Divergent position on a CVMP opinion on an Article 34 of Directive 2001/82/EC

For Girolan and its associated name Apralan (apramycin sulfate)

Procedure no: EMEA/V/A/122

I, the undersigned, have a divergent position to the outcome of the Article 34 referral for Girolan and its associated name Apralan (apramycin sulfate).

Apramycin is a broad-spectrum aminocyclitol antibiotic produced by a strain of Streptomyces tenebrarius. Apramycin is recognized in the WHO's list of critically important antibiotics for veterinary use and also selects for resistance towards gentamicin, which is a critically important antibiotic for human use, as the sole or limited therapy for enterococcal endocarditis and multidrug resistant (MDR) tuberculosis (WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR) 2016 Critically Important Antimicrobials for Human Medicine, 5th Revision). Apramycin, only approved for animal use, was introduced to veterinary medicine in the early 1980s in several European countries. The gene, aac(3)-IV, is the primary identified gene causing enzymatic cross-resistance between apramycin and gentamicin (Chaslus-Dancla et al., 1991 Genetic homology between plasmids of human and animal origins conferring resistance to the aminoglycosides gentamicin and apramycin. Antimicrob Agents Chemother 35:590-593.). Apramycin resistance associated with the aac(3)-IV gene in E. coli and S. Typhimurium was initially reported in 1981 in France, and disseminated rapidly within animal reservoirs in France, Belgium and Great Britain (Chaslus-Dancla et al., 1986 Emergence of aminoglycoside 3-N-acetyltransferase IV in Escherichia coli and Salmonella typhimurium isolated from animals in France. Antimicrob Agents Chemother 29:239–243.). In 1986, the gene was first detected in Enterobacteriaceae isolated from human patients (Chaslus-Dancla et al., 1989 Detection of apramycin resistant Enterobacteriaceae in hospital isolates. FEMS Microbiol Lett 52: 261-265.). In the 1990's, several studies from Great Britain have shown that approximately 26% of the gentamicin-resistant pathogenic E. coli strains from humans were carrying the aac(3)-IV gene (Hunter et al., 1993 Human isolates of apramycin-resistant Escherichia coli which contain the genes for the AAC(3)IV enzyme. Epidemiol Infect 110:253-259.; Johnson et al., 1994 Gentamicin resistance in clinical isolates of Escherichia coli encoded by genes of veterinary origin. J Med Microbiol 40: 221-226.). In Germany, Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in pigs and cattle have been described containing the apramycin-resistant gene, apmA (Feßler et al., 2011 Novel Apramycin Resistance Gene apmA in Bovine and Porcine Methicillin-Resistant Staphylococcus aureus ST398 Isolates. Antimicrobial Agents and Chemotherapy 55(1):373-375.). Furthermore, resistance to apramycin and other aminoglycosides is usually transmissible, encoded on conjugative R-plasmids, and often linked with resistance to other antimicrobials (Chaslus-Dancla et al., 1991). The other major concern would be the propagation of newer 16S rRNA methylases, conferring high-level aminoglycoside resistance to a range of aminoglycosides.

Salmonella Dublin is a cattle-adapted Salmonella serotype that causes severe and antimicrobial drug-resistant infections in humans (zoonosis) and cattle, where the incidence of human cases are on the rise (Harvey et al., 2017 Epidemiology of Salmonella enterica Serotype Dublin Infections among Humans, United States, 1968–2013. Emerging Infectious Diseases 23(9):1493-1501). Danish human infections are reported (link). Salmonella Dublin outbreaks in cattle can be associated with a number of clinical syndromes. For example, abortion is the more common clinical expression in adult cattle, whereas pre-weaned calves are the most susceptible to Salmonella infection. In calves, for which this Article 34 procedure have specified for treatment with

apramycin, septicemia is the most common clinical expression, including pyrexia, pneumonia, inappetence, bloody or watery diarrhoea, joint infections and nervous signs. Acute infections can progress to chronic cases, characterized by failure-to-thrive, diarrhoea and, in some cases, terminal dry gangrene. Calves can become infected via the conjunctiva or the respiratory tract, but the most common route is colonization of the intestinal tract, where S. Dublin attaches to, and invades intestinal cells associated with Peyer's patches. From there the bacteria pass into the lymphatic system and enter macrophages where they colonize lymph nodes. From lymph nodes, S. Dublin enters the bloodstream and spreads throughout the body. With this knowledge then it is unclear as to how oral apramycin products, with known poor oral bioavailability, can provide an effective treatment for septicemic forms of *S.* Dublin, commonly expressed in calves. For example, in one study oral bioavailability of apramycin in calves was 11% (Ziv G, Bor A, Soback S, Elad D, Nouws JF 1985 Clinical pharmacology of apramycin in calves. J Vet Pharmacol Ther 8(1):95-104.). In this study, the product used was a ramycin soluble powder, at doses of 20, 30, and 40 mg/kg to ten, nine and ten calves, respectively. Maximum plasma levels were 2 µg/ml, which is less than the MIC for S. Dublin. Furthermore, Salmonella are facultative intracellular bacteria that survive in the phagolysosome of macrophages, as well as being facultative anaerobic bacteria. As an aminoglycoside, apramycin does not possess the necessary PK/PD properties to eliminate all Salmonella spp. from food animals, namely:

- Unable to accumulate intra-cellularly to effective MIC concentrations.
- Unable to kill facultative anaerobic bacteria in anaerobic conditions.
- Unable to affect bacteria growing in low pH conditions.

No scientific references could be found in support of an oral apramycin product for the treatment of Salmonella Dublin in calves. A marked difference between S. Dublin and other salmonellas is the tendency to persist in carrier cattle (latent carriers), without clinical signs (Radostits et al., 2007 Veterinary Medicine: A textbook of the diseases of cattle, horses, sheep, pigs and goats. Elsevier, Oxford; House et al., 1993 Enzyme-linked immunosorbent assay for serologic detection of Salmonella Dublin carriers on a large dairy. American Journal of Veterinary Research, 54:1391-1399.). The organism persists in lymph nodes and other internal organs, and only periodically sheds in milk and/or feces. Furthermore, S. Dublin is difficult to control since the pathogen can survive for up to 9 months in the environment (Wray C, Davies RH. Salmonella infections in cattle. In: Wray C, Wray A, editors. Salmonella in domestic animals. Oxon: CABI Publishing; 2000. Chapter 10.). Active carrier animals can excrete the pathogen for several months or even years. The use of antimicrobials for the treatment of clinical salmonellosis is controversial for two main reasons. The first is that treatment is only potentially useful in the early stages of infection, and from an antimicrobial with PK/PD characteristics that can be effective. Secondly, antimicrobial therapy comes with the risk/s of inducing 'carrier' status in animals as well as encouraging AMR Salmonella. Non-clinical carrier animals entering the food chain are a major concern for public health. In Denmark, in response to the specific threat to human and animal health posed by Salmonella Dublin infections, the Danish government passed legislation intended to eradicate this serotype, in 2006. Their policy actions included heightened surveillance for cattle and abattoirs, voluntary interventions to reduce environmental contamination and disease spread within infected herds, economic sanctions for producers who do not control Salmonella Dublin in their herds, and closing of infected herds to live-animal trade (Nielsen LR & Nielsen SS 2011 A structured approach to control of Salmonella Dublin in 10 Danish dairy herds based on risk scoring and test-andmanage procedures. Food Research International 45:1158-65.).

London, 15 February 2018

Emil Kozhuharov