolised by these isoenzymes should be considered. The dosage of these products may need to be adjusted after initiation, dose change or discontinuation of concomitant Tracleer treatment.

Bosentan is metabolised by CYP2C9 and CYP3A4. Inhibition of these isoenzymes may increase the plasma concentration of bosentan (see ketoconazole). The influence of CYP2C9 inhibitors on bosentan concentration has not been studied. The combination should be used with caution.

Fluconazole and other inhibitors of both CYP2C9 and CYP3A4: Co-administration with fluconazole, which inhibits mainly CYP2C9, but to some extent also CYP3A4, could lead to large increases in plasma concentrations of bosentan. The combination is not recommended. For the same reason, concomitant administration of both a potent CYP3A4 inhibitor (such as ketoconazole, itraconazole or ritonavir) and a CYP2C9 inhibitor (such as voriconazole) with Tracleer is not recommended.

Cyclosporine A: Co-administration of Tracleer and cyclosporine A (a calcineurin inhibitor) is contraindicated (see section 4.3). When co-administered, initial trough concentrations of bosentan were approximately 30-fold higher than those measured after bosentan alone. At steady state, bosentan plasma concentrations were 3- to 4-fold higher than with bosentan alone. The mechanism of this interaction is most likely inhibition of transport protein-mediated uptake of bosentan into hepatocytes by cyclosporine. The blood concentrations of cyclosporine A (a CYP3A4 substrate) decreased by approximately 50%. This is most likely due to induction of CYP3A4 by bosentan.

Tacrolimus, sirolimus: Co-administration of tacrolimus or sirolimus and Tracleer has not been studied in man but co-administration of tacrolimus or sirolimus and Tracleer may result in increased plasma concentrations of bosentan in analogy to co-administration with cyclosporine A. Concomitant Tracleer may reduce the plasma concentrations of tacrolimus and sirolimus. Therefore, concomitant use of Tracleer and tacrolimus or sirolimus is not advisable. Patients in need of the combination should be closely monitored for adverse events related to Tracleer and for tacrolimus and sirolimus blood concentrations.

Glibenclamide: Co-administration of bosentan 125 mg twice daily for 5 days decreased the plasma concentrations of glibenclamide (a CYP3A4 substrate) by 40%, with potential significant decrease of the hypoglycaemic effect. The plasma concentrations of bosentan were also decreased by 29%. In addition, an increased incidence of elevated aminotransferases was observed in patients receiving concomitant therapy. Both glibenclamide and bosentan inhibit the bile salt export pump, which could explain the elevated aminotransferases. This combination should not be used. No drug-drug interaction data are available with the other sulfonylureas.

Rifampicin: Co-administration in 9 healthy subjects for 7 days of bosentan 125 mg twice daily with rifampicin, a potent inducer of CYP2C9 and CYP3A4, decreased the plasma concentrations of bosentan by 58%, and this decrease could achieve almost 90% in an individual case. As a result, a significantly reduced effect of bosentan is expected when it is co-administered with rifampicin. Concomitant use of rifampicin and Tracleer is not recommended. Data on other CYP3A4 inducers, e.g., carbamazepine, phenobarbital, phenytoin and St. John’s wort are lacking, but their concomitant administration is expected to lead to reduced systemic exposure to bosentan. A clinically significant reduction of efficacy cannot be excluded.
Lopinavir+ritonavir (and other ritonavir-boosted protease inhibitors): Co-administration of bosentan 125 mg twice daily and lopinavir+ritonavir 400+100 mg twice daily for 9.5 days in healthy volunteers resulted in initial trough plasma concentrations of bosentan that were approximately 48-fold higher than those measured after bosentan administered alone. On day 9, plasma concentrations of bosentan were approximately 5-fold higher than with bosentan administered alone. Inhibition by ritonavir of transport protein-mediated uptake into hepatocytes and of CYP3A4, thereby reducing the clearance of bosentan, most likely causes this interaction. When administered concomitantly with lopinavir+ritonavir, or other ritonavir-boosted protease inhibitors, the patient’s tolerability of Tracleer should be monitored.

After co-administration of bosentan for 9.5 days, the plasma exposures to lopinavir and ritonavir decreased to a clinically non-significant extent (by approximately 14% and 17%, respectively). However, full induction by bosentan might not have been reached and a further decrease of protease inhibitors cannot be excluded. Appropriate monitoring of the HIV therapy is recommended. Similar effects would be expected with other ritonavir-boosted protease inhibitors (see section 4.4).

Other antiretroviral agents: No specific recommendation can be made with regard to other available antiretroviral agents due to the lack of data. Due to the marked hepatotoxicity of nevirapine, which could add to bosentan liver toxicity, this combination is not recommended.

Hormonal contraceptives: Co-administration of bosentan 125 mg twice daily for 7 days with a single dose of oral contraceptive containing norethisterone 1 mg + ethinyl estradiol 35 mcg decreased the AUC of norethisterone and ethinyl estradiol by 14% and 31%, respectively. However, decreases in exposure were as much as 56% and 66%, respectively, in individual subjects. Therefore, hormone-based contraceptives alone, regardless of the route of administration (i.e., oral, injectable, transdermal or implantable forms), are not considered as reliable methods of contraception (see sections 4.4 and 4.6).

Warfarin: Co-administration of bosentan 500 mg twice daily for 6 days decreased the plasma concentrations of both S-warfarin (a CYP2C9 substrate) and R-warfarin (a CYP3A4 substrate) by 29% and 38%, respectively. Clinical experience with concomitant administration of bosentan with warfarin in patients with PAH did not result in clinically relevant changes in International Normalised Ratio (INR) or warfarin dose (baseline versus end of the clinical studies). In addition, the frequency of changes in warfarin dose during the studies due to changes in INR or due to adverse events was similar among bosentan- and placebo-treated patients. No dose adjustment is needed for warfarin and similar oral anticoagulant agents when bosentan is initiated, but intensified monitoring of INR is recommended, especially during bosentan initiation and the up-titration period.

Simvastatin: Co-administration of bosentan 125 mg twice daily for 5 days decreased the plasma concentrations of simvastatin (a CYP3A4 substrate) and its active β-hydroxy acid metabolite by 34% and 46%, respectively. The plasma concentrations of bosentan were not affected by concomitant simvastatin. Monitoring of cholesterol levels and subsequent dosage adjustment should be considered.

Ketoconazole: Co-administration for 6 days of bosentan 62.5 mg twice daily with ketoconazole, a potent CYP3A4 inhibitor, increased the plasma concentrations of bosentan approximately 2-fold. No dose adjustment of Tracleer is considered necessary. Although not demonstrated through in vivo studies, similar increases in bosentan plasma concentrations are expected with the other potent CYP3A4 inhibitors (such as itraconazole or ritonavir). However, when combined with a CYP3A4 inhibitor, patients who are poor metabolisers of CYP2C9 are at risk of increases in bosentan plasma concentrations that may be of higher magnitude, thus leading to potential harmful adverse events.

Epoprostenol: Limited data obtained from a study (AC-052-356 [BREATHE-3]) in which 10 paediatric patients received the combination of bosentan and epoprostenol indicate that after both
single- and multiple-dose administration, the C_{max} and AUC values of bosentan were similar in patients with or without continuous infusion of epoprostenol (see section 5.1).

Sildenafil: Co-administration of bosentan 125 mg twice daily (steady state) with sildenafil 80 mg three times a day (at steady state) concomitantly administered during 6 days in healthy volunteers resulted in a 63% decrease in the sildenafil AUC and a 50% increase in the bosentan AUC. Caution is recommended in the case of co-administration.

Tadalafil: Bosentan (125 mg twice daily) reduced tadalafil (40 mg once per day) systemic exposure by 42% and C_{max} by 27% following multiple dose co-administration. Tadalafil did not affect the exposure (AUC and C_{max}) of bosentan or its metabolites.

Digoxin: Co-administration for 7 days of bosentan 500 mg twice daily with digoxin decreased the AUC, C_{max} and C_{min} of digoxin by 12%, 9% and 23%, respectively. The mechanism for this interaction may be induction of P-glycoprotein. This interaction is unlikely to be of clinical relevance.

Paediatric population

Interaction studies have only been performed in adults.

4.6 Fertility, pregnancy and lactation

Pregnancy

Studies in animals have shown reproductive toxicity (teratogenicity, embryotoxicity; see section 5.3). There are no reliable data on the use of Tracleer in pregnant women. The potential risk for humans is still unknown. Tracleer is contraindicated in pregnancy (see section 4.3).

Women of childbearing potential

Before the initiation of Tracleer treatment in women of childbearing potential, the absence of pregnancy should be checked, appropriate advice on reliable methods of contraception provided, and reliable contraception initiated. Patients and prescribers must be aware that due to potential pharmacokinetic interactions, Tracleer may render hormonal contraceptives ineffective (see section 4.5). Therefore, women of childbearing potential must not use hormonal contraceptives (including oral, injectable, transdermal or implantable forms) as the sole method of contraception but must use an additional or an alternative reliable method of contraception. If there is any doubt about what contraceptive advice should be given to the individual patient, consultation with a gynaecologist is recommended. Because of possible hormonal contraception failure during Tracleer treatment, and also bearing in mind the risk that pulmonary hypertension severely deteriorates with pregnancy, monthly pregnancy tests during treatment with Tracleer are recommended to allow early detection of pregnancy.

Breast-feeding

It is not known whether bosentan is excreted into human breast milk. Breast-feeding is not recommended during treatment with Tracleer.

Fertility

Animal studies showed testicular effects (see section 5.3). In a clinical study investigating the effects of bosentan on testicular function in male PAH patients, six of the 24 subjects (25%) had a decreased sperm concentration of at least 50% from baseline at 6 months of treatment with bosentan. Based on
these findings and preclinical data, it cannot be excluded that bosentan may have a detrimental effect on spermatogenesis in men. In male children, a long-term impact on fertility after treatment with bosentan cannot be excluded.

4.7 Effects on ability to drive and use machines

No specific studies have been conducted to assess the direct effect of Tracleer on the ability to drive and use machines. However, Tracleer may induce hypotension, with symptoms of dizziness, blurred vision or syncope that could affect the ability to drive or use machines.

4.8 Undesirable effects

In 20 placebo-controlled studies, conducted in a variety of therapeutic indications, a total of 2 486 patients were treated with bosentan at daily doses ranging from 100 mg to 2 000 mg and 1 838 patients were treated with placebo. The mean treatment duration was 45 weeks. Adverse reactions were defined as events occurring in at least 1% of patients on bosentan and at a frequency at least 0.5% more than on placebo. The most frequent adverse reactions are headache (11.5%), oedema / fluid retention (13.2%), abnormal liver function test (10.9%) and anaemia / haemoglobin decrease (9.9%).

Treatment with bosentan has been associated with dose-dependent elevations in liver aminotransferases and decreases in haemoglobin concentration (see section 4.4).

Adverse reactions observed in 20 placebo-controlled studies and post-marketing experience with bosentan are ranked according to frequency using the following convention: very common (≥ 1/10); common (≥ 1/100 to < 1/10); uncommon (≥ 1/1 000 to < 1/100); rare (≥ 1/10 000 to < 1/1 000); very rare (< 1/10 000); not known (cannot be estimated from the available data).

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness. No clinically relevant differences in adverse reactions were observed between the overall dataset and the approved indications.

