1. NAME OF THE MEDICINAL PRODUCT
Xydalba 500 mg powder for concentrate for solution for infusion

2. QUALITATIVE AND QUANTITATIVE COMPOSITION
Each vial contains dalbavancin hydrochloride equivalent to 500 mg dalbavancin.

After reconstitution each ml contains 20 mg dalbavancin.

The diluted solution for infusion must have a final concentration of 1 to 5 mg/ml dalbavancin (see section 6.6).

For the full list of excipients, see section 6.1.

3. PHARMACEUTICAL FORM
Powder for concentrate for solution for infusion (powder for concentrate).

White to off-white to pale yellow powder.

4. CLINICAL PARTICULARS
4.1 Therapeutic indications
Xydalba is indicated for the treatment of acute bacterial skin and skin structure infections (ABSSSI) in adults and paediatric patients aged 3 months and older (see sections 4.4 and 5.1).

Consideration should be given to official guidance on the appropriate use of antibacterial agents.

4.2 Posology and method of administration

Posology

Adults
The recommended dose of dalbavancin is 1,500 mg administered as either a single infusion of 1,500 mg or as 1,000 mg followed one week later by 500 mg (see sections 5.1 and 5.2).

Children and adolescents aged from 6 years to less than 18 years
The recommended dose of dalbavancin is a single dose of 18 mg/kg (maximum 1,500 mg).

Infants and children aged from 3 months to less than 6 years
The recommended dose of dalbavancin is a single dose of 22.5 mg/kg (maximum 1,500 mg).

Special populations

Elderly
No dose adjustment is necessary (see section 5.2).

Renal impairment
Dose adjustments are not required for adult and paediatric patients with mild or moderate renal impairment (creatinine clearance ≥ 30 to 79 ml/min). Dose adjustments are not required for adult
patients receiving regularly scheduled haemodialysis (3 times/week), and dalbavancin may be administered without regard to the timing of haemodialysis.

In adult patients with chronic renal impairment whose creatinine clearance is < 30 ml/min and who are not receiving regularly scheduled haemodialysis, the recommended dose is reduced to either 1,000 mg administered as a single infusion or 750 mg followed one week later by 375 mg (see section 5.2).

There is insufficient information to recommend dosage adjustment for patients younger than 18 years with creatinine clearance less than 30 ml/min/1.73 m². Currently available information is described in section 5.2, but no recommendation on a posology can be made.

Hepatic impairment

No dose adjustment of dalbavancin is recommended for patients with mild hepatic impairment (Child-Pugh A). Caution should be exercised when prescribing dalbavancin to patients with moderate or severe hepatic impairment (Child-Pugh B & C) as no data are available to determine appropriate dosing (see sections 5.2).

Paediatric population

The safety and efficacy of dalbavancin in children aged < 3 months old has not yet been established. Currently available data are described in section 5.2, but no recommendation on a posology can be made.

Method of administration

Intravenous use

Xydalba must be reconstituted and then further diluted prior to administration by intravenous infusion over a 30 - minute period. For instructions on reconstitution and dilution of the medicinal product before administration, see section 6.6.

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

4.4 Special warnings and precautions for use

Hypersensitivity reactions

Dalbavancin should be administered with caution in patients known to be hypersensitive to other glycopeptides since cross-hypersensitivity may occur. If an allergic reaction to dalbavancin occurs, administration should be discontinued and appropriate therapy for the allergic reaction should be instituted.

Clostridioides (formerly **Clostridium**) *difficile*-associated diarrhoea

Antibacterial-associated colitis and pseudomembranous colitis have been reported with the use of nearly all antibiotics and may range in severity from mild to life threatening. Therefore, it is important to consider this diagnosis in patients who present with diarrhoea during or subsequent to the treatment with dalbavancin (see section 4.8). In such circumstance, the discontinuation of dalbavancin and the use of supportive measures together with the administration of specific treatment for *Clostridioides* (formerly **Clostridium**) *difficile* should be considered. These patients must never be treated with medicinal products that suppress the peristalsis.

Infusion-related reactions

Xydalba is to be administered via intravenous infusion, using a total infusion time of 30 minutes to minimise the risk of infusion-related reactions. Rapid intravenous infusions of glycopeptide
antibacterial agents can cause reactions including flushing of the upper body, urticaria, pruritus, and/or rash. Stopping or slowing the infusion may result in cessation of these reactions.

Renal impairment

Information on the efficacy and safety of dalbavancin in patients with creatinine clearance < 30 ml/min is limited. Based on simulations, dose adjustment is needed for adult patients with chronic renal impairment whose creatinine clearance is < 30 ml/min and who are not receiving regular haemodialysis (see sections 4.2 and 5.2). There is insufficient information to recommend dosage adjustment for patients younger than 18 years with creatinine clearance less than 30 ml/min/1.73 m².

Mixed infections

In mixed infections in which Gram-negative bacteria are suspected patients should also be treated with an appropriate antibacterial agent(s) against Gram-negative bacteria (see section 5.1).

Non-susceptible organisms

The use of antibiotics may promote the overgrowth of non-susceptible micro-organisms. If superinfection occurs during therapy, appropriate measures should be taken.

Limitations of the clinical data

There is limited data on safety and efficacy of dalbavancin when administered for more than two doses (one week apart). In the major trials in ABSSSI the types of infections treated were confined to cellulitis/erysipelas, abscesses and wound infections only. There is no experience with dalbavancin in the treatment of severely immunocompromised patients.

Excipients

This medicine contains less than 1 mmol sodium (23 mg) per dose, that is to say essentially ‘sodium-free’.

4.5 Interaction with other medicinal products and other forms of interaction

Results from an in vitro receptor screening study do not indicate a likely interaction with other therapeutic targets or a potential for clinically relevant pharmacodynamic interactions (see section 5.1).

Clinical drug-drug interaction studies with dalbavancin have not been conducted.

Potential for other medicinal products to affect the pharmacokinetics of dalbavancin.

Dalbavancin is not metabolised by CYP enzymes in vitro, therefore co-administered CYP inducers or inhibitors are unlikely to influence the pharmacokinetics of dalbavancin.

It is not known if dalbavancin is a substrate for hepatic uptake and efflux transporters. Co-administration with inhibitors of these transporters may increase the exposure to dalbavancin. Examples of such transporter inhibitors are boosted protease inhibitors, verapamil, quinidine, itraconazole, clarithromycin and cyclosporine.

Potential for dalbavancin to affect the pharmacokinetics of other medicinal products.

The interaction potential of dalbavancin on medicinal products metabolised by CYP enzymes is expected to be low since it is neither an inhibitor nor an inducer of CYP enzymes in vitro. There are no data on dalbavancin as an inhibitor of CYP2C8.
It is not known if dalbavancin is an inhibitor of transporters. Increased exposure to transporter substrates sensitive for inhibited transporter activity, such as statins and digoxin, cannot be excluded if combined with dalbavancin.

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no data from the use of dalbavancin in pregnant women. Studies in animals have shown reproductive toxicity (see section 5.3).

Xydalba is not recommended during pregnancy, unless the potential expected benefit clearly justifies the potential risk to the foetus.

Breast-feeding

It is unknown whether dalbavancin is excreted in human milk. However, dalbavancin is excreted in the milk of lactating rats and may be excreted in human breast milk. Dalbavancin is not well absorbed orally; however, an impact on the gastrointestinal flora or mouth flora of a breast-feeding infant cannot be excluded. A decision must be made whether to continue/discontinue breast-feeding or to continue/discontinue therapy with Xydalba taking into account the benefit of breast-feeding for the child and the benefit of therapy for the woman.

Fertility

Studies in animals have shown reduced fertility (see section 5.3). The potential risk for humans is unknown.

4.7 Effects on ability to drive and use machines

Xydalba may have a minor influence on the ability to drive and use machines, as dizziness has been reported in a small number of patients (see section 4.8).

4.8 Undesirable effects

Summary of the safety profile

In Phase 2/3 clinical studies, 2,473 adult patients received dalbavancin administered as either a single infusion of 1,500 mg or as 1,000 mg followed one week later by 500 mg. The most common adverse reactions occurring in ≥ 1% of patients treated with dalbavancin were nausea (2.4%), diarrhoea (1.9%), and headache (1.3%) and were generally of mild or moderate severity.

Tabulated list of adverse reactions (Table 1)

The following adverse reactions have been identified in Phase 2/3 clinical trials with dalbavancin. Adverse reactions are classified according to System Organ Class and frequency. Frequency categories are derived according to the following conventions: very common (≥ 1/10), common (≥ 1/100 to < 1/10), uncommon (≥ 1/1,000 to < 1/100), rare (≥ 1/10,000 to < 1/1,000).
Table 1.

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Common</th>
<th>Uncommon</th>
<th>Rare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infections and infestations</td>
<td>vulvovaginal mycotic infection, urinary tract infection, fungal infection, Clostridioides (formerly Clostridium) difficile colitis, oral candidiasis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>anemia, thrombocytosis, eosinophilia, leucopenia, neutropenia</td>
<td></td>
<td>anaphylactoid reaction</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td></td>
<td></td>
<td>decreased appetite</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
<td>constipation, abdominal pain, dyspepsia, abdominal discomfort, vomiting</td>
<td></td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>blood lactate dehydrogenase increased, alanine aminotransferase increased, aspartate aminotransferase increased, blood uric acid increased, liver function test abnormal, transaminases increased, blood alkaline phosphatase increased, platelet count increased, body temperature increased, hepatic enzyme increased, gamma-glutamyl transferase increased</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description of selected adverse reactions

Class adverse reactions

Ototoxicity has been associated with glycopeptide use (vancomycin and teicoplanin); patients who are receiving concomitant therapy with an ototoxic medicinal product, such as an aminoglycoside, may be at increased risk.

Paediatric population

The safety of dalbavancin was evaluated in one Phase 3 clinical trial which included 168 paediatric patients from birth to less than 18 years of age with ABSSSI treated with dalbavancin (90 patients treated with a single dose of dalbavancin and 78 patients, all of them aged 3 months and older, treated with a two-dose regimen of dalbavancin). Overall, the safety findings of dalbavancin in these paediatric patients were similar to those observed in adults.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

No specific information is available on the treatment of overdose with dalbavancin, as dose-limiting
toxicity has not been observed in clinical studies. In Phase 1 studies, healthy volunteers have been administered single doses of up to 1,500 mg, and cumulative doses up to 4,500 mg over a period of up to 8 weeks, with no signs of toxicity or laboratory results of clinical concern. In Phase 3 studies, patients have been administered single doses of up to 1,500 mg.

Treatment of overdose with dalbavancin should consist of observation and general supportive measures. Although no information is available specifically regarding the use of haemodialysis to treat overdose, it should be noted that in a Phase 1 study in patients with renal impairment, less than 6% of the recommended dalbavancin dose was removed after 3 hours of haemodialysis.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: antibacterials for systemic use, glycopeptide antibacterials, ATC code: J01XA04.

Mechanism of action

Dalbavancin is a bactericidal lipoglycopeptide.

Its mechanism of action in susceptible Gram-positive bacteria involves interruption of cell wall synthesis by binding to the terminal D-alanyl-D-alanine of the stem peptide in nascent cell wall peptidoglycan, preventing cross-linking (transpeptidation and transglycosylation) of disaccharide subunits resulting in bacterial cell death.

Mechanism of resistance

All Gram-negative bacteria are inherently resistant to dalbavancin.

Resistance to dalbavancin in *Staphylococcus* spp. and *Enterococcus* spp. is mediated by VanA, a genotype that results in modification of the target peptide in nascent cell wall. Based on *in vitro* studies the activity of dalbavancin is not affected by other classes of vancomycin resistance genes.

Dalbavancin MICs are higher for vancomycin-intermediate staphylococci (VISA) than for fully vancomycin susceptible strains. If the isolates with higher dalbavancin MICs represent stable phenotypes and are correlated with resistance to the other glycopeptides, then the likely mechanism would be an increase in the number of glycopeptide targets in nascent peptidoglycan.

Cross-resistance between dalbavancin and other classes of antibiotics was not seen in *in vitro* studies. Methicillin resistance has no impact on dalbavancin activity.

Interactions with other antibacterial agents

In *in vitro* studies, no antagonism has been observed between dalbavancin and other commonly used antibiotics (i.e. cefepime, ceftazidime, ceftriaxone, imipenem, meropenem, amikacin, aztreonam, ciprofloxacin, piperacillin/tazobactam and trimethoprim/sulfamethoxazole), when tested against 12 species of Gram-negative pathogens (see section 4.5).