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Frequency</th>
<th>Adverse reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Common</td>
<td>Anaemia, haemoglobin decrease, (see section 4.4)</td>
</tr>
<tr>
<td></td>
<td>Not known</td>
<td>Anaemia or haemoglobin decreases requiring red blood cell transfusion¹</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Thrombocytopenia¹</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Neutropenia, leukopenia¹</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>Common</td>
<td>Hypersensitivity reactions (including dermatitis, pruritus and rash)²</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td>Anaphylaxis and/or angioedema¹</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td>Very common</td>
<td>Headache³</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Syncope¹,⁴</td>
</tr>
<tr>
<td>Eye disorders</td>
<td>Not known</td>
<td>Blurred vision¹</td>
</tr>
<tr>
<td>Cardiac disorders</td>
<td>Common</td>
<td>Palpitations¹,⁴</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>Common</td>
<td>Flushing</td>
</tr>
<tr>
<td></td>
<td>Common</td>
<td>Hypotension¹,⁴</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Common</td>
<td>Nasal congestion¹</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Common</td>
<td>Gastrooesophageal reflux disease Diarrhoea</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>Very common</td>
<td>Abnormal liver function test (see section 4.4)</td>
</tr>
<tr>
<td></td>
<td>Uncommon</td>
<td>Aminotransferase elevations associated with hepatitis (including possible exacerbation of underlying hepatitis) and/or jaundice¹ (see section 4.4)</td>
</tr>
<tr>
<td></td>
<td>Rare</td>
<td>Liver cirrhosis, liver failure¹</td>
</tr>
<tr>
<td>Skin and subcutaneous disorders</td>
<td>Common</td>
<td>Erythema</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Very common</td>
<td>Oedema, fluid retention⁵</td>
</tr>
</tbody>
</table>

1 Data derived from post-marketing experience, frequencies based on statistical modelling of placebo-controlled clinical trial data.
2 Hypersensitivity reactions were reported in 9.9% of patients on bosentan and 9.1% of patients on placebo.
3 Headache was reported in 11.5% of patients on bosentan and 9.8% of patients on placebo.
4 These types of reactions can also be related to the underlying disease.
5 Oedema or fluid retention was reported in 13.2% of patients on bosentan and 10.9% of patients on placebo.

In the post-marketing period rare cases of unexplained hepatic cirrhosis were reported after prolonged therapy with Tracleer in patients with multiple co-morbidities and therapies with medicinal products. There have also been rare reports of liver failure. These cases reinforce the importance of strict adherence to the monthly schedule for monitoring of liver function for the duration of treatment with Tracleer (see section 4.4).

Paediatric population

Uncontrolled clinical studies in paediatric patients

The safety profile in the first paediatric uncontrolled study performed with the film-coated tablet (BREATHE-3: n = 19, median age 10 years [range 3–15 years], open-label bosentan 2 mg/kg twice daily; treatment duration 12 weeks) was similar to that observed in the pivotal trials in adult patients with PAH. In BREATHE-3, the most frequent adverse reactions were flushing (21%), headache, and abnormal liver function test (each 16%).

A pooled analysis of uncontrolled paediatric studies conducted in PAH with the bosentan 32 mg dispersible tablet formulation (FUTURE 1/2, FUTURE 3/Extension) included a total of 100 children treated with bosentan 2 mg/kg twice daily (n = 33), 2 mg/kg three times daily (n = 31), or 4 mg/kg twice daily (n = 36). At enrolment, six patients were between 3 months and 1 year old, 15 children were between 1 and less than 2 years old, and 79 were between 2 and 12 years old. The median treatment duration was 71.8 weeks (range 0.4–258 weeks).

The safety profile in this pooled analysis of uncontrolled paediatric studies was similar to that observed in the pivotal trials in adult patients with PAH except for infections, which were more frequently reported than in adults (69.0% vs 41.3%). This difference in infection frequency may in part be due to the longer median treatment exposure in the paediatric set (median 71.8 weeks) compared with the adult set (median 17.4 weeks). The most frequent adverse events were upper respiratory tract infections (25%), pulmonary (arterial) hypertension (20%), nasopharyngitis (17%), pyrexia (15%), vomiting (13%), bronchitis (10%), abdominal pain (10%), and diarrhoea (10%). There was no relevant difference in adverse event frequencies between patients above and below the age of 2 years; however, this is based on only 21 children less than 2 years including 6 patients between 3 months to 1 year of age. Adverse events of liver abnormalities and anaemia/hemoglobin decrease occurred in 9% and 5% of patients, respectively.
In a randomised placebo-controlled study, conducted in PPHN patients (FUTURE-4), a total of 13 neonates were treated with the bosentan dispersible tablet formulation at a dose of 2 mg/kg twice daily (8 patients were on placebo). The median bosentan and placebo treatment duration was, respectively, 4.5 days (range 0.5–10.0 days) and 4.0 days (range 2.5–6.5 days). The most frequent adverse events in the bosentan- and placebo-treated patients were, respectively, anaemia or haemoglobin decrease (7 and 2 patients), generalised oedema (3 and 0 patients), and vomiting (2 and 0 patients).

Laboratory abnormalities

Liver test abnormalities

In the clinical programme, dose-dependent elevations in liver aminotransferases generally occurred within the first 26 weeks of treatment, usually developed gradually, and were mainly asymptomatic. In the post-marketing period rare cases of liver cirrhosis and liver failure have been reported.

The mechanism of this adverse effect is unclear. These elevations in aminotransferases may reverse spontaneously while continuing treatment with the maintenance dose of Tracleer or after dose reduction, but interruption or cessation may be necessary (see section 4.4).

In the 20 integrated placebo-controlled studies, elevations in liver aminotransferases $\geq 3 \times$ ULN were observed in 11.2% of the bosentan-treated patients as compared to 2.4% of the placebo-treated patients. Elevations to $\geq 8 \times$ ULN were seen in 3.6% of the bosentan-treated patients and 0.4% of the placebo-treated patients. Elevations in aminotransferases were associated with elevated bilirubin ($\geq 2 \times$ ULN) without evidence of biliary obstruction in 0.2% (5 patients) on bosentan and 0.3% (6 patients) on placebo.

In the pooled analysis of 100 PAH children from uncontrolled paediatric studies FUTURE 1/2 and FUTURE 3/Extension, elevations in liver aminotransferases $\geq 3 \times$ ULN were observed in 2% of patients.

In the FUTURE-4 study including 13 neonates with PPHN treated with bosentan 2 mg/kg twice daily for less than 10 days (range 0.5–10.0 days), there were no cases of liver aminotransferases $\geq 3 \times$ULN during treatment, but one case of hepatitis occurred 3 days after the end of bosentan treatment.

Haemoglobin

In the adult placebo-controlled studies, a decrease in haemoglobin concentration to below 10 g/dL from baseline was reported in 8.0% of bosentan-treated patients and 3.9% of placebo-treated patients (see section 4.4).

In the pooled analysis of 100 PAH children from uncontrolled paediatric studies FUTURE 1/2 and FUTURE 3/Extension, a decrease in haemoglobin concentration from baseline to below 10 g/dL was reported in 10.0% of patients. There was no decrease to below 8 g/dL.

In the FUTURE-4 study, 6 out of 13 bosentan-treated neonates with PPHN experienced a decrease in haemoglobin from within the reference range at baseline to below the lower limit of normal during the treatment.
Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

Bosentan has been administered as a single dose of up to 2 400 mg to healthy subjects and up to 2 000 mg/day for 2 months in patients with a disease other than pulmonary hypertension. The most common adverse reaction was headache of mild to moderate intensity.

Massive overdose may result in pronounced hypotension requiring active cardiovascular support. In the post-marketing period there was one reported overdose of 10 000 mg of Tracleer taken by an adolescent male patient. He had symptoms of nausea, vomiting, hypotension, dizziness, sweating and blurred vision. He recovered completely within 24 hours with blood pressure support. Note: bosentan is not removed through dialysis.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: other antihypertensives, ATC code: C02KX01

Mechanism of action

Bosentan is a dual endothelin receptor antagonist (ERA) with affinity for both endothelin A and B (ET\textsubscript{A} and ET\textsubscript{B}) receptors. Bosentan decreases both pulmonary and systemic vascular resistance resulting in increased cardiac output without increasing heart rate.

The neurohormone endothelin-1 (ET-1) is one of the most potent vasoconstrictors known and can also promote fibrosis, cell proliferation, cardiac hypertrophy and remodelling, and is pro-inflammatory. These effects are mediated by endothelin binding to ET\textsubscript{A} and ET\textsubscript{B} receptors located in the endothelium and vascular smooth muscle cells. ET-1 concentrations in tissues and plasma are increased in several cardiovascular disorders and connective tissue diseases, including PAH, scleroderma, acute and chronic heart failure, myocardial ischaemia, systemic hypertension and atherosclerosis, suggesting a pathogenic role of ET-1 in these diseases. In PAH and heart failure, in the absence of endothelin receptor antagonism, elevated ET-1 concentrations are strongly correlated with the severity and prognosis of these diseases.

Bosentan competes with the binding of ET-1 and other ET peptides to both ET\textsubscript{A} and ET\textsubscript{B} receptors, with a slightly higher affinity for ET\textsubscript{A} receptors (K\textsubscript{i} = 4.1–43 nanomolar) than for ET\textsubscript{B} receptors (K\textsubscript{i} = 38–730 nanomolar). Bosentan specifically antagonises ET receptors and does not bind to other receptors.

Efficacy

Animal models
In animal models of pulmonary hypertension, chronic oral administration of bosentan reduced pulmonary vascular resistance and reversed pulmonary vascular and right ventricular hypertrophy. In an animal model of pulmonary fibrosis, bosentan reduced collagen deposition in the lungs.

Efficacy in adult patients with pulmonary arterial hypertension

Two randomised, double-blind, multi-centre, placebo-controlled studies have been conducted in 32 (study AC-052-351) and 213 (study AC-052-352 [BREATHE-1]) adult patients with WHO functional class III–IV PAH (primary pulmonary hypertension or pulmonary hypertension secondary mainly to scleroderma). After 4 weeks of bosentan 62.5 mg twice daily, the maintenance doses studied in these studies were 125 mg twice daily in AC-052-351, and 125 mg twice daily and 250 mg twice daily in AC-052-352.

Bosentan was added to patients’ current therapy, which could include a combination of anticoagulants, vasodilators (e.g., calcium channel blockers), diuretics, oxygen and digoxin, but not epoprostenol. Control was placebo plus current therapy.

The primary endpoint for each study was change in 6-minute walk distance at 12 weeks for the first study and 16 weeks for the second study. In both studies, treatment with bosentan resulted in significant increases in exercise capacity. The placebo-corrected increases in walk distance compared with baseline were 76 metres (p = 0.02; t-test) and 44 metres (p = 0.0002; Mann-Whitney U test) at the primary endpoint of each study, respectively. The differences between the two groups, 125 mg twice daily and 250 mg twice daily, were not statistically significant but there was a trend towards improved exercise capacity in the group treated with 250 mg twice daily.

The improvement in walk distance was apparent after 4 weeks of treatment, was clearly evident after 8 weeks of treatment and was maintained for up to 28 weeks of double-blind treatment in a subset of the patient population.

In a retrospective responder analysis based on change in walking distance, WHO functional class and dyspnoea of the 95 patients randomised to bosentan 125 mg twice daily in the placebo-controlled studies, it was found that at week 8, 66 patients had improved, 22 were stable and 7 had deteriorated. Of the 22 patients stable at week 8, 6 improved at week 12/16 and 4 deteriorated compared with baseline. Of the 7 patients who deteriorated at week 8, 3 improved at week 12/16 and 4 deteriorated compared with baseline.

Invasive haemodynamic parameters were assessed in the first study only. Treatment with bosentan led to a significant increase in cardiac index associated with a significant reduction in pulmonary artery pressure, pulmonary vascular resistance and mean right atrial pressure.

A reduction in symptoms of PAH was observed with bosentan treatment. Dyspnoea measurement during walk tests showed an improvement in bosentan-treated patients. In the AC-052-352 study, 92% of the 213 patients were classified at baseline as WHO functional class III and 8% as class IV. Treatment with bosentan led to a WHO functional class improvement in 42.4% of patients (placebo 30.4%). The overall change in WHO functional class during both studies was significantly better among bosentan-treated patients as compared with placebo-treated patients. Treatment with bosentan was associated with a significant reduction in the rate of clinical worsening compared with placebo at 28 weeks (10.7% vs 37.1%, respectively; p = 0.0015).

In a randomised, double-blind, multi-centre, placebo-controlled study (AC-052-364 [EARLY]), 185 PAH patients in WHO functional class II (mean baseline 6-minute walk distance of 435 metres) received bosentan 62.5 mg twice daily for 4 weeks followed by 125 mg twice daily (n = 93), or placebo (n = 92) for 6 months. Enrolled patients were PAH-treatment-naïve (n = 156) or on a stable
dose of sildenafil \((n = 29)\). The co-primary endpoints were percentage change from baseline in pulmonary vascular resistance \((PVR)\) and change from baseline in 6-minute walk distance to Month 6 versus placebo. The table below illustrates the pre-specified protocol analyses.

<table>
<thead>
<tr>
<th>PVR ((\text{dyn.sec/cm}^5))</th>
<th>6-Minute Walk Distance ((\text{m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo ((n=88)) Bosentan ((n=80))</td>
<td>Placebo ((n=91)) Bosentan ((n=86))</td>
</tr>
<tr>
<td>Baseline (BL); mean (SD)</td>
<td>802 (365)</td>
</tr>
<tr>
<td>Change from BL; mean (SD)</td>
<td>128 (465)</td>
</tr>
<tr>
<td>Treatment effects</td>
<td>-22.6%</td>
</tr>
<tr>
<td>95% CL</td>
<td>-34, -10</td>
</tr>
<tr>
<td>P-value</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

CL = confidence limit; PVR = pulmonary vascular resistance; SD = standard deviation.

Treatment with bosentan was associated with a reduction in the rate of clinical worsening, defined as a composite of symptomatic progression, hospitalisation for PAH and death, compared with placebo (proportional risk reduction 77%, 95% confidence interval [CI] 20–94%, \(p = 0.0114\)). The treatment effect was driven by improvement in the component symptomatic progression. There was one hospitalisation related to PAH worsening in the bosentan group and three hospitalisations in the placebo group. Only one death occurred in each treatment group during the 6-month double-blind study period, therefore no conclusion can be drawn on survival.

Long-term data were generated from all 173 patients who were treated with bosentan in the controlled phase and/or were switched from placebo to bosentan in the open-label extension phase of the EARLY study. The mean duration of exposure to bosentan treatment was 3.6 ± 1.8 years (up to 6.1 years), with 73% of patients treated for at least 3 years and 62% for at least 4 years. Patients could receive additional PAH treatment as required in the open-label extension. The majority of patients were diagnosed with idiopathic or heritable PAH (61%). Overall, 78% of patients remained in WHO functional class II. Kaplan-Meier estimates of survival were 90% and 85% at 3 and 4 years after the start of treatment, respectively. At the same timepoints, 88% and 79% of patients remained free from PAH worsening (defined as all-cause death, lung transplantation, atrial septostomy or start of intravenous or subcutaneous prostanoid treatment). The relative contributions of previous placebo treatment in the double-blind phase and of other medications started during the open-label extension period are unknown.

In a prospective, multi-centre, randomised, double-blind, placebo-controlled study (AC-052-405 [BREATHE-5]), patients with PAH WHO functional class III and Eisenmenger physiology associated with congenital heart disease received bosentan 62.5 mg twice daily for 4 weeks, then 125 mg twice daily for a further 12 weeks \((n = 37, \text{of whom 31 had a predominantly right to left, bidirectional shunt})\). The primary objective was to show that bosentan did not worsen hypoxaemia. After 16 weeks, the mean oxygen saturation was increased in the bosentan group by 1.0% \((95\% \text{ CI } –0.7\%–2.8\%)\) as compared to the placebo group \((n = 17)\), showing that bosentan did not worsen hypoxaemia. The mean pulmonary vascular resistance was significantly reduced in the bosentan group (with a predominant effect observed in the subgroup of patients with bidirectional intracardiac shunt). After 16 weeks, the mean placebo-corrected increase in 6-minute walk distance was 53 metres \((p = 0.0079)\), reflecting improvement in exercise capacity. Twenty-six patients continued to receive bosentan in the 24-week open-label extension phase (AC-052-409) of the BREATHE-5 study (mean duration of treatment = 24.4 ± 2.0 weeks) and, in general, efficacy was maintained.

An open-label, non-comparative study (AC-052-362 [BREATHE-4]) was performed in 16 patients with WHO functional class III PAH associated with HIV infection. Patients were treated with bosentan 62.5 mg twice daily for 4 weeks followed by 125 mg twice daily for a further 12 weeks. After 16 weeks’ treatment, there were significant improvements from baseline in exercise capacity: the mean increase in 6-minute walk distance was 91.4 metres from 332.6 metres on average at baseline \((p\)
< 0.001). No formal conclusion can be drawn regarding the effects of bosentan on antiretroviral drug efficacy (see also section 4.4).

There are no studies to demonstrate beneficial effects of Tracleer treatment on survival. However, long-term vital status was recorded for all 235 patients who were treated with bosentan in the two pivotal placebo-controlled studies (AC-052-351 and AC-052-352) and/or their two uncontrolled, open-label extensions. The mean duration of exposure to bosentan was 1.9 years ± 0.7 years (min: 0.1 years; max: 3.3 years) and patients were observed for a mean of 2.0 ± 0.6 years. The majority of patients were diagnosed as primary pulmonary hypertension (72%) and were in WHO functional class III (84%). In this total population, Kaplan-Meier estimates of survival were 93% and 84% 1 and 2 years after the start of treatment with bosentan, respectively. Survival estimates were lower in the subgroup of patients with PAH secondary to systemic sclerosis. The estimates may have been influenced by the initiation of epoprostenol treatment in 43/235 patients.

Studies performed in children with pulmonary arterial hypertension

BREATHE-3 (AC-052-356)
Bosentan film-coated tablets were evaluated in an open-label uncontrolled study in 19 paediatric patients with PAH aged 3 to 15 years. This study was primarily designed as a pharmacokinetic study (see section 5.2). Patients had primary pulmonary hypertension (10 patients) or PAH related to congenital heart diseases (9 patients) and were in WHO functional class II (n = 15, 79%) or class III (n = 4, 21%) at baseline. Patients were divided into three body-weight groups and dosed with bosentan at approximately 2 mg/kg twice daily for 12 weeks. Half of the patients in each group were already being treated with intravenous epoprostenol and the dose of epoprostenol remained constant for the duration of the study.

Haemodynamics were measured in 17 patients. The mean increase from baseline in cardiac index was 0.5 L/min/m², the mean decrease in mean pulmonary arterial pressure was 8 mmHg, and the mean decrease in PVR was 389 dyn·sec·cm⁻⁵. These haemodynamic improvements from baseline were similar with or without co-administration of epoprostenol. Changes in exercise test parameters at week 12 from baseline were highly variable and none were significant.

FUTURE 1/2 (AC-052-365/AC-052-367)
FUTURE 1 was an open-label, uncontrolled study that was conducted with the dispersible tablet formulation of bosentan administered at a maintenance dose of 4 mg/kg twice daily to 36 patients from 2 to 11 years of age. It was primarily designed as a pharmacokinetic study (see section 5.2). At baseline, patients had idiopathic (31 patients [86%]) or familial (5 patients [14%]) PAH, and were in WHO functional class II (n = 23, 64%) or class III (n = 13, 36%). In the FUTURE 1 study, the median exposure to study treatment was 13.1 weeks (range: 8.4 to 21.1). 33 of these patients were provided with continued treatment with bosentan dispersible tablets at a dose of 4 mg/kg twice daily in the FUTURE 2 uncontrolled extension phase for a median overall treatment duration of 2.3 years (range: 0.2 to 5.0 years). At baseline in FUTURE 1, 9 patients were taking epoprostenol. 9 patients were newly initiated on PAH-specific medication during the study. The Kaplan-Meier event-free estimate for worsening of PAH (death, lung transplantation, or hospitalisation for PAH worsening) at 2 years was 78.9%. The Kaplan-Meier estimate of overall survival at 2 years was 91.2%.

FUTURE 3 (AC-052-373)
In this open-label randomised study with the bosentan 32 mg dispersible tablet formulation, 64 children with stable PAH from 3 months to 11 years of age were randomised to 24 weeks’ bosentan treatment 2 mg/kg twice daily (n = 33) or 2 mg/kg three times daily (n = 31). 43 (67.2%) were ≥ 2 years to 11 years old, 15 (23.4%) were between 1 and 2 years old, and 6 (9.4%) were between 3 months and 1 year old. The study was primarily designed as a pharmacokinetic study (see section 5.2), and efficacy endpoints were only exploratory. The aetiology of PAH, according to Dana
Point classification, included idiopathic PAH (46%), heritable PAH (3%), associated PAH after corrective cardiac surgery (38%), and PAH related to congenital heart disease associated with systemic-to-pulmonary shunts, including Eisenmenger syndrome (13%). Patients were in WHO functional class I (n = 19, 29 %), class II (n = 27, 42%) or class III (n = 18, 28%) at start of study treatment. At study entry, patients were treated with PAH medications (most frequently phosphodiesterase type-5 inhibitor [sildenafil] alone [35.9%], bosentan alone [10.9%], and a combination of bosentan, iloprost, and sildenafil [10.9%]) and continued their PAH treatment during the study.

At study start, less than half of the patients included (45.3% [29/64]) had bosentan treatment alone not combined with other PAH medication. 40.6% (26/64) remained on bosentan monotherapy during the 24 weeks of study treatment without experiencing PAH worsening. The analysis on the global population included (64 patients) showed that the majority had remained at least stable (i.e., without deterioration) based on non-paediatric-specific WHO functional class assessment (97% twice daily, 100% three times daily) and physician’s global clinical impression (94% twice daily, 93% three times daily) during the treatment period. The Kaplan-Meier event-free estimate for worsening of PAH (death, lung transplantation, or hospitalisation for PAH worsening) at 24 weeks was 96.9% and 96.7% in the twice daily and three times daily groups, respectively.

There was no evidence of any clinical benefit with 2 mg/kg three times daily as compared to 2 mg/kg twice daily dosing.

Study performed in neonates with persistent pulmonary hypertension of the newborn (PPHN):

FUTURE 4 (AC-052-391)
This was a double-blind, placebo-controlled, randomised study in pre-term or term neonates (gestational age 36–42 weeks) with PPHN. Patients with suboptimal response to inhaled nitric oxide (iNO) despite at least 4 hours of continuous treatment were treated with bosentan dispersible tablets at 2 mg/kg twice daily (N = 13) or placebo (N = 8) via nasogastric tube as add-on therapy on top of iNO until complete weaning of iNO or until treatment failure (defined as need for extra-corporeal membrane oxygenation [ECMO] or initiation of alternative pulmonary vasodilator), and for a maximum of 14 days.

The median exposure to study treatment was 4.5 (range: 0.5–10.0) days in the bosentan group and 4.0 (range: 2.5–6.5) days in the placebo group.

The results did not indicate an additional benefit of bosentan in this population:
• The median time to complete weaning from iNO was 3.7 days (95% confidence limits [CLs] 1.17, 6.95) on bosentan and 2.9 days (95% CLs 1.26, 4.23) on placebo (p = 0.34).
• The median time to complete weaning from mechanical ventilation was 10.8 days (95% CLs 3.21, 12.21 days) on bosentan and 8.6 days (95% CLs 3.71, 9.66 days) on placebo (p = 0.24).
• One patient in the bosentan group had treatment failure (need for ECMO as per protocol definition), which was declared based on increasing Oxygenation Index values within 8 h after the first study drug dose. This patient recovered within the 60-day follow-up period.

Combination with epoprostenol
The combination of bosentan and epoprostenol has been investigated in two studies: AC-052-355 (BREATHE-2) and AC-052-356 (BREATHE-3). AC-052-355 was a multi-centre, randomised, double-blind, parallel-group study of bosentan versus placebo in 33 patients with severe PAH who were receiving concomitant epoprostenol therapy. AC-052-356 was an open-label, uncontrolled study; 10 of the 19 paediatric patients were on concomitant bosentan and epoprostenol therapy during the 12-week study. The safety profile of the combination was not different from the one expected with each
component and the combination therapy was well tolerated in children and adults. The clinical benefit of the combination has not been demonstrated.

Systemic sclerosis with digital ulcer disease

Two randomised, double-blind, multi-centre, placebo-controlled studies have been conducted in 122 (study AC-052-401 [RAPIDS-1]) and 190 (study AC-052-331 [RAPIDS-2]) adult patients with systemic sclerosis and digital ulcer disease (either ongoing digital ulcers or a history of digital ulcers within the previous year). In study AC-052-331, patients had to have at least one digital ulcer of recent onset, and across the two studies 85% of patients had ongoing digital ulcer disease at baseline. After 4 weeks of bosentan 62.5 mg twice daily, the maintenance dose studied in both these studies was 125 mg twice daily. The duration of double-blind therapy was 16 weeks in study AC-052-401, and 24 weeks in study AC-052-331.