Susceptibility testing breakpoints

Minimum inhibitory concentration (MIC) breakpoints determined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) are:

- *Staphylococcus* spp.: Susceptible ≤ 0.125 mg/l; Resistant > 0.125 mg/l,
- Beta-haemolytic streptococci of Groups A, B, C, G: Susceptible ≤ 0.125 mg/l; Resistant > 0.125 mg/l,
• Viridans group streptococci (Streptococcus anginosus group only): Susceptible ≤ 0.125 mg/l; Resistant > 0.125 mg/l.

PK/PD relationship

Bactericidal activity against staphylococci in vitro is time-dependent at serum concentrations of dalbavancin similar to those obtained at the recommended dose in humans. In vivo PK/PD relationship of dalbavancin for S. aureus was investigated using a neutropenic model of animal infection. This showed that the antibacterial activity of dalbavancin appears to best correlate with the ratio of area under the unbound plasma concentration-time curve to minimal inhibitory concentration (fAUC/MIC).

Clinical efficacy against specific pathogens

Efficacy has been demonstrated in clinical studies against the pathogens listed for ABSSSI that were susceptible to dalbavancin in vitro:
• Staphylococcus aureus,
• Streptococcus pyogenes,
• Streptococcus agalactiae,
• Streptococcus dysgalactiae,
• Streptococcus anginosus group (includes S. anginosus, S. intermedius, and S. constellatus).

Antibacterial activity against other relevant pathogens

Clinical efficacy has not been established against the following pathogens although in vitro studies suggest that they would be susceptible to dalbavancin in the absence of acquired mechanisms of resistance:
• Group G streptococci
• Clostridium perfringens
• Peptostreptococcus spp.

Paediatric population

Xydalba has been evaluated in paediatric patients aged from birth to < 18 years with ABSSSI in one Phase 3 open-label, randomised, comparator controlled clinical trial. The study included 168 patients treated with dalbavancin (90 patients treated with a single dose of dalbavancin and 78 patients, all of them aged 3 months and older, treated with a two-dose regimen of dalbavancin) and 30 patients treated with comparator. The primary objective was to assess the safety and tolerability of Xydalba and secondary objectives included assessment of efficacy and pharmacokinetics. Efficacy was a descriptive endpoint. Clinical cure rate at TOC (mITT) was 95.1 % (78/82) in the Xydalba single-dose arm, 97.3 % (72/74) in the Xydalba two-dose arm and 100 % (30/30) in the comparator arm.

The European Medicines Agency has deferred the obligation to submit the results of studies with Xydalba in one or more subsets of the paediatric population in ABSSSI (see sections 4.2 and 5.2 for information on paediatric use).

5.2 Pharmacokinetic properties

The pharmacokinetics of dalbavancin have been characterised in healthy subjects, patients, and special populations. Systemic exposures to dalbavancin are dose proportional following single doses over a range of 140 to 1120 mg, indicating linear pharmacokinetics of dalbavancin. No accumulation of dalbavancin was observed following multiple intravenous infusions administered once-weekly for up to 8 weeks (1,000 mg on Day 1, followed by up to 7 weekly 500 mg doses) in healthy adults.

The mean terminal elimination half-life (t1/2) was 372 (range 333 to 405) hours. The pharmacokinetics of dalbavancin are best described using a three-compartment model (α and β distributional phases
followed by a terminal elimination phase). Thus, the distributional half-life ($t_{1/2\beta}$), which constitutes most of the clinically-relevant concentration-time profile, ranged from 5 to 7 days and is consistent with once-weekly dosing.

Estimated pharmacokinetic parameters of dalbavancin following the two-dose regimen and the single-dose regimen, respectively, are shown in Table 2 below.

Table 2.

Mean (SD) dalbavancin pharmacokinetic parameters for adults using population PK analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Two-dose regimen</th>
<th>Single-dose regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max} (mg/L)</td>
<td>Day 1: 281 (52)</td>
<td>Day 1: 411 (86)</td>
</tr>
<tr>
<td></td>
<td>Day 8: 141 (26)</td>
<td></td>
</tr>
<tr>
<td>AUC$_{0-Day14}$ (mg•h/L)</td>
<td>18100 (4600)</td>
<td>20300 (5300)</td>
</tr>
<tr>
<td>CL (L/h)</td>
<td>0.048 (0.0086)</td>
<td>0.049 (0.0096)</td>
</tr>
</tbody>
</table>

1 Source: DAL-MS-01.
2 1,000 mg on Day 1 + 500 mg on Day 8; Study DUR001-303 subjects with evaluable PK sample.
3 1,500 mg; Study DUR001-303 subjects with evaluable PK sample.

The dalbavancin plasma concentration-time following the two-dose and the single-dose regimens, respectively, are shown in Figure 1.

Figure 1. Dalbavancin Plasma Concentrations versus time in a typical adult ABSSSI patient (simulation using population pharmacokinetic model) for both the single and the two-dose regimens.

![Dalbavancin Concentration-Time](image)

Distribution

Clearance and volume of distribution at steady state are comparable between healthy subjects and
patients with infections. The volume of distribution at steady state was similar to the volume of extracellular fluid. Dalbavancin is reversibly bound to human plasma proteins, primarily to albumin. The plasma protein binding of dalbavancin is 93 % and is not altered as a function of drug concentration, renal insufficiency, or hepatic insufficiency. Following a single intravenous dose of 1,000 mg in healthy volunteers AUC in skin blister fluid amounted (bound and unbound dalbavancin) to approximately 60 % of the plasma AUC at day 7 post-dose.

Biotransformation

Metabolites have not been observed in significant amounts in human plasma. The metabolites hydroxy-dalbavancin and mannosyl aglycone have been detected in urine (< 25 % of administered dose). The metabolic pathways responsible for producing these metabolites have not been identified; however, due to the relatively minor contribution of metabolism to the overall elimination of dalbavancin, drug-drug interactions via inhibition or induction of metabolism of dalbavancin are not anticipated. Hydroxy-dalbavancin and mannosyl aglycone show significantly less antibacterial activity compared to dalbavancin.

Elimination

Following administration of a single 1,000 mg dose in healthy subjects, an average of 19 % to 33 % of the administered dalbavancin dose was excreted in urine as dalbavancin and 8 % to 12 % as the metabolite hydroxy-dalbavancin. Approximately 20 % of the administered dose was excreted in faeces.

Special populations

Renal impairment

The pharmacokinetics of dalbavancin were evaluated in 28 adult subjects with varying degrees of renal impairment and in 15 matched control subjects with normal renal function. Following a single dose of 500 mg or 1,000 mg dalbavancin, the mean plasma clearance (CL\text{\textsubscript{T}}) was reduced 11 %, 35 %, and 47 % in subjects with mild (CL\text{\textsubscript{CR}} 50 - 79 ml/min), moderate (CL\text{\textsubscript{CR}} 30 – 49 ml/min), and severe (CL\text{\textsubscript{CR}} < 30 ml/min) renal impairment, respectively, compared to subjects with normal renal function. The mean AUC for subjects with creatinine clearance < 30 ml/min was approximately 2 - fold higher. The clinical significance of the decrease in mean plasma CL\text{\textsubscript{T}}, and the associated increase in AUC\text{\textsubscript{0-\infty}} noted in these pharmacokinetic studies of dalbavancin in subjects with severe renal impairment has not been established. Dalbavancin pharmacokinetics in subjects with end-stage renal disease receiving regularly scheduled renal dialysis (3 times/week) were similar to those observed in subjects with mild to moderate renal impairment, and less than 6 % of an administered dose is removed after 3 hours of haemodialysis. For dosing instructions in adult subjects with renal impairment refer to section 4.2.

No observed PK data are available in paediatric patients with severe renal impairment. The predicted dalbavancin mean AUC for paediatric subjects with severe renal impairment (CL\text{\textsubscript{CR}} ≤ 30 ml/min/1.73 m2) was approximately 13-30 % higher compared to paediatric patients with normal renal function treated with the same dose, based on population pharmacokinetic modelling.

Hepatic impairment

The pharmacokinetics of dalbavancin were evaluated in 17 subjects with mild, moderate, or severe hepatic impairment and compared to 9 matched healthy subjects with normal hepatic function. The mean AUC was unchanged in subjects with mild hepatic impairment compared to subjects with normal hepatic function; however, the mean AUC decreased by 28 % and 31 %, respectively, in subjects with moderate and severe hepatic impairment. The cause and the clinical significance of the decreased exposure in subjects with moderate and severe hepatic function are unknown. For dosing instructions in subjects with hepatic impairment refer to section 4.2.
Gender

Clinically significant gender-related differences in dalbavancin pharmacokinetics have not been observed in healthy subjects or in patients with infections. No dose adjustment is recommended based on gender.

Elderly

The pharmacokinetics of dalbavancin were not significantly altered with age; therefore, dose adjustment is not necessary based on age (see section 4.2). The experience with dalbavancin in elderly is limited: 276 patients ≥ 75 years of age were included in the Phase 2/3 clinical studies, of which 173 received dalbavancin. Patients up to 93 years of age have been included in clinical studies.

Paediatric population

The pharmacokinetics of dalbavancin has been evaluated in 218 individual paediatric patients [4 days to 17 years of age, including a preterm neonate (gestational age 36 weeks; n=1) and term neonates (gestational age 37 to 40 weeks; n=6)] with creatinine clearance 30 ml/min/1.73 m² and above. There is insufficient information to assess the exposure of dalbavancin in the paediatric patients with creatinine clearance less than 30 ml/min/1.73 m². The model predicted plasma AUC_{0-120h} of dalbavancin in preterm neonates at birth (gestational age 26 weeks to <37 weeks) was approximately 60 % of that in adult patients.

Table 3.
Simulated Mean (SD) dalbavancin pharmacokinetic parameters for paediatrics and adults using population PK analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Preterm Neonate</th>
<th>Term Neonate</th>
<th>Young Infant</th>
<th>Infant</th>
<th>Toddler</th>
<th>Child</th>
<th>Adolescent</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age range</td>
<td>GA 26--<37 weeks</td>
<td>Birth -1 month</td>
<td>1 month - <3 months</td>
<td>3 months - <2 years</td>
<td>2 years - < 6 years</td>
<td>6 years - < 12 years</td>
<td>12 years - < 18 years</td>
<td>> = 18 years</td>
</tr>
<tr>
<td>Dose</td>
<td>22.5 mg/kg</td>
<td>22.5 mg/kg</td>
<td>22.5 mg/kg</td>
<td>22.5 mg/kg</td>
<td>18 mg/kg</td>
<td>18 mg/kg</td>
<td>1500 mg</td>
<td></td>
</tr>
<tr>
<td>C_{max} (mg/L)</td>
<td>231 (89)</td>
<td>306 (130)</td>
<td>306 (130)</td>
<td>307 (130)</td>
<td>304 (130)</td>
<td>259 (110)</td>
<td>251 (110)</td>
<td>425 (100)</td>
</tr>
<tr>
<td>AUC_{0-120h} (mg*h/L)</td>
<td>6620 (2000)</td>
<td>9000 (2900)</td>
<td>9080 (3000)</td>
<td>9490 (3100)</td>
<td>10200 (3200)</td>
<td>8870 (3200)</td>
<td>9060 (3100)</td>
<td>10800 (3200)</td>
</tr>
</tbody>
</table>

1 Source: DAL-MS-02.

In all paediatric age groups, the percentage of patients attaining PK/PD targets related to in vivo drug activity were 90 % or higher for MICs up to 0.125 mg/l.

5.3 Preclinical safety data

Dalbavancin toxicity has been evaluated after daily intravenous administration for durations of up to 3 months in rats and dogs. Dose-dependent toxicity included serum chemistry and histological evidence of renal and hepatic injury, reduced red blood cell parameters and injection site irritation. In dogs only, infusion reactions characterised by skin swelling and/or redness (not associated with the injection site), mucosal pallor, salivation, vomiting, sedation, and modest declines in blood pressure and increases in heart rate were observed in a dose-dependent manner. These infusion reactions were transient (resolved within 1 hour post-dosing) and were attributed to histamine release. Dalbavancin toxicity profile in juvenile rats was consistent with that previously observed in adult rats at the same dose (mg/kg /day) levels.
Reproductive toxicity studies in rats and rabbits showed no evidence of a teratogenic effect. In rats, at exposures approximately 3 times above clinical exposure, there was reduced fertility and an increased incidence of embryo-lethality, reductions in foetal weight and skeletal ossification and increased neonatal mortality. In rabbits, abortion occurred in conjunction with maternal toxicity at exposures below the human therapeutic range.