Background treatments for systemic sclerosis and digital ulcers were permitted if they remained constant for at least 1 month prior to the start of treatment and during the double-blind study period.

The number of new digital ulcers from baseline to study endpoint was a primary endpoint in both studies. Treatment with bosentan resulted in fewer new digital ulcers for the duration of therapy, compared with placebo. In study AC-052-401, during 16 weeks of double-blind therapy, patients in the bosentan group developed a mean of 1.4 new digital ulcers vs 2.7 new digital ulcers in the placebo group (p = 0.0042). In study AC-052-331, during 24 weeks of double-blind therapy, the corresponding figures were 1.9 vs 2.7 new digital ulcers, respectively (p = 0.0351). In both studies, patients on bosentan were less likely to develop multiple new digital ulcers during the study and took longer to develop each successive new digital ulcer than did those on placebo. The effect of bosentan on reduction of the number of new digital ulcers was more pronounced in patients with multiple digital ulcers.

No effect of bosentan on time to healing of digital ulcers was observed in either study.

5.2 Pharmacokinetic properties

The pharmacokinetics of bosentan have mainly been documented in healthy subjects. Limited data in patients show that the exposure to bosentan in adult PAH patients is approximately 2-fold greater than in healthy adult subjects.

In healthy subjects, bosentan displays dose- and time-dependent pharmacokinetics. Clearance and volume of distribution decrease with increased intravenous doses and increase with time. After oral administration, the systemic exposure is proportional to dose up to 500 mg. At higher oral doses, C_{max} and AUC increase less than proportionally to the dose.

Absorption

In healthy subjects, the absolute bioavailability of bosentan is approximately 50% and is not affected by food. The maximum plasma concentrations are attained within 3–5 hours.

Distribution

Bosentan is highly bound (> 98%) to plasma proteins, mainly albumin. Bosentan does not penetrate into erythrocytes.

A volume of distribution (V_{ss}) of about 18 litres was determined after an intravenous dose of 250 mg.
Biotransformation and elimination

After a single intravenous dose of 250 mg, the clearance was 8.2 L/h. The terminal elimination half-life ($t_{1/2}$) is 5.4 hours.

Upon multiple dosing, plasma concentrations of bosentan decrease gradually to 50–65% of those seen after single dose administration. This decrease is probably due to auto-induction of metabolising liver enzymes. Steady-state conditions are reached within 3–5 days.

Bosentan is eliminated by biliary excretion following metabolism in the liver by the cytochrome P450 isoenzymes, CYP2C9 and CYP3A4. Less than 3% of an administered oral dose is recovered in urine.

Bosentan forms three metabolites and only one of these is pharmacologically active. This metabolite is mainly excreted unchanged via the bile. In adult patients, the exposure to the active metabolite is greater than in healthy subjects. In patients with evidence of the presence of cholestasis, the exposure to the active metabolite may be increased.

Bosentan is an inducer of CYP2C9 and CYP3A4 and possibly also of CYP2C19 and the P-glycoprotein. In vitro, bosentan inhibits the bile salt export pump in hepatocyte cultures.

In vitro data demonstrated that bosentan had no relevant inhibitory effect on the CYP isoenzymes tested (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2D6, 2E1, 3A4). Consequently, bosentan is not expected to increase the plasma concentrations of medicinal products metabolised by these isoenzymes.

Comparison between formulations

In a pharmacokinetic crossover study (AC-052-116), 16 healthy adult subjects received 62.5 mg bosentan using the 62.5 mg film-coated tablet formulation or 64 mg bosentan using the 32 mg dispersible tablet formulation. Following treatment with the dispersible tablet, exposure to bosentan was lower than with the film-coated tablet (ratio of geometric means for AUC_0-∞ 0.87 [90% CI: 0.78, 0.97]). T_{max} and $t_{1/2}$ of bosentan were not significantly affected by the formulation.

Pharmacokinetics in special populations

Based on the investigated range of each variable, it is not expected that the pharmacokinetics of bosentan will be influenced by gender, body weight, race, or age in the adult population to any relevant extent.

Children

Pharmacokinetics were studied in paediatric patients in 4 clinical studies (BREATHE-3, FUTURE 1, FUTURE-3 and FUTURE-4; see section 5.1). Due to limited data in children below 2 years of age, pharmacokinetics remain not well characterised in this age category.

Study AC-052-356 (BREATHE-3) evaluated the pharmacokinetics of single and multiple oral doses of the film-coated tablet formulation of bosentan in 19 children aged from 3 to 15 years with PAH who were dosed on the basis of body weight with 2 mg/kg twice daily. In this study, the exposure to bosentan decreased with time in a manner consistent with the known auto-induction properties of bosentan. The mean AUC (CV%) values of bosentan in paediatric patients treated with 31.25, 62.5 or 125 mg twice daily were 3 496 (49), 5 428 (79), and 6 124 (27) ng h/mL, respectively, and were lower than the value of 8 149 (47) ng h/mL observed in adult patients with PAH receiving 125 mg twice daily. At steady state, the systemic exposures in paediatric patients weighing 10–20 kg, 20–40 kg and > 40 kg were 43%, 67% and 75%, respectively, of the adult systemic exposure.
In study AC-052-365 (FUTURE 1), dispersible tablets were administered to 36 PAH children aged from 2 to 11 years. No dose proportionality was observed, as steady-state bosentan plasma concentrations and AUCs were similar at oral doses of 2 and 4 mg/kg (AUC: 3 577 ng h/mL and 3 371 ng h/mL for 2 mg/kg twice daily and 4 mg/kg twice daily, respectively). The average exposure to bosentan in these paediatric patients was about half the exposure in adult patients at the 125 mg twice daily maintenance dose but showed a large overlap with the exposures in adults.

In study AC-052-373 (FUTURE 3), using dispersible tablets, the exposure to bosentan in the patients treated with 2 mg/kg twice daily was comparable to that in the FUTURE 1 study. In the overall population (n = 31), 2 mg/kg twice daily resulted in a daily exposure of 8 535 ng h/mL; AUC was 4 268 ng h/mL (CV: 61%). In patients between 3 months and 2 years the daily exposure was 7 879 ng h/mL; AUC was 3 939 ng h/mL (CV: 72%). In patients between 3 months and 1 year (n = 2) AUC was 5 914 ng h/mL (CV: 85%), and in patients between 1 and 2 years (n = 7) AUC was 3 507 ng h/mL (CV: 70%). In the patients above 2 years (n = 22) the daily exposure was 8 820 ng h/mL; AUC was 4 410 ng· h/mL (CV: 58%). Dosing bosentan 2 mg/kg three times daily did not increase exposure; daily exposure was 7 275 ng h/mL (CV: 83%, n = 27).

Based on the findings in studies BREATHE-3, FUTURE 1, and FUTURE-3, it appears that the exposure to bosentan reaches a plateau at lower doses in paediatric patients than in adults, and that doses higher than 2 mg/kg twice daily (4 mg/kg twice daily or 2 mg/kg three times daily) will not result in greater exposure to bosentan in paediatric patients.

In study AC-052-391 (FUTURE 4) conducted in neonates, bosentan concentrations increased slowly and continuously over the first dosing interval, resulting in low exposure (AUC\textsubscript{0-12} in whole blood: 164 ng h/mL, n = 11). At steady state, AUC was 6 165 ng h/mL (CV: 133%, n = 7), which is similar to the exposure observed in adult PAH patients receiving 125 mg twice daily and taking into account a blood/plasma distribution ratio of 0.6.

The consequences of these findings regarding hepatotoxicity are unknown. Gender and concomitant use of intravenous epoprostenol had no significant effect on the pharmacokinetics of bosentan.

Hepatic impairment

In patients with mildly impaired liver function (Child-Pugh class A) no relevant changes in the pharmacokinetics have been observed. The steady-state AUC of bosentan was 9% higher and the AUC of the active metabolite, Ro 48-5033, was 33% higher in patients with mild hepatic impairment than in healthy volunteers.

The impact of moderately impaired liver function (Child-Pugh class B) on the pharmacokinetics of bosentan and its primary metabolite Ro 48-5033 was investigated in a study including 5 patients with pulmonary hypertension associated with portal hypertension and Child-Pugh class B hepatic impairment, and 3 patients with PAH from other causes and normal liver function. In the patients with Child-Pugh class B liver impairment, the mean (95% CI) steady-state AUC of bosentan was 360 (212-613) ng h/mL, i.e., 4.7 times higher, and the mean (95% CI) AUC of the active metabolite Ro 48-5033 was 106 (58.4–192) ng h/mL, i.e., 12.4 times higher than in the patients with normal liver function (bosentan: mean [95% CI] AUC: 76.1 [9.07–638] ng h/mL; Ro 48-5033: mean [95% CI] AUC 8.57 [1.28–57.2] ng h/mL). Though the number of patients included was limited and with high variability, these data indicate a marked increase in the exposure to bosentan and its primary metabolite Ro 48-5033 in patients with moderate liver function impairment (Child-Pugh class B).
The pharmacokinetics of bosentan have not been studied in patients with Child-Pugh class C hepatic impairment. Tracleer is contraindicated in patients with moderate to severe hepatic impairment, i.e., Child-Pugh class B or C (see section 4.3).

Renal impairment

In patients with severe renal impairment (creatinine clearance 15–30 mL/min), plasma concentrations of bosentan decreased by approximately 10%. Plasma concentrations of bosentan metabolites increased about 2-fold in these patients as compared with subjects with normal renal function. No dose adjustment is required in patients with renal impairment. There is no specific clinical experience in patients undergoing dialysis. Based on physicochemical properties and the high degree of protein binding, bosentan is not expected to be removed from the circulation by dialysis to any significant extent (see section 4.2).

5.3 Preclinical safety data

A 2-year carcinogenicity study in mice showed an increased combined incidence of hepatocellular adenomas and carcinomas in males, but not in females, at plasma concentrations about 2 to 4 times the plasma concentrations achieved at the therapeutic dose in humans. In rats, oral administration of bosentan for 2 years produced a small, significant increase in the combined incidence of thyroid follicular cell adenomas and carcinomas in males, but not in females, at plasma concentrations about 9 to 14 times the plasma concentrations achieved at the therapeutic dose in humans. Bosentan was negative in tests for genotoxicity. There was evidence of a mild thyroid hormonal imbalance induced by bosentan in rats. However, there was no evidence of bosentan affecting thyroid function (thyroxine, TSH) in humans.

The effect of bosentan on mitochondrial function is unknown.

Bosentan has been shown to be teratogenic in rats at plasma levels higher than 1.5 times the plasma concentrations achieved at the therapeutic dose in humans. Teratogenic effects, including malformations of the head and face and of the major vessels, were dose dependent. The similarities of the pattern of malformations observed with other ET receptor antagonists and in ET knock-out mice indicate a class effect. Appropriate precautions must be taken for women of childbearing potential (see sections 4.3, 4.4 and 4.6).

Development of testicular tubular atrophy and impaired fertility has been linked with chronic administration of endothelin receptor antagonists in rodents.

In fertility studies in male and female rats, no effects on sperm count, motility and viability, or on mating performance or fertility were observed at exposures that were 21 and 43 times the expected therapeutic level in humans, respectively; nor was there any adverse effect on the development of the pre-implantation embryo or on implantation.

Slightly increased incidence of testicular tubular atrophy was observed in rats given bosentan orally at doses as low as 125 mg/kg/day (about 4 times the maximum recommended human dose [MRHD] and the lowest doses tested) for two years but not at doses as high as 1 500 mg/kg/day (about 50 times the MRHD) for 6 months. In a juvenile rat toxicity study, where rats were treated from Day 4 post partum up to adulthood, decreased absolute weights of testes and epididymides, and reduced number of sperm in epididymides were observed after weaning. The NOAEL was 21 times (at Day 21 post partum) and 2.3 times (Day 69 post partum) the human therapeutic exposure, respectively.

However, no effects on general development, growth, sensory, cognitive function and reproductive performance were detected at 7 (males) and 19 (females) times the human therapeutic exposure at
Day 21 post partum. At adult age (Day 69 post partum), no effects of bosentan were detected at 1.3 (males) and 2.6 (females) times the therapeutic exposure in children with PAH.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Cellulose microcrystalline
Calcium hydrogen phosphate anhydrous
Crocarmellose sodium
Silica colloidal anhydrous
Tartaric acid
Tutti frutti flavour
Aspartame (E951)
Acesulfame potassium
Magnesium stearate

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

5 years

The remaining parts of a divided dispersible tablet can be stored at room temperature and should be used within 7 days.

6.4 Special precautions for storage

Do not store above 25°C.

6.5 Nature and contents of container

Aluminium/Aluminium peel-push blisters containing 14 dispersible tablets.
Cartons contain 56 dispersible tablets.

6.6 Special precautions for disposal and other handling

The dispersible tablet is contained in a child-proof blister.

Each dispersible tablet can be dissolved in water to make a liquid medicine, by adding the tablet to a little water on a spoon, using enough water to cover the whole tablet. When the tablet has fully dissolved, give the liquid to the patient.

If necessary, the dispersible tablet can be divided by breaking along the lines cut into the surface. Hold the tablet between the thumb and index finger on either side of one of the lines, with the line facing upwards, and break the tablet along the line (see figure below).
The remaining parts of a divided dispersible tablet can be stored at room temperature and should be used within 7 days.

7. MARKETING AUTHORISATION HOLDER

Janssen-Cilag International NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

8. MARKETING AUTHORISATION NUMBERS

EU/1/02/220/006

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 15 May 2002
Date of latest renewal: 20 April 2012

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu/.
ANNEX II

A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer responsible for batch release

Janssen Pharmaceutica NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

The printed package leaflet of the medicinal product must state the name and address of the manufacturer responsible for the release of the concerned batch.

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to restricted medical prescription (see Annex I: Summary of Product Characteristics, section 4.2)

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

- Periodic safety update reports (PSURs)

The requirements for submission of PSURs including liver reports for this medicinal product are set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and any subsequent updates published on the European medicines web-portal.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

- Risk management plan (RMP)

The marketing authorisation holder (MAH) shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2. of the marketing authorisation and any agreed subsequent updates of the RMP.

An updated RMP should be submitted:
- At the request of the European Medicines Agency;
- Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.

- Additional risk minimisation measures

The educational programme consists of a Patient Alert Card to be held by the patient. The overall goal of the Patient Alert Card is to educate patients on important safety information that they need to be aware of before and during treatment with Tracleer.

The Patient Alert Card, provided as part of the product packaging, aims to:
- facilitate patients’ awareness of the need for regular blood tests for liver function.
• inform patients of the need to avoid pregnancy and to ensure effective contraceptive measures are used.
ANNEX III

LABELLING AND PACKAGE LEAFLET
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING CARTON WITH 14, 56 AND 112 TABLETS

OUTER CARTON/BLISTERS

<table>
<thead>
<tr>
<th>PARTiculars</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NAME OF THE MEDICINAL PRODUCT</td>
<td>Tracleer 62.5 mg film-coated tablets</td>
</tr>
<tr>
<td></td>
<td>bosentan</td>
</tr>
<tr>
<td>2. STATEMENT OF ACTIVE SUBSTANCE(S)</td>
<td>Each film-coated tablet contains 62.5 mg bosentan (as monohydrate)</td>
</tr>
<tr>
<td>3. LIST OF EXCIPIENTS</td>
<td></td>
</tr>
</tbody>
</table>
| **4. PHARMACEUTICAL FORM AND CONTENTS** | 14 film-coated tablets
56 film-coated tablets
112 film-coated tablets |
| **5. METHOD AND ROUTE(S) OF ADMINISTRATION** | Oral use
Read the package leaflet before use. |
| **6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN** | Keep out of the sight and reach of children. |
| **7. OTHER SPECIAL WARNING(S), IF NECESSARY** | |
| **8. EXPIRY DATE** | EXP {MM/YYYY} |
| **9. SPECIAL STORAGE CONDITIONS** | Do not store above 25°C |
10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Janssen-Cilag International NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/02/220/001
EU/1/02/220/002
EU/1/02/220/003

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Tracleer 62.5 mg

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC
SN
NN
PARTICULARS TO APPEAR ON THE OUTER PACKAGING CARTON WITH 56 AND 112 TABLETS

OUTER CARTON/BLISTERS

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracleer 125 mg film-coated tablets</td>
</tr>
<tr>
<td>bosentan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. STATEMENT OF ACTIVE SUBSTANCE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each film-coated tablet contains 125 mg bosentan (as monohydrate)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. LIST OF EXCIPIENTS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4. PHARMACEUTICAL FORM AND CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 film-coated tablets</td>
</tr>
<tr>
<td>112 film-coated tablets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. METHOD AND ROUTE(S) OF ADMINISTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral use</td>
</tr>
<tr>
<td>Read the package leaflet before use.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep out of the sight and reach of children.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. OTHER SPECIAL WARNING(S), IF NECESSARY</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP {MM/YYYY}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPECIAL STORAGE CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not store above 25°C</td>
</tr>
</tbody>
</table>
10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Janssen-Cilag International NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/02/220/004
EU/1/02/220/005

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Tracleer 125 mg

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC
SN
NN
PARTICULARS TO APPEAR ON THE OUTER PACKAGING CARTON WITH 56 TABLETS

OUTER CARTON/BLISTERS

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>NAME OF THE MEDICINAL PRODUCT</td>
</tr>
<tr>
<td></td>
<td>Tracleer 32 mg dispersible tablets</td>
</tr>
<tr>
<td></td>
<td>bosentan</td>
</tr>
<tr>
<td>2.</td>
<td>STATEMENT OF ACTIVE SUBSTANCE(S)</td>
</tr>
<tr>
<td></td>
<td>Each dispersible tablet contains 32 mg bosentan (as monohydrate)</td>
</tr>
<tr>
<td>3.</td>
<td>LIST OF EXCIPIENTS</td>
</tr>
<tr>
<td></td>
<td>Aspartame (E951), see the package leaflet for further information</td>
</tr>
<tr>
<td></td>
<td>Aspartame (E951) may be harmful for people with phenylketonuria</td>
</tr>
<tr>
<td>4.</td>
<td>PHARMACEUTICAL FORM AND CONTENTS</td>
</tr>
<tr>
<td></td>
<td>56 dispersible tablets (14 x 4)</td>
</tr>
<tr>
<td>5.</td>
<td>METHOD AND ROUTE(S) OF ADMINISTRATION</td>
</tr>
<tr>
<td></td>
<td>Oral use</td>
</tr>
<tr>
<td></td>
<td>Read the package leaflet before use.</td>
</tr>
<tr>
<td>6.</td>
<td>SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN</td>
</tr>
<tr>
<td></td>
<td>Keep out of the sight and reach of children.</td>
</tr>
<tr>
<td>7.</td>
<td>OTHER SPECIAL WARNING(S), IF NECESSARY</td>
</tr>
<tr>
<td>8.</td>
<td>EXPIRY DATE</td>
</tr>
<tr>
<td></td>
<td>EXP {MM/YYYY}</td>
</tr>
<tr>
<td>9.</td>
<td>SPECIAL STORAGE CONDITIONS</td>
</tr>
</tbody>
</table>
Do not store above 25°C

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Janssen-Cilag International NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/02/220/006

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Tracleer 32 mg

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC
SN
NN
PARTICULARS TO APPEAR ON THE OUTER PACKAGING AND THE IMMEDIATE PACKAGING CARTON WITH 56 TABLETS

OUTER CARTON & BOTTLE LABEL/ BOTTLES

1. NAME OF THE MEDICINAL PRODUCT

Tracleer 62.5 mg film-coated tablets
bosentan

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each film-coated tablet contains 62.5 mg bosentan (as monohydrate)

3. LIST OF EXCIPIENTS

4. PHARMACEUTICAL FORM AND CONTENTS

56 film-coated tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Oral use
Read the package leaflet before use.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

Do not swallow the desiccant.

8. EXPIRY DATE

EXP {MM/YYYY}
Use within 30 days after the first opening

Open date:
9. SPECIAL STORAGE CONDITIONS

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Janssen-Cilag International NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/02/220/007

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE (ONLY APPLICABLE TO CARTON)

Tracleer 62.5 mg

17. UNIQUE IDENTIFIER – 2D BARCODE (ONLY APPLICABLE TO CARTON)

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA (ONLY APPLICABLE TO CARTON)

PC
SN
NN
PARTICULARS TO APPEAR ON THE OUTER PACKAGING AND THE IMMEDIATE PACKAGING CARTON WITH 56 TABLETS

OUTER CARTON & BOTTLE LABEL/ BOTTLES

1. NAME OF THE MEDICINAL PRODUCT

Tracleer 125 mg film-coated tablets

bosentan

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each film-coated tablet contains 125 mg bosentan (as monohydrate)

3. LIST OF EXCIPIENTS

4. PHARMACEUTICAL FORM AND CONTENTS

56 film-coated tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Oral use
Read the package leaflet before use.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

Do not swallow the desiccant.

8. EXPIRY DATE

EXP {MM/YYYY}
Use within 30 days after the first opening

Open date:
<table>
<thead>
<tr>
<th>9.</th>
<th>SPECIAL STORAGE CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE</td>
</tr>
<tr>
<td>11.</td>
<td>NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER</td>
</tr>
<tr>
<td>Janssen-Cilag International NV</td>
<td></td>
</tr>
<tr>
<td>Turnhoutseweg 30</td>
<td></td>
</tr>
<tr>
<td>B-2340 Beerse</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>MARKETING AUTHORISATION NUMBER(S)</td>
</tr>
<tr>
<td>EU/1/02/220/008</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>BATCH NUMBER</td>
</tr>
<tr>
<td>Lot</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>GENERAL CLASSIFICATION FOR SUPPLY</td>
</tr>
<tr>
<td>15.</td>
<td>INSTRUCTIONS ON USE</td>
</tr>
<tr>
<td>16.</td>
<td>INFORMATION IN BRAILLE (ONLY APPLICABLE TO CARTON)</td>
</tr>
<tr>
<td>Tracleer 125 mg</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>UNIQUE IDENTIFIER – 2D BARCODE (ONLY APPLICABLE TO CARTON)</td>
</tr>
<tr>
<td>2D barcode carrying the unique identifier included.</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>UNIQUE IDENTIFIER - HUMAN READABLE DATA (ONLY APPLICABLE TO CARTON)</td>
</tr>
<tr>
<td>PC</td>
<td></td>
</tr>
<tr>
<td>SN</td>
<td></td>
</tr>
<tr>
<td>NN</td>
<td></td>
</tr>
</tbody>
</table>
MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS

BLISTERS

1. **NAME OF THE MEDICINAL PRODUCT**

 Tracleer 62.5 mg tablets

 bosentan

2. **NAME OF THE MARKETING AUTHORISATION HOLDER**

 Janssen-Cilag Int

3. **EXPIRY DATE**

 EXP {MM/YYYY}

4. **BATCH NUMBER**

 Lot

5. **OTHER**
<table>
<thead>
<tr>
<th>MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLISTERS</td>
</tr>
<tr>
<td>1. NAME OF THE MEDICINAL PRODUCT</td>
</tr>
<tr>
<td>Tracleer 125 mg tablets</td>
</tr>
<tr>
<td>bosentan</td>
</tr>
<tr>
<td>2. NAME OF THE MARKETING AUTHORISATION HOLDER</td>
</tr>
<tr>
<td>Janssen-Cilag Int</td>
</tr>
<tr>
<td>3. EXPIRY DATE</td>
</tr>
<tr>
<td>EXP {MM/YYYY}</td>
</tr>
<tr>
<td>4. BATCH NUMBER</td>
</tr>
<tr>
<td>Lot</td>
</tr>
<tr>
<td>5. OTHER</td>
</tr>
<tr>
<td>MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>BLISTERS</td>
</tr>
<tr>
<td>1. NAME OF THE MEDICINAL PRODUCT</td>
</tr>
<tr>
<td>Tracleer 32 mg dispersible tablets</td>
</tr>
<tr>
<td>bosentan</td>
</tr>
<tr>
<td>2. NAME OF THE MARKETING AUTHORISATION HOLDER</td>
</tr>
<tr>
<td>Janssen-Cilag Int</td>
</tr>
<tr>
<td>3. EXPIRY DATE</td>
</tr>
<tr>
<td>EXP {MM/YYYY}</td>
</tr>
<tr>
<td>4. BATCH NUMBER</td>
</tr>
<tr>
<td>Lot</td>
</tr>
<tr>
<td>5. OTHER</td>
</tr>
</tbody>
</table>
Important Safety Alerts for Patients taking Tracleer (bosentan)

This card contains important information about Tracleer. Please read this card carefully before starting your treatment with Tracleer.