Long-term carcinogenicity studies have not been conducted. Dalbavancin was not mutagenic or clastogenic in a battery of in vitro and in vivo genotoxicity tests.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Mannitol (E421)
Lactose monohydrate
Hydrochloric acid (for pH-adjustment)
Sodium hydroxide (for pH-adjustment)

6.2 Incompatibilities

Sodium chloride solutions may cause precipitation and must not be used for reconstitution or dilution (see section 6.6).

This medicinal product must not be mixed with other medicinal products or intravenous solutions other than those mentioned in section 6.6.

6.3 Shelf life

Dry powder: 4 years

Chemical and physical in-use stability of Xydalba has been demonstrated for both the reconstituted concentrate and for the diluted solution for 48 hours at or below 25 °C. The total in-use stability from reconstitution to administration should not exceed 48 hours.

From a microbiological point of view, the product should be used immediately. If not used immediately, in-use storage times and conditions prior to use are the responsibility of the user and would normally not be longer than 24 hours at 2 to 8 °C, unless reconstitution/dilution has taken place in controlled and validated aseptic conditions. Do not freeze.

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

For storage conditions after reconstitution and dilution of the medicinal product, see section 6.3.

6.5 Nature and contents of container

Single-use 48 ml type I glass vial with an elastomeric stopper and a green flip off seal.

Each pack contains 1 vial.

6.6 Special precautions for disposal and other handling

Xydalba must be reconstituted with sterile water for injections and subsequently diluted with 50 mg/ml (5 %) glucose solution for infusion.
Xydalba vials are for single-use only.

Instructions for reconstitution and dilution

Aseptic technique must be used for reconstitution and dilution of Xydalba.

1. The content of each vial must be reconstituted by slowly adding 25 ml of water for injections.
2. **Do not shake.** To avoid foaming, alternate between gentle swirling and inversion of the vial, until its contents are completely dissolved. The reconstitution time may be up to 5 minutes.
3. The reconstituted concentrate in the vial contains 20 mg/ml dalbavancin.
4. The reconstituted concentrate must be a clear, colourless to yellow solution with no visible particles.
5. The reconstituted concentrate must be further diluted with 50 mg/ml (5 %) glucose solution for infusion.
6. To dilute the reconstituted concentrate, the appropriate volume of the 20 mg / ml concentrate must be transferred from the vial to an intravenous bag or bottle containing 50 mg/ml (5 %) glucose solution for infusion. For example: 25 ml of the concentrate contains 500 mg dalbavancin.
7. After dilution the solution for infusion must have a final concentration of 1 to 5 mg/ml dalbavancin.
8. The solution for infusion must be clear, colourless to yellow solution with no visible particles.
9. If particulate matter or discoloration is identified, the solution must be discarded.

Xydalba must not be mixed with other medicinal products or intravenous solutions. Sodium chloride containing solutions can cause precipitation and should NOT be used for reconstitution or dilution. The compatibility of reconstituted Xydalba concentrate has only been established with 50 mg/ml (5 %) glucose solution for infusion.

If a common intravenous line is being used to administer other medicinal products in addition to Xydalba, the line should be flushed before and after each Xydalba infusion with 5 % glucose solution for infusion.

Use in the paediatric population

For paediatric patients, the dose of Xydalba will vary according to the age and weight of the child up to a maximum of 1,500 mg. Transfer the required dose of reconstituted dalbavancin solution, according to the instructions above, based on the child’s weight, from the vial to an intravenous bag or bottle containing 50 mg/ml (5 %) glucose solution for infusion. The diluted solution must have a final dalbavancin concentration of 1 to 5 mg/ml.

Table 4 below provides information to prepare an infusion solution with a final concentration of 2 mg/ml or 5 mg/ml (sufficient for most scenarios), to be administered by syringe pump, to achieve a dose of 22.5 mg/kg in paediatric patients from 3 to 12 months of age weighing from 3 to 12 kg. Alternative concentrations may be prepared, but must have a final concentration range of 1 to 5 mg/ml of dalbavancin. Refer to Table 4 to confirm the calculations. Values shown are approximate. Note that the table is NOT inclusive of all possible calculated doses for every age group but may be utilised to estimate the approximate volume to verify the calculation.
Table 4. Preparation of Xydalba (final infusion concentration 2 mg/ml or 5 mg/ml to be administered by syringe pump) in paediatric patients aged 3 to 12 months (22.5 mg/kg dose)

<table>
<thead>
<tr>
<th>Patient Weight (kg)</th>
<th>Dose (mg) to achieve 22.5 mg/kg</th>
<th>Volume of reconstituted dalbavancin solution (20 mg/ml) to be withdrawn from vial (ml)</th>
<th>Volume of diluent 50 mg/ml (5 %) glucose solution to add for mixing (ml)</th>
<th>Final dalbavancin infusion solution concentration</th>
<th>Total Volume Dosed by syringe pump (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>67.5</td>
<td>10 ml</td>
<td>90 ml</td>
<td>2 mg/ml</td>
<td>33.8</td>
</tr>
<tr>
<td>4</td>
<td>90.0</td>
<td></td>
<td></td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>5</td>
<td>112.5</td>
<td></td>
<td></td>
<td></td>
<td>56.3</td>
</tr>
<tr>
<td>6</td>
<td>135.0</td>
<td></td>
<td></td>
<td></td>
<td>67.5</td>
</tr>
<tr>
<td>7</td>
<td>157.5</td>
<td></td>
<td></td>
<td></td>
<td>78.8</td>
</tr>
<tr>
<td>8</td>
<td>180.0</td>
<td></td>
<td></td>
<td></td>
<td>90.0</td>
</tr>
<tr>
<td>9</td>
<td>202.5</td>
<td>20 ml</td>
<td>60 ml</td>
<td>5 mg/ml</td>
<td>40.5</td>
</tr>
<tr>
<td>10</td>
<td>225.0</td>
<td></td>
<td></td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>11</td>
<td>247.5</td>
<td></td>
<td></td>
<td></td>
<td>49.5</td>
</tr>
<tr>
<td>12</td>
<td>270.0</td>
<td></td>
<td></td>
<td></td>
<td>54.0</td>
</tr>
</tbody>
</table>

Disposal

Discard any portion of the reconstituted solution that remains unused.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.