Your name: __

Prescribing doctor: __

If you have questions about Tracleer ask your doctor.

Janssen-Cilag International NV

Contraception

Do you currently use or take contraceptives?

- [] Yes
- [] No

If Yes, write the names of these here:

Take this card to your doctor or your gynaecologist at your next visit and he/she will be able to advise you on whether you need to use additional or alternative contraceptive methods.

Pregnancy

Tracleer may harm the development of the foetus. Therefore, you must not take Tracleer if you are pregnant and you must also not become pregnant while taking Tracleer.

Moreover, if you are suffering from pulmonary hypertension disease, the occurrence of a pregnancy can severely deteriorate the symptoms of your disease. If you suspect you may be pregnant, tell your doctor or gynaecologist.

Contraception

Birth control based on hormones – such as oral contraceptives or birth control pills, hormone injections, implants, or birth control skin patches don’t reliably prevent pregnancy in women who are taking Tracleer. You need to use a barrier form of birth control – like a condom, diaphragm or vaginal sponge – in addition to any of these kinds of hormonal birth control. Be sure to discuss any questions you may have with your doctor or your gynaecologist – complete the details on the back of this card and take it to your doctor or gynaecologist at your next visit.

You should have a pregnancy test before initiation of Tracleer and every month during the treatment even if you think that you are not pregnant.

Date of first monthly test: _________________________________

Blood Test for Liver Function

Some patients taking Tracleer were found to have abnormal liver function tests. During treatment with Tracleer, your doctor will arrange for regular blood tests to check for changes in your liver function.

Remember to have your liver blood test every month.

After an increase in dose, an additional test will be done after 2 weeks.

Date of first monthly test: _________________________________

Your monthly liver blood test schedule:

- [] Jan ______ - [] May______ - [] Sep ______
- [] Feb ______ - [] Jun______ - [] Oct ______
- [] Mar ______ - [] Jul______ - [] Nov ______
- [] Apr ______ - [] Aug______ - [] Dec ______
B. PACKAGE LEAFLET
Tracleer tablets contain bosentan, which blocks a naturally occurring hormone called endothelin-1 (ET-1), which causes blood vessels to narrow. Tracleer therefore causes blood vessels to expand and belongs to the class of medicines called “endothelin receptor antagonists”.

Tracleer is used to treat:

- **Pulmonary arterial hypertension** (PAH): PAH is a disease of severe narrowing of the blood vessels in the lungs resulting in high blood pressure in the blood vessels (the pulmonary arteries) that carry blood from the heart to the lungs. This pressure reduces the amount of oxygen that can get into the blood in the lungs, making physical activity more difficult. Tracleer widens the pulmonary arteries, making it easier for the heart to pump blood through them. This lowers the blood pressure and relieves the symptoms.

Tracleer is used to treat patients with class III PAH to improve exercise capacity (the ability to carry out physical activity) and symptoms. The ‘class’ reflects the seriousness of the disease: ‘class III’ involves marked limitation of physical activity. Some improvements have also been shown in patients with class II PAH. ‘Class II’ involves slight limitation of physical activity. The PAH for which Tracleer is indicated can be:

- primary (with no identified cause or familial);
- caused by scleroderma (also called systemic sclerosis, a disease where there is abnormal growth of the connective tissue that supports the skin and other organs);
- caused by congenital (inborn) heart defects with shunts (abnormal passageways) causing abnormal flow of blood through the heart and lungs.

- **Digital ulcers**: (sores on the fingers and toes) in adult patients with a condition called scleroderma. Tracleer reduces the number of new finger and toe ulcers that appear.
2. What you need to know before you take Tracleer

Do not take Tracleer
- if you are allergic to bosentan or any of the other ingredients of this medicine (listed in section 6)
- if you have liver problems (ask your doctor)
- if you are pregnant, or could get pregnant because you are not using reliable contraceptive methods. Please read the information under “Contraceptives” and “Other medicines and Tracleer”
- if you are taking cyclosporine A (a medicine used after a transplant or to treat psoriasis)

If any of these apply to you, tell your doctor.

Warnings and precautions

Tests your doctor will do before treatment
- a blood test to check your liver function
- a blood test to check for anaemia (low haemoglobin)
- a pregnancy test if you are a woman of childbearing potential

Some patients taking Tracleer have been found to have abnormal liver function tests and anaemia (low haemoglobin).

Tests your doctor will do during treatment
During treatment with Tracleer, your doctor will arrange for regular blood tests to check for changes in your liver function and haemoglobin level.

For all these tests please refer also to the Patient Alert Card (inside your pack of Tracleer tablets). It is important that you have these regular blood tests as long as you are taking Tracleer. We suggest you write the date of your most recent test and also of your next test (ask your doctor for the date) on the Patient Alert Card, to help you remember when your next test is due.

Blood tests for liver function
These will be done every month for the duration of treatment with Tracleer. After an increase in dose an additional test will be done after 2 weeks.

Blood tests for anaemia
These will be done every month for the first 4 months of treatment, then every 3 months after that, as patients taking Tracleer may get anaemia.

If these results are abnormal, your doctor may decide to reduce your dose or stop treatment with Tracleer and to perform further tests to investigate the cause.

Children and adolescents
Tracleer is not recommended in paediatric patients with systemic sclerosis and ongoing digital ulcer disease. Please see also section 3. How to take Tracleer.

Other medicines and Tracleer
Please tell your doctor or pharmacist if you are taking or have recently taken any other medicines, including medicines obtained without a prescription. It is especially important to tell your doctor if you are taking:
- cyclosporine A (a medicine used after transplants and to treat psoriasis), which must not be used together with Tracleer.
- sirolimus or tacrolimus, which are medicines used after transplants, as these are not recommended to be used together with Tracleer.
• glibenclamide (a diabetes medicine), rifampicin (a tuberculosis medicine), fluconazole (a medicine against fungal infections), ketoconazole (a medicine used to treat Cushing’s syndrome), or nevirapine (an HIV medicine), as these medicines are not recommended to be used together with Tracleer.
• other medicines for the treatment of HIV infection, which may require special monitoring if used together with Tracleer.
• hormonal contraceptives, which are not effective as the sole method of contraception when you take Tracleer. Inside your pack of Tracleer tablets you will find a Patient Alert Card which you should read carefully. Your doctor and/or gynaecologist will establish the contraception which is appropriate for you.
• other medications for the treatment of pulmonary hypertension: sildenafil and tadalafil;
• warfarin (an anticoagulant agent);
• simvastatin (used to treat hypercholesterolaemia).

Driving and using machines
Tracleer has no or negligible influence on the ability to drive and use machines. However, Tracleer can induce hypotension (decrease of your blood pressure) which can make you feel dizzy, affect your vision and affect your ability to drive and use machines. Therefore, if you feel dizzy or that your vision is blurred while taking Tracleer, do not drive or operate any tools or machines.

Women of childbearing age
Do NOT take Tracleer if you are pregnant or planning to become pregnant.

Pregnancy tests
Tracleer may harm unborn babies conceived before starting or during treatment. If you are a woman who could become pregnant, your doctor will ask you to take a pregnancy test before you start taking Tracleer, and regularly while you are taking Tracleer.

Contraceptives
If it is possible that you could become pregnant, use a reliable form of birth control (contraception) while you are taking Tracleer. Your doctor or gynaecologist will advise you about reliable contraceptive methods while taking Tracleer. Because Tracleer may make hormonal contraception (e.g., oral, injection, implant, or skin patches) ineffective, this method on its own is not reliable. Therefore, if you use hormonal contraceptives you must also use a barrier method (e.g., female condom, diaphragm, contraceptive sponge, or your partner must also use a condom). Inside your pack of Tracleer tablets you will find a Patient Alert Card. You should complete this card and take it to your doctor at your next visit so that your doctor or gynaecologist can assess whether you need additional or alternative reliable contraceptive methods. Monthly pregnancy tests are recommended while you are taking Tracleer and are of childbearing age.

Tell your doctor immediately if you become pregnant while you are taking Tracleer, or plan to become pregnant in the near future.

Breast-feeding
Tell your doctor immediately if you are breast-feeding. You are advised to stop breast-feeding if Tracleer is prescribed for you, because it is not known whether this medicine passes into breast milk.

Fertility
If you are a man taking Tracleer, it is possible that this medicine may lower your sperm count. It cannot be excluded that this may affect your ability to father a child. Talk to your doctor if you have any questions or concerns about this.
Tracleer contains sodium
This medicine contains less than 1 mmol sodium (23 mg) per tablet, that is to say essentially ‘sodium-free’.

3. How to take Tracleer

Treatment with Tracleer should only be started and monitored by a doctor who has experience in the treatment of PAH or systemic sclerosis. Always take this medicine exactly as your doctor has told you. Check with your doctor or pharmacist if you are not sure.

Tracleer with food and drink
Tracleer can be taken with or without food.

Recommended dose

Adult
The treatment in adults is usually started for the first 4 weeks with 62.5 mg twice daily (morning and evening), from then your doctor will usually advise you to take a 125 mg tablet twice daily, depending on how you react to Tracleer.

Children and adolescents
The dose recommendation in children is only for PAH. For children aged 1 year and older, treatment with Tracleer is usually started with 2 mg per kg bodyweight twice daily (morning and evening). Your doctor will advise you on your dosing.

Please note that Tracleer is also available as a dispersible 32 mg tablet formulation, which may make correct dosing easier for children and patients with low body weight or difficulties to swallow film-coated tablets.

If you have the impression that the effect of Tracleer is too strong or too weak, talk to your doctor in order to find out whether your dose needs to be changed.

How to take Tracleer
Tablets should be taken (morning and evening), swallowed with water. The tablets can be taken with or without food.

If you take more Tracleer than you should
If you take more tablets than you have been told to take, contact your doctor immediately.

If you forget to take Tracleer
If you forget to take Tracleer, take a dose as soon as you remember, then continue to take your tablets at the usual times. Do not take a double dose to make up for forgotten tablets.

If you stop taking Tracleer
Suddenly stopping your treatment with Tracleer may lead to your symptoms getting worse. Do not stop taking Tracleer unless your doctor tells you to. Your doctor may tell you to reduce the dose over a few days before stopping completely.

If you have any further questions on the use of this medicine, ask your doctor or pharmacist.
4. Possible side effects

Like all medicines, this medicine can cause side effects, although not everybody gets them.

The most serious side effects with Tracleer are

- Abnormal liver function which may affect more than 1 in 10 people
- Anaemia (low blood value) which may affect up to 1 in 10 people. Anaemia may occasionally require blood transfusion

Your liver and blood values will be monitored during treatment with Tracleer (see section 2). It is important that you have these tests as ordered by your doctor.

Signs that your liver may not be working properly include:

- nausea (urge to vomit)
- vomiting
- fever (high temperature)
- pain in your stomach (abdomen)
- jaundice (yellowing of your skin or the whites of your eyes)
- dark-coloured urine
- itching of your skin
- lethargy or fatigue (unusual tiredness or exhaustion)
- flu-like syndrome (joint and muscle pain with fever)

If you notice any of these signs tell your doctor immediately.