7. MARKETING AUTHORISATION HOLDER

AbbVie Deutschland GmbH & Co. KG
Knollstraße
67061 Ludwigshafen
Germany

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/14/986/001

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 19 February 2015
Date of latest authorisation: 05 December 2019

10. DATE OF REVISION OF THE TEXT

ANNEX II

A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer responsible for batch release

Almac Pharma Services Limited
Seagoe Industrial Estate
Craigavon
Co Armagh
BT63 5UA
United Kingdom

Almac Pharma Services (Ireland) Limited
Finnabair Industrial Estate,
Dundalk,
Co. Louth, A91 P9KD, Ireland

Via Vecchia del Pinocchio, 22
60100 Ancona
Italy

The printed package leaflet of the medicinal product must state the name and address of the manufacturer responsible for the release of the concerned batch.

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal product subject to medical prescription.

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

- Periodic safety update reports (PSURs)

The requirements for submission of PSURs for this medicinal product are set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and any subsequent updates published on the European medicines web-portal.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

- Risk management plan (RMP)

The marketing authorisation holder (MAH) shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2 of the marketing authorisation and any agreed subsequent updates of the RMP.

An updated RMP should be submitted:

- At the request of the European Medicines Agency;
- Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.
ANNEX III

LABELLING AND PACKAGE LEAFLET
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

Carton

1. **NAME OF THE MEDICINAL PRODUCT**

Xydalba 500 mg powder for concentrate for solution for infusion
dalbavancin

2. **STATEMENT OF ACTIVE SUBSTANCE(S)**

Each vial contains dalbavancin hydrochloride equivalent to 500 mg of dalbavancin. After reconstitution each ml contains 20 mg dalbavancin.

3. **LIST OF EXCIPIENTS**

Mannitol (E421),
Lactose monohydrate,
Sodium hydroxide and/or hydrochloric acid (for pH adjustment)

4. **PHARMACEUTICAL FORM AND CONTENTS**

Powder for concentrate for solution for infusion

1 vial

5. **METHOD AND ROUTE(S) OF ADMINISTRATION**

Read the package leaflet before use.
Intravenous use after reconstitution and dilution.
For single use only

6. **SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN**

Keep out of the sight and reach of children.

7. **OTHER SPECIAL WARNING(S), IF NECESSARY**

8. **EXPIRY DATE**

EXP

9. **SPECIAL STORAGE CONDITIONS**
10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

AbbVie Deutschland GmbH & Co. KG
Knollstraße
67061 Ludwigshafen
Germany

12. MARKETING AUTHORISATION NUMBER(S)

EU/1/14/986/001

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

Justification for not including Braille accepted

17. UNIQUE IDENTIFIER – 2D BARCODE

2D barcode carrying the unique identifier included.

18. UNIQUE IDENTIFIER - HUMAN READABLE DATA

PC:
SN:
NN:
MINIMUM PARTICULARS TO APPEAR ON SMALL IMMEDIATE PACKAGING UNITS

Vial label

1. **NAME OF THE MEDICINAL PRODUCT AND ROUTE(S) OF ADMINISTRATION**

 Xydalba 500 mg powder for concentrate
dalbavancin
intravenous use after reconstitution and dilution

2. **METHOD OF ADMINISTRATION**

3. **EXPIRY DATE**

 EXP

4. **BATCH NUMBER**

 Lot

5. **CONTENTS BY WEIGHT, BY VOLUME OR BY UNIT**

6. **OTHER**

 AbbVie Deutschland GmbH & Co. KG
B. PACKAGE LEAFLET
Read all of this leaflet carefully before you are given this medicine because it contains important information for you.
- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor, pharmacist or nurse.
- If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet
1. What Xydalba is and what it is used for
2. What you need to know before you are given Xydalba
3. How you will be given Xydalba
4. Possible side effects
5. How to store Xydalba
6. Contents of the pack and other information

1. What Xydalba is and what it is used for

Xydalba contains the active substance dalbavancin, which is an antibiotic of the glycopeptide group.

Xydalba is used to treat adults and children aged 3 months and over with infections of the skin or in the layers of flesh below the skin.

Xydalba works by killing certain bacteria, which can cause serious infections. It kills these bacteria by interfering with the formation of bacterial cell walls.

If you also have other bacteria that cause your infection, your doctor may decide to treat you with other antibiotics in addition to Xydalba.

2. What you need to know before you are given Xydalba

Do not use Xydalba if you are allergic to dalbavancin or any of the other ingredients of this medicine (listed in section 6).

Warnings and precautions

Talk to your doctor, pharmacist or nurse before being given Xydalba:
- If you have or have had kidney problems. Depending on your age and the condition of your kidney, your doctor may have to reduce your dose.
- If you are suffering from diarrhoea, or you have previously suffered from diarrhoea when being treated with antibiotics.
- If you are allergic to other antibiotics such as vancomycin or teicoplanin.

Diarrhoea during or after treatment

If you develop diarrhoea during or after your treatment, tell your doctor at once. Do not take any medicine to treat your diarrhoea without first checking with your doctor.
Infusion-related reactions

Intravenous infusions with these types of antibiotics can cause flushing of the upper body, hives, itching and/or rashes. If you experience these types of reactions your doctor may decide to stop or slow the infusion.

Other infections

Using antibiotics may sometimes allow a new and different infection to develop. If this happens tell your doctor and they will decide what to do.

Children

Do not give this medicine to children under 3 months. The use of Xydalba in children under 3 months has not been studied enough.

Other medicines and Xydalba

Tell your doctor or pharmacist if you are taking, have recently taken or might take any other medicines.

Pregnancy and breast-feeding

Xydalba is not recommended during pregnancy unless clearly necessary. This is because it is not known what effect it might have on an unborn baby. Before you are given this medicine, tell your doctor if you are pregnant, think you may be pregnant or are planning to have a baby. You and your doctor will decide if you will be given Xydalba.

It is not known if Xydalba passes into breast milk in humans. Ask your doctor for advice before breast-feeding your baby. You and your doctor will decide if you will be given Xydalba. You should not breastfeed when given Xydalba.

Driving and using machines

Xydalba may cause dizziness. Take care with driving and using machines after you have been given this medicine.

Xydalba contains sodium

This medicine contains less than 1 mmol sodium (23 mg) per dose, that is to say essentially ‘sodium-free’.

3. How you will be given Xydalba

Xydalba will be given to you by a doctor or nurse.

- **Adults**: Xydalba is given in a single dose of 1,500 mg or in two doses a week apart: 1,000 mg on Day 1 and 500 mg on Day 8.
- **Children and adolescents aged from 6 years to less than 18 years**: Xydalba is given in a single dose of 18 mg/kg (maximum 1,500 mg).
- **Infants and children aged from 3 months to less than 6 years**: Xydalba is given in a single dose of 22.5 mg/kg (maximum 1,500 mg).

The dose for children aged 3 months to less than 18 years will be calculated by the doctor based on the age and weight of the child.
You will be given Xydalba through a drip directly into your bloodstream through a vein (intravenously) over 30 minutes.

Patients with chronic kidney problems

If you suffer from chronic kidney problems, your doctor may decide to reduce your dose. There is not enough information to recommend the use of Xydalba for children with chronic kidney problems.

If you are given more Xydalba than you should

Tell your doctor or nurse immediately if you are concerned that you may have been given too much Xydalba.

If you miss a dose of Xydalba

Tell your doctor or nurse immediately if you are concerned that you are missing the 2nd dose.

If you have any further questions on the use of this medicine, ask your doctor, pharmacist or nurse.

4. **Possible side effects**

Like all medicines, this medicine can cause side effects, although not everybody gets them.

Serious side effects

Tell your doctor straight away if you get any of these symptoms - you may need urgent medical attention:

- **Sudden swelling of your lips, face, throat or tongue; severe rash; itchiness; throat tightening; drop in blood pressure; difficulty in swallowing and/or difficulty in breathing.** These may all be signs of a hypersensitivity reaction and may be life-threatening. This severe reaction has been reported as a rare side effect. It may affect up to 1 in 1,000 people.

- **Abdominal pain (stomach ache) and/or watery diarrhoea.** The symptoms may become severe or may not go away and the stools may contain blood or mucus. These may be signs of an infection of the bowel. In this situation, you should not take medicines that stop or slow bowel movement. Infection of the bowel has been reported as an uncommon side effect. It may affect up to 1 in 100 people.

- **Changes in hearing.** This has been reported as a side effect with a similar medicine. The frequency is not known. The frequency cannot be estimated from the available data.

Other side effects reported with Xydalba are listed below.

Talk to your doctor, pharmacist or nurse if you get any of the following side effects:

Common - may affect up to 1 in 10 people:

- Headache
- Feeling sick (nausea)
- Diarrhoea

Uncommon - may affect up to 1 in 100 people:

- Vaginal infections, fungal infections, oral thrush
- Urinary tract infections
- Anaemia (low levels of red blood cells), high blood platelet counts (thrombocytosis), increased blood counts of a type of white blood cell called eosinophils (eosinophilia), low levels of other types of white blood cell (leucopenia, neutropenia)
- Changes in other blood tests
- Decreased appetite
- Difficulty sleeping
- Dizziness
- Change in sense of taste
- Inflammation and swelling of surface veins, flushing
- Cough
- Abdominal pain and discomfort, indigestion, constipation
- Abnormal liver function test
- An increase in alkaline phosphatase (an enzyme found in the body)
- Itching, hives
- Genital itching (females)
- Pain, redness or swelling at the place where the infusion was given
- Feeling hot
- Increase in blood levels of gamma-glutamyl transferase (an enzyme produced by the liver and other body tissues)
- Rash
- Being sick (vomiting)

Rare - may affect up to 1 in 1,000 people:
- Difficulty breathing (bronchospasm)

Reporting of side effects

If you get **any side effects**, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects you can help provide more information on the safety of this medicine.

5. How to store Xydalba

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the vial after EXP. The expiry date refers to the last day of that month.

This medicine does not require any special storage conditions if kept unopened in the original container.

The prepared Xydalba solution for infusion must not be used if there are any particles or the solution is cloudy.

Xydalba is for single use only.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.

6. Contents of the pack and other information

What Xydalba contains
- The active substance is dalbavancin. Each vial of powder contains dalbavancin hydrochloride equivalent to 500 mg of dalbavancin.
- The other ingredients are mannitol (E421), lactose monohydrate, hydrochloric acid and/or sodium hydroxide (for pH adjustment only).
What Xydalba looks like and contents of the pack

Xydalba powder for concentrate for solution for infusion is provided in a 48 ml glass vial with a green flip off seal. The vial contains white to off-white to pale yellow powder. It is available in packs containing 1 vial.

Marketing Authorisation Holder

AbbVie Deutschland GmbH & Co. KG
Knollstraße
67061 Ludwigshafen
Germany

Manufacturer

Almac Pharma Services (Ireland) Limited
Finnabair Industrial Estate,
Dundalk,
Co. Louth, A91 P9KD, Ireland

Almac Pharma Services Ltd
Seagoe Industrial Estate, Craigavon, Country Armagh BT63 5UA
United Kingdom

Via Vecchia del Pinocchio, 22
60100 Ancona
Italy

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder:

België/Belgique/Belgien
Advanz Pharma Belgium
Tél/Tel: +32 (0)800 78 941
medicalinformation@advanzpharma.com

Lietuva
UAB MRA
Tel: + 370 5264 9010

България
Анджелини Фарма България ЕООД
Тел.: + 359 2 975 1395
office@angelini.bg

Luxembourg/Luxemburg
Correvio
Tél/Tel: +44 (0)208 588 9131
medicalinformation@advanzpharma.com

Magyarország
Angelini Pharma Magyarország Kft
Tel: + 36 1 336 1614
drugsafety@angelini.hu

Česká republika
Angelini Pharma Česká republika s.r.o.
Tel: + 420 546 123 111
info@angelini.cz

Danmark
Correvio
Tlf: +45 8082 6022
medicalinformation@advanzpharma.com

Malta
Correvio
Tel: +44 (0)208 588 9131
medicalinformation@advanzpharma.com

Deutschland
Advanz Pharma Germany GmbH
Tel: +49 (0)800 1802 091

Nederland
Correvio
Tel: +31 (0)20 808 32 06
medicinalinformation@advanzpharma.com

Eesti
Lorenzo Pharma OÜ
Tel: + 372 6041669

Ελλάδα
ANGELINI PHARMA HELLAS A.B.E.E.
Τηλ.: + 30 210 626 9200
info@angelinipharma.gr

Español
ANGELINI PHARMA ESPAÑA, S.L.
Tel: + 34 93 253 45 00

España
ANGELINI PHARMA ESPAÑA, S.L.
Tel: + 34 93 253 45 00

France
Correvio SAS
Tél: +33 (0)1 77 68 89 17
medicinalinformation@advanzpharma.com

Slovenija
Angelini Pharma S.p.A
Tel: + 39 06 78 0531

Hrvatska
Angelini Pharma S.p.A
Tel: + 39 06 78 0531

Italia
Angelini Pharma S.p.A
Tel: + 39 06 78 0531

Ísland
Correvio
Sími: +44 (0)208 588 9131
medicinalinformation@advanzpharma.com

Latvija
SIA Livorno Pharma
Tel: + 371 6721 1124

This leaflet was last revised in {MM/YYYY}.

Detailed information on this medicine is available on the European Medicines Agency web site:
The following information is intended for medical or healthcare professionals only:

Important: Please refer to the Summary of Product Characteristics (SmPC) before prescribing.

Xydalba must be reconstituted with sterile water for injections and subsequently diluted with 50 mg/ml (5 %) glucose solution for infusion.

Xydalba vials are for single-use only.

Instructions for reconstitution and dilution

Aseptic technique must be used for reconstitution and dilution of Xydalba.

1. The content of each vial must be reconstituted by slowly adding 25 ml of water for injections.
2. **Do not shake.** To avoid foaming, alternate between gentle swirling and inversion of the vial, until its contents are completely dissolved. The reconstitution time may be up to 5 minutes.
3. The reconstituted concentrate in the vial contains 20 mg /ml dalbavancin.
4. The reconstituted concentrate must be a clear, colourless to yellow solution with no visible particles.
5. The reconstituted concentrate must be further diluted with 50 mg/ml (5 %) glucose solution for infusion.
6. To dilute the reconstituted concentrate, the appropriate volume of the 20 mg/ml concentrate must be transferred from the vial to an intravenous bag or bottle containing 50 mg/ml (5 %) glucose solution for infusion. For example: 25 ml of the concentrate contains 500 mg dalbavancin.
7. After dilution the solution for infusion must have a final concentration of 1 to 5 mg/ml dalbavancin.
8. The solution for infusion must be clear, colourless to yellow solution with no visible particles.
9. If particulate matter or discoloration is identified, the solution must be discarded.

Xydalba must not be mixed with other medicinal products or intravenous solutions. Sodium chloride containing solutions can cause precipitation and should NOT be used for reconstitution or dilution. The compatibility of reconstituted Xydalba concentrate has only been established with 50 mg/ml (5 %) glucose solution for infusion.

If a common intravenous line is being used to administer other medicinal products in addition to Xydalba, the line should be flushed before and after each Xydalba infusion with 5 % glucose solution for infusion.

Use in the paediatric population

For paediatric patients, the dose of Xydalba will vary according to the age and weight of the child up to a maximum of 1,500 mg. Transfer the required dose of reconstituted dalbavancin solution, according to the instructions above, based on the child’s weight, from the vial to an intravenous bag or bottle containing 50 mg/ml (5 %) glucose solution for infusion. The diluted solution must have a final dalbavancin concentration of 1 to 5 mg/ml.

Table 1 below provides information to prepare an infusion solution with a final concentration of 2 mg/ml or 5 mg/ml (sufficient for most scenarios), to be administered by syringe pump, to achieve a dose of 22.5 mg/kg in paediatric patients from 3 to 12 months of age weighing from 3 to 12 kg. Alternative concentrations may be prepared, but must have a final concentration range of 1 to 5 mg/ml of dalbavancin. Refer to Table 1 to confirm the calculations. Values shown are approximate. Note that the table is NOT inclusive of all possible calculated doses for every age group but may be utilised to estimate the approximate volume to verify the calculation.
Table 1. Preparation of Xydalba (final infusion concentration 2 mg/ml or 5 mg/ml to be administered by syringe pump) in paediatric patients aged 3 to 12 months (22.5 mg/kg dose)

<table>
<thead>
<tr>
<th>Patient Weight (kg)</th>
<th>Dose (mg) to achieve 22.5 mg/kg</th>
<th>Volume of reconstituted dalbavancin solution (20 mg/ml) to be withdrawn from vial (ml)</th>
<th>Volume of diluent 50 mg/ml (5 %) glucose solution to add for mixing (ml)</th>
<th>Final dalbavancin infusion solution concentration</th>
<th>Total Volume Dosed by syringe pump (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>67.5</td>
<td>10 ml</td>
<td>90 ml</td>
<td>2 mg/ml</td>
<td>33.8</td>
</tr>
<tr>
<td>4</td>
<td>90.0</td>
<td></td>
<td></td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>5</td>
<td>112.5</td>
<td></td>
<td></td>
<td></td>
<td>56.3</td>
</tr>
<tr>
<td>6</td>
<td>135.0</td>
<td></td>
<td></td>
<td></td>
<td>67.5</td>
</tr>
<tr>
<td>7</td>
<td>157.5</td>
<td></td>
<td></td>
<td></td>
<td>78.8</td>
</tr>
<tr>
<td>8</td>
<td>180.0</td>
<td></td>
<td></td>
<td></td>
<td>90.0</td>
</tr>
<tr>
<td>9</td>
<td>202.5</td>
<td>20 ml</td>
<td>60 ml</td>
<td>5 mg/ml</td>
<td>40.5</td>
</tr>
<tr>
<td>10</td>
<td>225.0</td>
<td></td>
<td></td>
<td></td>
<td>45.0</td>
</tr>
<tr>
<td>11</td>
<td>247.5</td>
<td></td>
<td></td>
<td></td>
<td>49.5</td>
</tr>
<tr>
<td>12</td>
<td>270.0</td>
<td></td>
<td></td>
<td></td>
<td>54.0</td>
</tr>
</tbody>
</table>

Disposal

Discard any portion of the reconstituted solution that remains unused.

Any unused medicinal product or waste material should be disposed of in accordance with local requirements.
ANNEX IV

CONCLUSIONS ON THE REQUEST FOR ONE YEAR MARKETING PROTECTION PRESENTED BY THE EUROPEAN MEDICINES AGENCY
Conclusions presented by the European Medicines Agency on:

- **One-year marketing protection**

 The CHMP reviewed the data submitted by the marketing authorisation holder, taking into account the provisions of Article 14(11) of Regulation (EC) No 726/2004, and considers that the new therapeutic indication brings significant clinical benefit in comparison with existing therapies as further explained in the European Public Assessment Report.