Other side effects

Very common (may affect more than one in 10 people):

- Headache
- Oedema (swelling of the legs and ankles or other signs of fluid retention)

Common (may affect up to one in 10 people):

- Flushed appearance or redness of skin
- Hypersensitivity reactions (including skin inflammation, itching and rash)
- Gastrooesophageal reflux disease (acid reflux)
- Diarrhoea
- Syncope (fainting)
- Palpitations (fast or irregular heart beats)
- Low blood pressure
- Nasal congestion

Uncommon (may affect up to one in 100 people):

- Thrombocytopenia (low number of blood platelets)
- Neutropenia/leukopenia (low number of white blood cells)
- Elevated liver function tests with hepatitis (inflammation of the liver) including possible exacerbation of underlying hepatitis and/or jaundice (yellowing of the skin or the whites of the eyes)
Rare (may affect up to one in 1000 people):

- Anaphylaxis (general allergic reaction), angioedema (swelling, most commonly around the eyes, lips, tongue or throat)
- Cirrhosis (scarring) of the liver, liver failure (serious disturbance of liver function)

Blurred vision have also been reported at an unknown frequency (frequency cannot be estimated from the available data).

Side effects in children and adolescents
The side effects that have been reported in children treated with Tracleer are the same as those in adults.

Reporting of side effects
If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. How to store Tracleer

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the carton and on the blister after “EXP”.
For white high-density polyethylene bottles, use within 30 days after the first opening.

For PVC/PE/PVDC/aluminium-blisters:
Do not store above 25°C.

For white high-density polyethylene bottles:
This medicinal product does not require any special storage conditions.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away any medicines you no longer use. These measures will help to protect the environment.

6. Contents of the pack and other information

What Tracleer contains

- **Tracleer 62.5 mg film-coated tablets**: The active substance is bosentan as monohydrate. Each tablet contains 62.5 mg of bosentan (as monohydrate).
- **Tracleer 125 mg film-coated tablets**: The active substance is bosentan as monohydrate. Each tablet contains 125 mg of bosentan (as monohydrate).
- The other ingredients in the tablet core are maize starch, pregelatinised starch, sodium starch glycolate (Type A), povidone, glycerol dibehenate and magnesium stearate. The film-coat contains hypromellose, glycerol triacetate, talc, titanium dioxide (E171), iron oxide yellow (E172), iron oxide red (E172) and ethylcellulose.
What Tracleer looks like and contents of the pack

Tracleer 62.5 mg film-coated tablets:
Tracleer 62.5 mg film-coated tablets are orange-white, round film-coated tablets with “62,5” on one side.

PVC/PE/PVDC/aluminium-blisters containing 14 film-coated tablets. Cartons contain 14, 56 or 112 film-coated tablets (Tracleer 62.5 mg film-coated tablets).

White high-density polyethylene bottles with a silica gel desiccant containing 56 film-coated tablets. Cartons contain 56 film-coated tablets (Tracleer 62.5 mg film-coated tablets).
Do not swallow the desiccant.

Tracleer 125 mg film-coated tablets:
Tracleer 125 mg film-coated tablets are orange-white, oval film-coated tablets with “125” on one side.

PVC/PE/PVDC/aluminium-blisters containing 14 film-coated tablets. Cartons contain 56 or 112 film-coated tablets (Tracleer 125 mg film-coated tablets).

White high-density polyethylene bottles with a silica gel desiccant containing 56 film-coated tablets. Cartons contain 56 film-coated tablets (Tracleer 125 mg film-coated tablets).
Do not swallow the desiccant.

Not all pack sizes may be marketed.

Marketing authorisation holder:
Janssen-Cilag International NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

Manufacturer:
Janssen Pharmaceutica NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder.

België/Belgique/Belgien
Janssen-Cilag NV
Tel/Tél: +32 14 64 94 11
janssen@jacbe.jnj.com

Lietuva
UAB "JOHNSON & JOHNSON"
Tel: +370 5 278 68 88
lt@its.jnj.com

България
„Джонсън & Джонсън България” ЕООД
Тел.: +359 2 489 94 00
jjsafety@its.jnj.com

Luxembourg/Luxemburg
Janssen-Cilag NV
Tél/Tel: +32 14 64 94 11
janssen@jacbe.jnj.com
Česká republika
Janssen-Cilag s.r.o.
Tel: +420 227 012 227

Magyarország
Janssen-Cilag Kft.
Tel.: +36 1 884 2858
janssenhu@its.jnj.com

Danmark
Janssen-Cilag A/S
Tlf: +45 4594 8282
jacdk@its.jnj.com

Malta
AM MANGION LTD
Tel: +356 2397 6000

Deutschland
Janssen-Cilag GmbH
Tel: +49 2137 955 955
jancil@its.jnj.com

Nederland
Janssen-Cilag B.V.
Tel: +31 76 711 1111
janssen@jaenl.jnj.com

Eesti
UAB "JOHNSON & JOHNSON" Eesti filiaal
Tel: +372 617 7410
ee@its.jnj.com

Norge
Janssen-Cilag AS
Tlf: +47 24 12 65 00
jacno@its.jnj.com

Συμβουλευτική Ελλάδα
Janssen-Cilag Φαρμακευτική Α.Ε.Β.Ε.
Τηλ: +30 210 80 90 000

Österreich
Janssen-Cilag Pharma GmbH
Tel: +43 1 610 300

España
Janssen-Cilag, S.A.
Tel: +34 91 722 81 00
contacto@its.jnj.com

Polska
Janssen-Cilag Polska Sp. z o.o.
Tel.: +48 22 237 60 00

France
Janssen-Cilag
Tél: 0 800 25 50 75 / +33 1 55 00 40 03
medisource@its.jnj.com

Portugal
Janssen-Cilag Farmacêutica, Lda.
Tel: +351 214 368 600

Hrvatska
Johnson & Johnson S.E. d.o.o.
Tel: +385 1 6610 700
jjsafety@INJCR.JNJ.com

România
Johnson & Johnson România SRL
Tel: +40 21 207 1800

Ireland
Janssen Sciences Ireland UC
Tel: 1 800 709 122
medinfo@its.jnj.com

Slovenija
Johnson & Johnson d.o.o.
Tel: +386 1 401 18 00
Janssen_safety_slo@its.jnj.com

Ísland
Janssen-Cilag AB
c/o Vistor hf.
Sími: +354 535 7000
janssen@vistor.is

Slovenská republika
Johnson & Johnson, s.r.o.
Tel: +421 232 408 400
<table>
<thead>
<tr>
<th>Country</th>
<th>Company</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italia</td>
<td>Janssen-Cilag SpA</td>
<td>Tel: 800.688.777 / +39 02 2510 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>janssenita@its.jnj.com</td>
</tr>
<tr>
<td>Suomi/Finland</td>
<td>Janssen-Cilag Oy</td>
<td>Puh/Tel: +358 207 531 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>jacfi@its.jnj.com</td>
</tr>
<tr>
<td>Κύπρος</td>
<td>Βαρνάβας Χατζηπαναγής Λτδ</td>
<td>Τηλ: +357 22 207 700</td>
</tr>
<tr>
<td>Sverige</td>
<td>Janssen-Cilag AB</td>
<td>Tfn: +46 8 626 50 00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>jacse@its.jnj.com</td>
</tr>
<tr>
<td>Latvija</td>
<td>UAB "JOHNSON & JOHNSON" filiāle Latvijā</td>
<td>Tel: +371 678 93561</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lv@its.jnj.com</td>
</tr>
<tr>
<td>United Kingdom (Northern Ireland)</td>
<td>Janssen Sciences Ireland UC</td>
<td>Tel: +44 1 494 567 444</td>
</tr>
<tr>
<td></td>
<td></td>
<td>medinfo@its.jnj.com</td>
</tr>
</tbody>
</table>

This leaflet was last revised in

Detailed information on this medicine is available on the European Medicines Agency web site: http://www.ema.europa.eu/.
Read all of this leaflet carefully before you start taking this medicine because it contains important information for you.
- Keep this leaflet. You may need to read it again.
- If you have any further questions, please ask your doctor or pharmacist.
- This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours.
- If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet.

What is in this leaflet
1. What Tracleer is and what it is used for
2. What you need to know before you take Tracleer
3. How to take Tracleer
4. Possible side effects
5. How to store Tracleer
6. Contents of the pack and other information

1. What Tracleer is and what it is used for

Tracleer tablets contain bosentan, which blocks a naturally occurring hormone called endothelin-1 (ET-1), which causes blood vessels to narrow. Tracleer therefore causes blood vessels to expand and belongs to the class of medicines called “endothelin receptor antagonists”.

Tracleer is used to treat:
- **Pulmonary arterial hypertension** (PAH): PAH is a disease of severe narrowing of the blood vessels in the lungs resulting in high blood pressure in the blood vessels (the pulmonary arteries) that carry blood from the heart to the lungs. This pressure reduces the amount of oxygen that can get into the blood in the lungs, making physical activity more difficult. Tracleer widens the pulmonary arteries, making it easier for the heart to pump blood through them. This lowers the blood pressure and relieves the symptoms.

Tracleer is used to treat patients with class III PAH to improve exercise capacity (the ability to carry out physical activity) and symptoms. The ‘class’ reflects the seriousness of the disease: ‘class III’ involves marked limitation of physical activity. Some improvements have also been shown in patients with class II PAH. ‘Class II’ involves slight limitation of physical activity. The PAH for which Tracleer is indicated can be:
- primary (with no identified cause or familial);
- caused by scleroderma (also called systemic sclerosis, a disease where there is abnormal growth of the connective tissue that supports the skin and other organs);
- caused by congenital (inborn) heart defects with shunts (abnormal passageways) causing abnormal flow of blood through the heart and lungs.

- **Digital ulcers**: (sores on the fingers and toes) in adult patients with a condition called scleroderma. Tracleer reduces the number of new finger and toe ulcers that appear.
2. **What you need to know before you take Tracleer**

Do not take Tracleer
- if you are allergic to bosentan or any of the other ingredients of this medicine (listed in section 6)
- if you have liver problems (ask your doctor)
- if you are pregnant, or could get pregnant because you are not using reliable contraceptive methods. Please read the information under “Contraceptives” and “Other medicines and Tracleer”
- if you are taking cyclosporine A (a medicine used after a transplant or to treat psoriasis)

If any of these apply to you, tell your doctor.

Warnings and precautions

Tests your doctor will do before treatment
- a blood test to check your liver function
- a blood test to check for anaemia (low haemoglobin)
- a pregnancy test if you are a woman of childbearing potential

Some patients taking Tracleer have been found to have abnormal liver function tests and anaemia (low haemoglobin).

Tests your doctor will do during treatment

During treatment with Tracleer, your doctor will arrange for regular blood tests to check for changes in your liver function and haemoglobin level.

For all these tests please refer also to the Patient Alert Card (inside your pack of Tracleer tablets). It is important that you have these regular blood tests as long as you are taking Tracleer. We suggest you write the date of your most recent test and also of your next test (ask your doctor for the date) on the Patient Alert Card, to help you remember when your next test is due.

Blood tests for liver function
These will be done every month for the duration of treatment with Tracleer. After an increase in dose an additional test will be done after 2 weeks.

Blood tests for anaemia
These will be done every month for the first 4 months of treatment, then every 3 months after that, as patients taking Tracleer may get anaemia.

If these results are abnormal, your doctor may decide to reduce your dose or stop treatment with Tracleer and to perform further tests to investigate the cause.

Children and adolescents
Tracleer is not recommended in paediatric patients with systemic sclerosis and ongoing digital ulcer disease. Please see also section 3. How to take Tracleer.

Other medicines and Tracleer
Please tell your doctor or pharmacist if you are taking or have recently taken any other medicines, including medicines obtained without a prescription. It is especially important to tell your doctor if you are taking:
- cyclosporine A (a medicine used after transplants and to treat psoriasis), which must not be used together with Tracleer.
- sirolimus or tacrolimus, which are medicines used after transplants, as these are not recommended to be used together with Tracleer.
• glibenclamide (a diabetes medicine), rifampicin (a tuberculosis medicine), fluconazole (a medicine against fungal infections), ketoconazole (a medicine used to treat Cushing’s syndrome), or nevirapine (an HIV medicine), as these medicines are not recommended to be used together with Tracleer.
• other medicines for the treatment of HIV infection, which may require special monitoring if used together with Tracleer.
• hormonal contraceptives, which are not effective as the sole method of contraception when you take Tracleer. Inside your pack of Tracleer tablets you will find a Patient Alert Card which you should read carefully. Your doctor and/or gynaecologist will establish the contraception which is appropriate for you.
• other medications for the treatment of pulmonary hypertension: sildenafil and tadalafil;
• warfarin (an anticoagulant agent);
• simvastatin (used to treat hypercholesterolaemia).

Driving and using machines
Tracleer has no or negligible influence on the ability to drive and use machines. However, Tracleer can induce hypotension (decrease of your blood pressure) which can make you feel dizzy, affect your vision and affect your ability to drive and use machines. Therefore, if you feel dizzy or that your vision is blurred while taking Tracleer, do not drive or operate any tools or machines.

Women of childbearing age
Do NOT take Tracleer if you are pregnant or planning to become pregnant.

Pregnancy tests
Tracleer may harm unborn babies conceived before starting or during treatment. If you are a woman who could become pregnant, your doctor will ask you to take a pregnancy test before you start taking Tracleer, and regularly while you are taking Tracleer.

Contraceptives
If it is possible that you could become pregnant, use a reliable form of birth control (contraception) while you are taking Tracleer. Your doctor or gynaecologist will advise you about reliable contraceptive methods while taking Tracleer. Because Tracleer may make hormonal contraception (e.g., oral, injection, implant, or skin patches) ineffective, this method on its own is not reliable. Therefore, if you use hormonal contraceptives you must also use a barrier method (e.g., female condom, diaphragm, contraceptive sponge, or your partner must also use a condom). Inside your pack of Tracleer tablets you will find a Patient Alert Card. You should complete this card and take it to your doctor at your next visit so that your doctor or gynaecologist can assess whether you need additional or alternative reliable contraceptive methods. Monthly pregnancy tests are recommended while you are taking Tracleer and are of childbearing age.

Tell your doctor immediately if you become pregnant while you are taking Tracleer, or plan to become pregnant in the near future.

Breast-feeding
Tell your doctor immediately if you are breast-feeding. You are advised to stop breast-feeding if Tracleer is prescribed for you, because it is not known whether this medicine passes into breast milk.

Fertility
If you are a man taking Tracleer, it is possible that this medicine may lower your sperm count. It cannot be excluded that this may affect your ability to father a child. Talk to your doctor if you have any questions or concerns about this.
Tracleer contains aspartame and sodium

This medicine contains 3.7 mg of aspartame in each dispersible tablet. Aspartame is a source of phenylalanine. It may be harmful if you have phenylketonuria (PKU), a rare genetic disorder in which phenylalanine builds up because the body cannot remove it properly.

This medicine contains less than 1 mmol sodium (23 mg) per tablet, that is to say essentially ‘sodium-free’.

3. **How to take Tracleer**

Treatment with Tracleer should only be started and monitored by a doctor who has experience in the treatment of PAH or systemic sclerosis. Always take this medicine exactly as your doctor has told you. Check with your doctor or pharmacist if you are not sure.

Tracleer with food and drink

Tracleer can be taken with or without food.

Recommended dose

Adult

The treatment in adults is usually started for the first 4 weeks with 62.5 mg twice daily (morning and evening), from then your doctor will usually advise you to take a 125 mg tablet twice daily, depending on how you react to Tracleer.

Children and adolescents

The dose recommendation in children is only for PAH. For children aged 1 year and older, treatment with Tracleer is usually started with 2 mg per kg bodyweight twice daily (morning and evening). Your doctor will advise you on your dosing.

If necessary the dispersible tablet can be divided along the break-marks into four equal parts.

If you have the impression that the effect of Tracleer is too strong or too weak, talk to your doctor in order to find out whether your dose needs to be changed.

How to take Tracleer

Tablets should be taken (morning and evening), swallowed with water. The tablets can be taken with or without food.

The dispersible tablet is contained in a child-proof blister.

To remove the dispersible tablet:

1. Separate the individual blister cavity at the perforations.
2. Peel off the top layer.
3. Push the pharmaceutical product through the foil.

80
Each Tracleer dispersible tablet can be dissolved in water to make a liquid medicine. To make a liquid medicine, add the tablet to a little water on a spoon. Use enough water to cover the whole tablet. Leave for about one minute, until the tablet has fully dissolved, and then swallow all of the liquid. Add a little more water to the spoon and swallow all of the liquid to make sure all of the medicine has been taken. If possible, you should drink a glass of water to ensure that all the medicine has been taken.

If necessary the dispersible tablet can be divided along the break-marks. Hold the tablet between the thumb and the index finger on either side of the score line, with the score line facing upwards. Separate into halves by breaking the tablet along the break-marks (see figure below).

If you take more Tracleer than you should
If you take more tablets than you have been told to take, contact your doctor immediately.

If you forget to take Tracleer
If you forget to take Tracleer, take a dose as soon as you remember, then continue to take your tablets at the usual times. Do not take a double dose to make up for forgotten tablets.

If you stop taking Tracleer
Suddenly stopping your treatment with Tracleer may lead to your symptoms getting worse. Do not stop taking Tracleer unless your doctor tells you to. Your doctor may tell you to reduce the dose over a few days before stopping completely.

If you have any further questions on the use of this medicine, ask your doctor or pharmacist.

4. Possible side effects

Like all medicines, this medicine can cause side effects, although not everybody gets them.

The most serious side effects with Tracleer are
- Abnormal liver function which may affect more than 1 in 10 people
- Anaemia (low blood value) which may affect up to 1 in 10 people. Anaemia may occasionally require blood transfusion

Your liver and blood values will be monitored during treatment with Tracleer (see section 2). It is important that you have these tests as ordered by your doctor.

Signs that your liver may not be working properly include:
- nausea (urge to vomit)
- vomiting
- fever (high temperature)
- pain in your stomach (abdomen)
- jaundice (yellowing of your skin or the whites of your eyes)
- dark-coloured urine
- itching of your skin
- lethargy or fatigue (unusual tiredness or exhaustion)
- flu-like syndrome (joint and muscle pain with fever)
If you notice any of these signs tell your doctor immediately.

Other side effects:

Very common (may affect more than one in 10 people):
- Headache
- Oedema (swelling of the legs and ankles or other signs of fluid retention)

Common (may affect up to one in 10 people):
- Flushed appearance or redness of skin
- Hypersensitivity reactions (including skin inflammation, itching and rash)
- Gastrooesophageal reflux disease (acid reflux)
- Diarrhoea
- Syncope (fainting)
- Palpitations (fast or irregular heart beats)
- Low blood pressure
- Nasal congestion

Uncommon (may affect up to one in 100 people):
- Thrombocytopenia (low number of blood platelets)
- Neutropenia/leukopenia (low number of white blood cells)
- Elevated liver function tests with hepatitis (inflammation of the liver) including possible exacerbation of underlying hepatitis and/or jaundice (yellowing of the skin or the whites of the eyes)

Rare (may affect up to one in 1 000 people):
- Anaphylaxis (general allergic reaction), angioedema (swelling, most commonly around the eyes, lips, tongue or throat)
- Cirrhosis (scarring) of the liver, liver failure (serious disturbance of liver function)

Blurred vision have also been reported at an unknown frequency (frequency cannot be estimated from the available data).

Side effects in children and adolescents
The side effects that have been reported in children treated with Tracleer are the same as those in adults.

Reporting of side effects
If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. How to store Tracleer

Keep this medicine out of the sight and reach of children.
Do not use this medicine after the expiry date which is stated on the carton and on the blister after “EXP”.

Do not store above 25°C.

Remaining parts of a divided dispersible tablet can be stored at room temperature and should be used within 7 days.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away any medicines you no longer use. These measures will help to protect the environment.

6. Contents of the pack and other information

What Tracleer contains

- The active substance is bosentan as monohydrate. Each dispersible tablet contains 32 mg of bosentan (as monohydrate).
- The other ingredients are cellulose microcrystalline, calcium hydrogen phosphate anhydrous, croscarmellose sodium, silica colloidal anhydrous, tartaric acid, tutti frutti flavour, aspartame (E951, please read further information at the end of section 2), acesulfame potassium, magnesium stearate.

What Tracleer looks like and contents of the pack

Tracleer 32 mg dispersible tablets are pale yellow to off-white, clover-shape dispersible tablets, quadrisected on one side and debossed with “32” on the other side.

Peel-push blisters containing 14 dispersible tablets; cartons contain 56 dispersible tablets.

Marketing authorisation holder:
Janssen-Cilag International NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

Manufacturer:
Janssen Pharmaceutica NV
Turnhoutseweg 30
B-2340 Beerse
Belgium
For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder.

België/Belgique/Belgien
Janssen-Cilag NV
Tel/Tél: +32 14 64 94 11
janssen@jacbe.jnj.com

България
„Джонсън & Джонсън България” ЕООД
Tel.: +359 2 489 94 00
jjsafety@its.jnj.com

Česká republika
Janssen-Cilag s.r.o.
Tel: +420 227 012 227

Danmark
Janssen-Cilag A/S
Tlf: +45 4594 8282
jacdk@its.jnj.com

Deutschland
Janssen-Cilag GmbH
Tel: +49 2137 955 955
jancil@its.jnj.com

Данциг
Janssen-Cilag NV
Tel: +32 14 64 94 11
janssen@jacbe.jnj.com

Eesti
UAB "JOHNSON & JOHNSON" Eesti filiaal
Tel: +372 617 7410
ee@its.jnj.com

Ελλάδα
Janssen-Cilag Φαρμακευτική Α.Ε.Β.Ε.
Τηλ: +30 210 80 90 000

España
Janssen-Cilag, S.A.
Tel: +34 91 722 81 00
contacto@its.jnj.com

France
Janssen-Cilag
Tél: 0 800 25 50 75 / +33 1 55 00 40 03
medisource@its.jnj.com

Hrvatska
Johnson & Johnson S.E. d.o.o.
Tel: +385 1 6610 700
jjsafety@JNJCR.JNJ.com

İskandinav ulkolar
Janssen-Cilag NV
Tel: +32 14 64 94 11
janssen@jacbe.jnj.com

Lietuva
UAB "JOHNSON & JOHNSON"
Tel: +370 5 278 68 88
lt@its.jnj.com

Luxembourg/Luxemburg
Janssen-Cilag NV
Tel/Tél: +32 14 64 94 11
janssen@jacbe.jnj.com

Magyarország
Janssen-Cilag Kft.
Tel.: +36 1 884 2858
janssenhu@its.jnj.com

Malta
AM MANGION LTD
Tel: +356 2397 6000

Nederland
Janssen-Cilag B.V.
Tel: +31 76 711 1111
janssen@jacnl.jnj.com

Norge
Janssen-Cilag AS
Tlf: +47 24 12 65 00
jacno@its.jnj.com

Österreich
Janssen-Cilag Pharma GmbH
Tel: +43 1 610 300

Polska
Janssen-Cilag Polska Sp. z o.o.
Tel.: +48 22 237 60 00

Portugal
Janssen-Cilag Farmacêutica, Lda.
Tel: +351 214 368 600

România
Johnson & Johnson România SRL
Tel: +40 21 207 1800
Ireland
Janssen Sciences Ireland UC
Tel: +353 1 800 709 122

Ísland
Janssen-Cilag AB
c/o Vistor hf.
Simi: +354 535 7000
janssen@vistor.is

Italia
Janssen-Cilag SpA
Tel: 800.688.777 / +39 02 2510 1
janssenita@its.jnj.com

Κύπρος
Βαρνάβας Χατζηπαναγής Λτδ
Τηλ: +357 22 207 700

Latvija
UAB "JOHNSON & JOHNSON" filiāle Latvijā
Tel: +371 678 93561
lv@its.jnj.com

Slovenija
Johnson & Johnson d.o.o.
Tel: +386 1 401 18 00
Janssen_safety_slo@its.jnj.com

Slovenská republika
Johnson & Johnson, s.r.o.
Tel: +421 232 408 400

Suomi/Finland
Janssen-Cilag Oy
Puh/Tel: +358 207 531 300
jacfi@its.jnj.com

Sverige
Janssen-Cilag AB
Tfn: +46 8 626 50 00
jacse@its.jnj.com

United Kingdom (Northern Ireland)
Janssen Sciences Ireland UC
Tel: +44 1 494 567 444

This leaflet was last revised in

Detailed information on this medicine is available on the European Medicines Agency web site: