This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions.

1. **NAME OF THE MEDICINAL PRODUCT**

Invokana 100 mg film-coated tablets

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**

Each tablet contains canagliflozin hemihydrate, equivalent to 100 mg canagliflozin.

Excipient(s) with known effect:

Each tablet contains 39.2 mg lactose.

For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**

Film-coated tablet (tablet).

The tablet is yellow, capsule-shaped, approximately 11 mm in length, immediate-release and film-coated, with “CFZ” on one side and “100” on the other side.

4. **CLINICAL PARTICULARS**

4.1 **Therapeutic indications**

Invokana is indicated in adults aged 18 years and older with type 2 diabetes mellitus to improve glycaemic control as:

Monotherapy

When diet and exercise alone do not provide adequate glycaemic control in patients for whom the use of metformin is considered inappropriate due to intolerance or contraindications.

Add-on therapy

Add-on therapy with other glucose-lowering medicinal products including insulin, when these, together with diet and exercise, do not provide adequate glycaemic control (see sections 4.4, 4.5, and 5.1 for available data on different add-on therapies).

4.2 **Posology and method of administration**

Posology

The recommended starting dose of canagliflozin is 100 mg once daily. In patients tolerating canagliflozin 100 mg once daily who have an eGFR ≥ 60 mL/min/1.73 m2 or CrCl ≥ 60 mL/min and need tighter glycaemic control, the dose can be increased to 300 mg once daily orally (see below and section 4.4).
Care should be taken when increasing the dose in patients ≥ 75 years of age, patients with known cardiovascular disease, or other patients for whom the initial canagliflozin-induced diuresis poses a risk (see section 4.4). In patients with evidence of volume depletion, correcting this condition prior to initiation of canagliflozin is recommended (see section 4.4).

When canagliflozin is used as add-on therapy with insulin or an insulin secretagogue (e.g., sulphonylurea), a lower dose of insulin or the insulin secretagogue may be considered to reduce the risk of hypoglycaemia (see sections 4.5 and 4.8).

Elderly (≥ 65 years old)
Renal function and risk of volume depletion should be taken into account (see section 4.4).

Patients with renal impairment
For patients with an eGFR 60 mL/min/1.73 m² to < 90 mL/min/1.73 m² or CrCl 60 mL/min to < 90 mL/min, no dose adjustment is needed.

Canagliflozin should not be initiated in patients with an eGFR < 60 mL/min/1.73 m² or CrCl < 60 mL/min. In patients tolerating canagliflozin whose eGFR falls persistently below 60 mL/min/1.73 m² or CrCl 60 mL/min, the dose of canagliflozin should be adjusted to or maintained at 100 mg once daily. Canagliflozin should be discontinued when eGFR is persistently below 45 mL/min/1.73 m² or CrCl persistently below 45 mL/min (see sections 4.4, 4.8, 5.1, and 5.2).

Canagliflozin should also not be used in patients with end stage renal disease (ESRD) or in patients on dialysis as it is not expected to be effective in such populations (see sections 4.4 and 5.2).

Patients with hepatic impairment
For patients with mild or moderate hepatic impairment, no dose adjustment is required.

Canagliflozin has not been studied in patients with severe hepatic impairment and is not recommended for use in these patients (see section 5.2).

Paediatric population
The safety and efficacy of canagliflozin in children under 18 years of age have not yet been established. No data are available.

Method of administration

For oral use
Invokana should be taken orally once a day, preferably before the first meal of the day. Tablets should be swallowed whole.

If a dose is missed, it should be taken as soon as the patient remembers; however, a double dose should not be taken on the same day.

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

4.4 Special warnings and precautions for use

General

Invokana has not been studied in patients with type 1 diabetes and is therefore not recommended for use in these patients.

Invokana should not be used for the treatment of diabetic ketoacidosis as it is not effective in this setting.
Use in patients with renal impairment

The efficacy of canagliflozin is dependent on renal function, and efficacy is reduced in patients who have moderate renal impairment and likely absent in patients with severe renal impairment (see section 4.2).

In patients with an eGFR < 60 mL/min/1.73 m² or CrCl < 60 mL/min, a higher incidence of adverse reactions associated with volume depletion (e.g., postural dizziness, orthostatic hypotension, hypotension) was reported, particularly with the 300 mg dose. In addition, in such patients more events of elevated potassium and greater increases in serum creatinine and blood urea nitrogen (BUN) were reported (see section 4.8).

Therefore, the canagliflozin dose should be limited to 100 mg once daily in patients with eGFR < 60 mL/min/1.73 m² or CrCl < 60 mL/min and canagliflozin should not be used in patients with an eGFR < 45 mL/min/1.73 m² or CrCl < 45 mL/min (see section 4.2). Canagliflozin has not been studied in severe renal impairment (eGFR < 30 mL/min/1.73 m² or CrCl < 30 mL/min) or ESRD.

Monitoring of renal function is recommended as follows:
- Prior to initiation of canagliflozin and at least annually, thereafter (see sections 4.2, 4.8, 5.1, and 5.2)
- Prior to initiation of concomitant medicinal products that may reduce renal function and periodically thereafter
- For renal function approaching moderate renal impairment, at least 2 times to 4 times per year. If renal function falls persistently below eGFR 45 mL/min/1.73 m² or CrCl < 45 mL/min, canagliflozin treatment should be discontinued.

Use in patients at risk for adverse reactions related to volume depletion

Due to its mechanism of action, canagliflozin, by increasing urinary glucose excretion (UGE) induces an osmotic diuresis, which may reduce intravascular volume and decrease blood pressure (see section 5.1). In controlled clinical studies of canagliflozin, increases in adverse reactions related to volume depletion (e.g., postural dizziness, orthostatic hypotension, or hypotension) were seen more commonly with the 300 mg dose and occurred most frequently in the first three months (see section 4.8).

Caution should be exercised in patients for whom a canagliflozin-induced drop in blood pressure could pose a risk, such as patients with known cardiovascular disease, patients with an eGFR < 60 mL/min/1.73 m², patients on anti-hypertensive therapy with a history of hypotension, patients on diuretics, or elderly patients (≥ 65 years of age) (see sections 4.2 and 4.8).

Due to volume depletion, generally small mean decreases in eGFR were seen within the first 6 weeks of treatment initiation with canagliflozin. In patients susceptible to greater reductions in intravascular volume as described above, larger decreases in eGFR (> 30%) were sometimes seen, which subsequently improved, and infrequently required interruption of treatment with canagliflozin (see section 4.8).

Patients should be advised to report symptoms of volume depletion. Canagliflozin is not recommended for use in patients receiving loop diuretics (see section 4.5) or who are volume depleted, e.g., due to acute illness (such as gastrointestinal illness).

For patients receiving canagliflozin, in case of intercurrent conditions that may lead to volume depletion (such as a gastrointestinal illness), careful monitoring of volume status (e.g., physical examination, blood pressure measurements, laboratory tests including renal function tests), and serum electrolytes is recommended. Temporary interruption of treatment with canagliflozin may be considered for patients who develop volume depletion while on canagliflozin therapy until the
condition is corrected. If interrupted, consideration should be given to more frequent glucose monitoring.

Diabetic ketoacidosis

Rare cases of diabetic ketoacidosis (DKA), including life-threatening cases, have been reported in clinical trials and post-marketing in patients treated with SGLT2 inhibitors, including canagliflozin. In a number of cases, the presentation of the condition was atypical with only moderately increased blood glucose values, below 14 mmol/l (250 mg/dl). It is not known if DKA is more likely to occur with higher doses of canagliflozin.

The risk of diabetic ketoacidosis must be considered in the event of non-specific symptoms such as nausea, vomiting, anorexia, abdominal pain, excessive thirst, difficulty breathing, confusion, unusual fatigue or sleepiness. Patients should be assessed for ketoacidosis immediately if these symptoms occur, regardless of blood glucose level.

In patients where DKA is suspected or diagnosed, treatment with canagliflozin should be discontinued immediately.

Treatment should be interrupted in patients who are hospitalised for major surgical procedures or acute serious medical illnesses. In both cases, treatment with canagliflozin may be restarted once the patient’s condition has stabilised.

Before initiating canagliflozin, factors in the patient history that may predispose to ketoacidosis should be considered.

Patients who may be at higher risk of DKA include patients with a low beta-cell function reserve (e.g., type 2 diabetes patients with low C-peptide or latent autoimmune diabetes in adults (LADA) or patients with a history of pancreatitis), patients with conditions that lead to restricted food intake or severe dehydration, patients for whom insulin doses are reduced and patients with increased insulin requirements due to acute medical illness, surgery or alcohol abuse. SGLT2 inhibitors should be used with caution in these patients.

Restarting SGLT2 inhibitor treatment in patients with previous DKA while on SGLT2 inhibitor treatment is not recommended unless another clear precipitating factor is identified and resolved.

The safety and efficacy of canagliflozin in patients with type 1 diabetes have not been established and canagliflozin should not be used for treatment of patients with type 1 diabetes. Limited data from clinical trials suggest that DKA occurs with common frequency when patients with type 1 diabetes are treated with SGLT2 inhibitors.

Elevated haematocrit

Haematocrit increase was observed with canagliflozin treatment (see section 4.8); therefore, caution in patients with already elevated haematocrit is warranted.

Elderly (≥ 65 years old)

Elderly patients may be at a greater risk for volume depletion, are more likely to be treated with diuretics, and to have impaired renal function. In patients ≥ 75 years of age, a higher incidence of adverse reactions associated with volume depletion (e.g., postural dizziness, orthostatic hypotension, hypotension) was reported. In addition, in such patients greater decreases in eGFR were reported (see sections 4.2 and 4.8).
Genital mycotic infections

Consistent with the mechanism of sodium glucose co-transporter 2 (SGLT2) inhibition with increased UGE, vulvovaginal candidiasis in females and balanitis or balanoposthitis in males were reported in clinical trials (see section 4.8). Male and female patients with a history of genital mycotic infections were more likely to develop an infection. Balanitis or balanoposthitis occurred primarily in uncircumcised male patients. In rare instances, phimosis was reported and sometimes circumcision was performed. The majority of genital mycotic infections were treated with topical antifungal treatments, either prescribed by a healthcare professional or self-treated while continuing therapy with Invokana.

Cardiac failure

Experience in New York Heart Association (NYHA) class III is limited, and there is no experience in clinical studies with canagliflozin in NYHA class IV.

Urine laboratory assessments

Due to its mechanism of action, patients taking canagliflozin will test positive for glucose in their urine.

Lactose intolerance

The tablets contain lactose. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency, or glucose-galactose malabsorption should not take this medicinal product.

4.5 Interaction with other medicinal products and other forms of interaction

Pharmacodynamic interactions

Diuretics
Canagliflozin may add to the effect of diuretics and may increase the risk of dehydration and hypotension (see section 4.4).

Insulin and insulin secretagogues
Insulin and insulin secretagogues, such as sulphonylureas, can cause hypoglycaemia. Therefore, a lower dose of insulin or an insulin secretagogue may be required to reduce the risk of hypoglycaemia when used in combination with canagliflozin (see sections 4.2 and 4.8).

Pharmacokinetic interactions

Effects of other medicinal products on canagliflozin
The metabolism of canagliflozin is primarily via glucuronide conjugation mediated by UDP glucuronosyl transferase 1A9 (UGT1A9) and 2B4 (UGT2B4). Canagliflozin is transported by P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP).

Enzyme inducers (such as St. John’s wort [Hypericum perforatum], rifampicin, barbiturates, phenytoin, carbamazepine, ritonavir, efavirenz) may give rise to decreased exposure of canagliflozin. Following co-administration of canagliflozin with rifampicin (an inducer of various active transporters and drug-metabolising enzymes), 51% and 28% decreases in canagliflozin systemic exposure (AUC) and peak concentration (C_{max}) were observed. These decreases in exposure to canagliflozin may decrease efficacy.

If a combined inducer of these UGT enzymes and transport proteins must be co-administered with canagliflozin, monitoring of glycaemic control to assess response to canagliflozin is appropriate. If an inducer of these UGT enzymes must be co-administered with canagliflozin, increasing the dose to 300 mg once daily may be considered if patients are currently tolerating canagliflozin 100 mg once
daily, have an eGFR ≥ 60 mL/min/1.73 m² or CrCl ≥ 60 mL/min, and require additional glycaemic control. In patients with an eGFR 45 mL/min/1.73 m² to < 60 mL/min/1.73 m² or CrCl 45 mL/min to < 60 mL/min taking canagliflozin 100 mg who are receiving concurrent therapy with a UGT enzyme inducer and who require additional glycaemic control, other glucose-lowering therapies should be considered (see sections 4.2 and 4.4).

Cholestyramine may potentially reduce canagliflozin exposure. Dosing of canagliflozin should occur at least 1 hour before or 4-6 hours after administration of a bile acid sequestrant to minimise possible interference with their absorption.

Interaction studies suggest that the pharmacokinetics of canagliflozin are not altered by metformin, hydrochlorothiazide, oral contraceptives (ethinyl estradiol and levonorgestrol), ciclosporin, and/or probenecid.

Effects of canagliflozin on other medicinal products

Digoxin: The combination of canagliflozin 300 mg once daily for 7 days with a single dose of digoxin 0.5 mg followed by 0.25 mg daily for 6 days resulted in a 20% increase in AUC and a 36% increase in C_{max} of digoxin, probably due to inhibition of P-gp. Canagliflozin has been observed to inhibit P-gp in vitro. Patients taking digoxin or other cardiac glycosides (e.g., digitoxin) should be monitored appropriately.

Dabigatran: The effect of concomitant administration of canagliflozin (a weak P-gp inhibitor) on dabigatran etexilate (a P-gp substrate) has not been studied. As dabigatran concentrations may be increased in the presence of canagliflozin, monitoring (looking for signs of bleeding or anaemia) should be exercised when dabigatran is combined with canagliflozin.

Simvastatin: The combination of canagliflozin 300 mg once daily for 6 days with a single dose of simvastatin (CYP3A4 substrate) 40 mg resulted in a 12% increase in AUC and a 9% increase in C_{max} of simvastatin and an 18% increase in AUC and a 26% increase in C_{max} of simvastatin acid. The increases in simvastatin and simvastatin acid exposures are not considered clinically relevant.

Inhibition of BCRP by canagliflozin cannot be excluded at an intestinal level and increased exposure may therefore occur for medicinal products transported by BCRP, e.g. certain statins like rosuvastatin and some anti-cancer medicinal products.

In interaction studies, canagliflozin at steady-state had no clinically relevant effect on the pharmacokinetics of metformin, oral contraceptives (ethinyl estradiol and levonorgestrol), glibenclamide, paracetamol, hydrochlorothiazide, or warfarin.

Drug/Laboratory test interference

1,5-AG assay
Increases in urinary glucose excretion with Invokana can falsely lower 1,5-anhydroglucitol (1,5-AG) levels and make measurements of 1,5-AG unreliable in assessing glycemic control. Therefore, 1,5-AG assays should not be used for assessment of glycemic control in patients on canagliflozin. For further detail, it may be advisable to contact the specific manufacturer of the 1,5-AG assay.

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no data from the use of canagliflozin in pregnant women. Studies in animals have shown reproductive toxicity (see section 5.3).

Canagliflozin should not be used during pregnancy. When pregnancy is detected, treatment with canagliflozin should be discontinued.
Breast-feeding

It is unknown whether canagliflozin and/or its metabolites are excreted in human milk. Available pharmacodynamic/toxicological data in animals have shown excretion of canagliflozin/metabolites in milk, as well as pharmacologically mediated effects in breast-feeding offspring and juvenile rats exposed to canagliflozin (see section 5.3). A risk to newborns/infants cannot be excluded. Canagliflozin should not be used during breast-feeding.

Fertility

The effect of canagliflozin on fertility in humans has not been studied. No effects on fertility were observed in animal studies (see section 5.3).

4.7 Effects on ability to drive and use machines

Canagliflozin has no or negligible influence on the ability to drive and use machines. However, patients should be alerted to the risk of hypoglycaemia when canagliflozin is used as add-on therapy with insulin or an insulin secretagogue, and to the elevated risk of adverse reactions related to volume depletion, such as postural dizziness (see sections 4.2, 4.4 and 4.8).

4.8 Undesirable effects

Summary of the safety profile

The safety of canagliflozin was evaluated in 10,285 patients with type 2 diabetes, including 3,139 patients treated with canagliflozin 100 mg and 3,506 patients treated with canagliflozin 300 mg, who received medicinal product in nine double-blind, controlled phase 3 clinical studies.

The primary assessment of safety and tolerability was conducted in a pooled analysis (n = 2,313) of four 26-week placebo-controlled clinical studies (monotherapy and add-on therapy with metformin, metformin and a sulphonylurea, and metformin and pioglitazone). The most commonly reported adverse reactions during treatment were hypoglycaemia in combination with insulin or a sulphonylurea, vulvovaginal candidiasis, urinary tract infection, and polyuria or pollakiuria (i.e., urinary frequency). Adverse reactions leading to discontinuation of ≥ 0.5% of all canagliflozin-treated patients in these studies were vulvovaginal candidiasis (0.7% of female patients) and balanitis or balanoposthitis (0.5% of male patients). Additional safety analyses (including long-term data) from data across the entire canagliflozin programme (placebo- and active-controlled studies) were conducted to assess reported adverse reactions in order to identify adverse reactions (see sections 4.2 and 4.4).

Tabulated list of adverse reactions

Adverse reactions in table 1 are based on the pooled analysis of the four 26-week placebo-controlled studies (n = 2,313) described above. Adverse reactions reported from world-wide postmarketing use of canagliflozin are also included in this tabulation. Adverse reactions listed below are classified according to frequency and system organ class (SOC). Frequency categories are defined according to the following convention: very common (≥ 1/10), common (≥ 1/100 to < 1/10), uncommon (≥ 1/1,000 to < 1/100), rare (≥ 1/10,000 to < 1/1,000), very rare (< 1/10,000), not known (cannot be estimated from the available data).
Table 1: Tabulated list of adverse reactions (MedDRA) from placebo-controlled studies and from postmarketing experience

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Adverse reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
</tr>
<tr>
<td>very common</td>
<td>Hypoglycaemia in combination with insulin or sulphonylurea</td>
</tr>
<tr>
<td>uncommon</td>
<td>Dehydration*</td>
</tr>
<tr>
<td>rare</td>
<td>Diabetic ketoacidosis**</td>
</tr>
<tr>
<td>Nervous system disorders</td>
<td></td>
</tr>
<tr>
<td>uncommon</td>
<td>Dizziness postural*, Syncope*</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
</tr>
<tr>
<td>uncommon</td>
<td>Hypotension*, Orthostatic hypotension*</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td></td>
</tr>
<tr>
<td>common</td>
<td>Constipation, Thirst*, Nausea</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td></td>
</tr>
<tr>
<td>uncommon</td>
<td>Rash*, Urticaria</td>
</tr>
<tr>
<td>not known</td>
<td>Angioedema^d</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td></td>
</tr>
<tr>
<td>uncommon</td>
<td>Bone fracture^e</td>
</tr>
<tr>
<td>Renal and urinary disorders</td>
<td></td>
</tr>
<tr>
<td>common</td>
<td>Polyuria or Pollakiuria*, Urinary tract infection (pyelonephritis and urosepsis have been reported postmarketing)</td>
</tr>
<tr>
<td>uncommon</td>
<td>Renal failure (mainly in the context of volume depletion)</td>
</tr>
<tr>
<td>Reproductive system and breast disorders</td>
<td></td>
</tr>
<tr>
<td>very common</td>
<td>Vulvovaginal candidiasis**^g</td>
</tr>
<tr>
<td>common</td>
<td>Balanitis or balanoposthitis**^h</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
</tr>
<tr>
<td>common</td>
<td>Dyslipidemia^i, Haematocrit increased**^j</td>
</tr>
<tr>
<td>uncommon</td>
<td>Blood creatinine increased**^k, Blood urea increased**^l, Blood potassium increased**^m, Blood phosphate increased^n</td>
</tr>
</tbody>
</table>
* Related to volume depletion; see section 4.4.
** See section 4.4.

- Safety data profiles from individual pivotal studies (including studies in moderately renally impaired patients; older patients ≥ 55 years of age to ≤ 80 years of age; patients with increased CV-risk) were generally consistent with the adverse reactions identified in this table.

- Thirst includes the terms thirst, dry mouth, and polydipsia.

- Rash includes the terms rash erythematous, rash generalised, rash macular, rash maculopapular, rash papular, rash pruritic, rash pustular, and rash vesicular.

- Based on postmarketing experience with canagliflozin.

- Bone fracture was reported in 0.7% and 0.6% for canagliflozin 100 mg and 300 mg, respectively, compared to 0.3% for placebo. See bone fracture section below for additional information.

- Polyuria or pollakiuria includes the terms polyuria, pollakiuria, micturition urgency, nocturia, and urine output increased.

- Vulvovaginal candidiasis includes the terms vulvovaginal candidiasis, vulvovaginal mycotic infection, vulvovaginitis, vaginal infection, vulvitis, and genital infection fungal.

- Balanitis or balanoposthitis includes the terms balanitis, balanoposthitis, balanitis candida, and genital infection fungal.

- Mean percent increases from baseline for canagliflozin 100 mg and 300 mg versus placebo, respectively, were total cholesterol 3.4% and 5.2% versus 0.9%; HDL-cholesterol 9.4% and 10.3% versus 4.0%; LDL-cholesterol 5.7% and 9.3% versus 1.3%; non-HDL-cholesterol 2.2% and 4.4% versus 0.7%; triglycerides 2.4% and 0.0% versus 7.6%.

- Mean changes from baseline in haematocrit were 2.4% and 2.5% for canagliflozin 100 mg and 300 mg, respectively, compared to 0.0% for placebo.

- Mean percent changes from baseline in creatinine were 2.8% and 4.0% for canagliflozin 100 mg and 300 mg, respectively, compared to 1.5% for placebo.

- Mean percent changes from baseline in blood urea nitrogen were 17.1% and 18.0% for canagliflozin 100 mg and 300 mg, respectively, compared to 2.7% for placebo.

- Mean percent changes from baseline in blood potassium were 0.5% and 1.0% for canagliflozin 100 mg and 300 mg, respectively, compared to 0.6% for placebo.

- Mean percent changes from baseline in serum phosphate were 3.6% and 5.1% for canagliflozin 100 mg and 300 mg, compared to 1.5% for placebo.

Description of selected adverse reactions

Adverse reactions related to volume depletion

In the pooled analysis of the four 26-week, placebo-controlled studies, the incidence of all adverse reactions related to volume depletion (e.g., postural dizziness, orthostatic hypotension, dehydration, and syncope) was 1.2% for canagliflozin 100 mg, 1.3% for canagliflozin 300 mg, and 1.1% for placebo. The incidence with canagliflozin treatment in the two active-controlled studies was similar to comparators.

In the dedicated cardiovascular study, where patients were generally older with a higher rate of diabetes complications, the incidences of adverse reactions related to volume depletion were 2.8% with canagliflozin 100 mg, 4.6% with canagliflozin 300 mg, and 1.9% with placebo.

To assess risk factors for these adverse reactions, a larger pooled analysis (N = 9,439) of patients from eight controlled phase 3 studies including both doses of canagliflozin was conducted. In this pooled analysis, patients on loop diuretics, patients with a baseline eGFR 30 mL/min/1.73 m² to < 60 mL/min/1.73 m², and patients ≥ 75 years of age had generally higher incidences of these adverse reactions. For patients on loop diuretics, the incidences were 3.2% on canagliflozin 100 mg and 8.8% on canagliflozin 300 mg compared to 4.7% in the control group. For patients with a baseline eGFR 30 mL/min/1.73 m² to < 60 mL/min/1.73 m², the incidences were 4.8% on canagliflozin 100 mg and 8.1% on canagliflozin 300 mg compared to 2.6% in the control group. In patients ≥ 75 years of age, the incidences were 4.9% on canagliflozin 100 mg and 8.7% on canagliflozin 300 mg compared to 2.6% in the control group (see sections 4.2 and 4.4).

In the dedicated cardiovascular study and the larger pooled analysis, discontinuations due to adverse reactions related to volume depletion and serious adverse reactions related to volume depletion were not increased with canagliflozin.
Hypoglycaemia in add-on therapy with insulin or insulin secretagogues

The frequency of hypoglycaemia was low (approximately 4%) among treatment groups, including placebo, when used as monotherapy or as an add-on to metformin. When canagliflozin was added to insulin therapy, hypoglycaemia was observed in 49.3%, 48.2%, and 36.8% of patients treated with canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively, and severe hypoglycaemia occurred in 1.8%, 2.7%, and 2.5% of patients treated with canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively. When canagliflozin was added to a sulphonylurea therapy, hypoglycaemia was observed in 4.1%, 12.5%, and 5.8% of patients treated with canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively (see sections 4.2 and 4.5).

Genital mycotic infections

Vulvovaginal candidiasis (including vulvovaginitis and vulvovaginal mycotic infection) was reported in 10.4% and 11.4% of female patients treated with canagliflozin 100 mg and canagliflozin 300 mg, respectively, compared to 3.2% in placebo-treated female patients. Most reports of vulvovaginal candidiasis occurred during the first four months of treatment with canagliflozin. Among female patients taking canagliflozin, 2.3% experienced more than one infection. Overall, 0.7% of all female patients discontinued canagliflozin due to vulvovaginal candidiasis (see section 4.4).

Candidal balanitis or balanoposthitis was reported in 4.2% and 3.7% of male patients treated with canagliflozin 100 mg and canagliflozin 300 mg, respectively, compared to 0.6% in placebo-treated male patients. Among male patients taking canagliflozin, 0.9% had more than one infection. Overall, 0.5% of male patients discontinued canagliflozin due to candidial balanitis or balanoposthitis. In rare instances, phimosis was reported and sometimes circumcision was performed (see section 4.4).

Urinary tract infections

Urinary tract infections were more frequently reported for canagliflozin 100 mg and 300 mg (5.9% versus 4.3%, respectively) compared to 4.0% with placebo. Most infections were mild to moderate with no increase in the occurrence of serious adverse reactions. Subjects responded to standard treatments while continuing canagliflozin treatment.

Bone fracture

In a cardiovascular study of 4,327 patients with known or at high risk for cardiovascular disease, the incidence rates of bone fracture were 1.6, 1.6, and 1.1 per 100 patient years of exposure to canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively, with the fracture imbalance initially occurring within the first 26 weeks of therapy. In other type 2 diabetes studies with canagliflozin, which enrolled a general diabetes population of approximately 5,800 patients, no difference in fracture risk was observed relative to control. After 104 weeks of treatment, canagliflozin did not adversely affect bone mineral density.

Special populations

Elderly (≥ 65 years old)

In a pooled analysis of eight placebo-controlled and active-controlled studies, the safety profile in elderly patients was generally consistent with younger patients. Patients ≥ 75 years of age had a higher incidence of adverse reactions related to volume depletion (such as postural dizziness, orthostatic hypotension, hypotension) with incidences of 4.9%, 8.7%, and 2.6% on canagliflozin 100 mg, canagliflozin 300 mg, and in the control group, respectively. Decreases in eGFR (-3.6% and -5.2%) were reported with canagliflozin 100 mg and canagliflozin 300 mg, respectively, compared to the control group (-3.0%) (see sections 4.2 and 4.4).

Patients with renal impairment (eGFR < 60 mL/min/1.73 m² or CrCl < 60 mL/min)

Patients with a baseline eGFR < 60 mL/min/1.73 m² or CrCl < 60 mL/min had a higher incidence of adverse reactions associated with volume depletion (e.g., postural dizziness, orthostatic hypotension, hypotension) with incidences of 4.7%, 8.1%, and 1.5% on canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively (see sections 4.2 and 4.4).
The overall incidence of elevated serum potassium was higher in patients with moderate renal impairment with incidences of 7.5%, 12.3%, and 8.1% on canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively. In general, elevations were transient and did not require specific treatment.

Increases in serum creatinine of 10-11% and BUN of approximately 12% were observed with both doses of canagliflozin. The proportion of patients with larger decreases in eGFR (> 30%) at any time during treatment was 9.3%, 12.2%, and 4.9% with canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively. At study endpoint, 3.0% of patients treated with canagliflozin 100 mg, 4.0% with canagliflozin 300 mg, and 3.3% with placebo had such decreases (see section 4.4).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

Single doses up to 1,600 mg of canagliflozin in healthy subjects and canagliflozin 300 mg twice daily for 12 weeks in patients with type 2 diabetes were generally well-tolerated.

Therapy

In the event of an overdose, it is reasonable to employ the usual supportive measures, e.g., remove unabsorbed material from the gastrointestinal tract, employ clinical monitoring, and institute clinical measures if required. Canagliflozin was negligibly removed during a 4-hour haemodialysis session. Canagliflozin is not expected to be dialysable by peritoneal dialysis.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Drugs used in diabetes, other blood glucose lowering drugs, excluding insulins. ATC code: A10BX11.

Mechanism of action

The SGLT2 transporter, expressed in the proximal renal tubules, is responsible for the majority of the reabsorption of filtered glucose from the tubular lumen. Patients with diabetes have been shown to have elevated renal glucose reabsorption which may contribute to persistent elevated blood glucose concentrations. Canagliflozin is an orally-active inhibitor of SGLT2. By inhibiting SGLT2, canagliflozin reduces reabsorption of filtered glucose and lowers the renal threshold for glucose (RTG), and thereby increases UGE, lowering elevated plasma glucose concentrations by this insulin-independent mechanism in patients with type 2 diabetes. The increased UGE with SGLT2 inhibition also translates to an osmotic diuresis, with the diuretic effect leading to a reduction in systolic blood pressure; the increase in UGE results in a loss of calories and therefore a reduction in body weight, as has been demonstrated in studies of patients with type 2 diabetes.

Canagliflozin’s action to increase UGE directly lowering plasma glucose is independent of insulin. Improvement in homeostasis model assessment for beta-cell function (HOMA beta-cell) and improved beta-cell insulin secretion response to a mixed-meal challenge has been observed in clinical studies with canagliflozin.

In phase 3 studies, pre-meal administration of canagliflozin 300 mg provided a greater reduction in postprandial glucose excursion than observed with the 100 mg dose. This effect at the 300 mg dose of
Canagliflozin may, in part, be due to local inhibition of intestinal SGLT1 (an important intestinal glucose transporter) related to transient high concentrations of canagliflozin in the intestinal lumen prior to medicinal product absorption (canagliflozin is a low potency inhibitor of the SGLT1 transporter). Studies have shown no glucose malabsorption with canagliflozin.

Pharmacodynamic effects

Following single and multiple oral doses of canagliflozin to patients with type 2 diabetes, dose-dependent decreases in RTG and increases in UGE were observed. From a starting value of RTG of approximately 13 mmol/L, maximal suppression of 24-hour mean RTG was seen with the 300 mg daily dose to approximately 4 mmol/L to 5 mmol/L in patients with type 2 diabetes in phase 1 studies, suggesting a low risk for treatment-induced hypoglycaemia. The reductions in RTG led to increased UGE in subjects with type 2 diabetes treated with either 100 mg or 300 mg of canagliflozin ranging from 77 g/day to 119 g/day across the phase 1 studies; the UGE observed translates to a loss of 308 kcal/day to 476 kcal/day. The reductions in RTG and increases in UGE were sustained over a 26-week dosing period in patients with type 2 diabetes. Moderate increases (generally < 400 mL to 500 mL) in daily urine volume were seen that attenuated over several days of dosing. Urinary uric acid excretion was transiently increased by canagliflozin (increased by 19% compared to baseline on day 1 and then attenuating to 6% on day 2 and 1% on day 13). This was accompanied by a sustained reduction in serum uric acid concentration of approximately 20%.

In a single-dose study in patients with type 2 diabetes, treatment with 300 mg before a mixed meal delayed intestinal glucose absorption and reduced postprandial glucose through both a renal and a non-renal mechanism.

Clinical efficacy and safety

A total of 10,285 patients with type 2 diabetes participated in nine double-blind, controlled clinical efficacy and safety studies conducted to evaluate the effects of Invokana on glycaemic control. The racial distribution was 72% White, 16% Asian, 4% Black, and 8% other groups. 16% of patients were Hispanic. Approximately 58% of patients were male. Patients had an overall mean age of 59.6 years (range 21 years to 96 years), with 3,082 patients ≥ 65 years of age and 510 patients ≥ 75 years of age. 58% of patients had a body mass index (BMI) ≥ 30 kg/m². In the clinical development programme, 1,085 patients with a baseline eGFR 30 mL/min/1.73 m² to < 60 mL/min/1.73 m² were evaluated.

Placebo-controlled studies

Canagliflozin was studied as monotherapy, dual therapy with metformin, dual therapy with a sulphonylurea, triple therapy with metformin and a sulphonylurea, triple therapy with metformin and pioglitazone, and as an add-on therapy with insulin (table 2). In general, canagliflozin produced clinically and statistically significant (p < 0.001) results relative to placebo in glycaemic control, including HbA1c, the percentage of patients achieving HbA1c < 7%, change from baseline fasting plasma glucose (FPG), and 2-hour postprandial glucose (PPG). In addition, reductions in body weight and systolic blood pressure relative to placebo were observed.

Table 2: Efficacy results from placebo-controlled clinical studies

<table>
<thead>
<tr>
<th>Monotherapy (26 weeks)</th>
<th>Canagliflozin</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 mg (N = 195)</td>
<td>300 mg (N = 197)</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.06</td>
<td>8.01</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
<td>-0.77</td>
<td>-1.03</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (95% CI)</td>
<td>-0.91⁰ (-1.09⁰; -0.73⁰)</td>
<td>-1.16⁰ (-1.34⁰; -0.98⁰)</td>
</tr>
<tr>
<td>Patients (%) achieving HbA1c < 7%</td>
<td>44.5⁰</td>
<td>62.4⁰</td>
</tr>
<tr>
<td>Body weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean) in kg</td>
<td>85.9</td>
<td>86.9</td>
</tr>
<tr>
<td>% change from baseline (adjusted mean)</td>
<td>-2.8</td>
<td>-3.9</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (95% CI)</td>
<td>-2.2<sup>b</sup> (-2.9; -1.6)</td>
<td>-3.3<sup>b</sup> (-4.0; -2.6)</td>
</tr>
</tbody>
</table>

Dual therapy with metformin (26 weeks)

<table>
<thead>
<tr>
<th>HbA<sub>1c</sub> (%)</th>
<th>Canagliflozin + metformin</th>
<th>Placebo + metformin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (mean)</td>
<td>7.94</td>
<td>7.95</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
<td>-0.79</td>
<td>-0.94</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (95% CI)</td>
<td>-0.62<sup>b</sup> (-0.76; -0.48)</td>
<td>-0.77<sup>b</sup> (-0.91; -0.64)</td>
</tr>
<tr>
<td>Patients (%) achieving HbA<sub>1c</sub> < 7%</td>
<td>45.5<sup>b</sup></td>
<td>57.8<sup>b</sup></td>
</tr>
</tbody>
</table>

Body weight

Baseline (mean) in kg	88.7	85.4	86.7
% change from baseline (adjusted mean)	-3.7	-4.2	-1.2
Difference from placebo (adjusted mean) (95% CI)	-2.5^b (-3.1; -1.9)	-2.9^b (-3.5; -2.3)	N/A^c

Triple therapy with metformin and sulphonylurea (26 weeks)

<table>
<thead>
<tr>
<th>HbA<sub>1c</sub> (%)</th>
<th>Canagliflozin + metformin and sulphonylurea</th>
<th>Placebo + metformin and sulphonylurea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (mean)</td>
<td>8.13</td>
<td>8.13</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
<td>-0.85</td>
<td>-1.06</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (95% CI)</td>
<td>-0.71<sup>b</sup> (-0.90; -0.52)</td>
<td>-0.92<sup>b</sup> (-1.11; -0.73)</td>
</tr>
<tr>
<td>Patients (%) achieving HbA<sub>1c</sub> < 7%</td>
<td>43.2<sup>b</sup></td>
<td>56.6<sup>b</sup></td>
</tr>
</tbody>
</table>

Body weight

Baseline (mean) in kg	93.5	93.5	90.8
% change from baseline (adjusted mean)	-2.1	-2.6	-0.7
Difference from placebo (adjusted mean) (95% CI)	-1.4^b (-2.1; -0.7)	-2.0^b (-2.7; -1.3)	N/A^c

Add-on therapy with insulin^d (18 weeks)

<table>
<thead>
<tr>
<th>HbA<sub>1c</sub> (%)</th>
<th>Canagliflozin + insulin</th>
<th>Placebo + insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (mean)</td>
<td>8.33</td>
<td>8.27</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
<td>-0.63</td>
<td>-0.72</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (97.5% CI)</td>
<td>-0.65<sup>b</sup> (-0.73; -0.56)</td>
<td>-0.73<sup>b</sup> (-0.82; -0.65)</td>
</tr>
<tr>
<td>Patients (%) achieving HbA<sub>1c</sub> < 7%</td>
<td>19.8<sup>b</sup></td>
<td>24.7<sup>b</sup></td>
</tr>
</tbody>
</table>

Body weight

Baseline (mean) in kg	96.9	96.7	97.7
% change from baseline (adjusted mean)	-1.8	-2.3	0.1
Difference from placebo (adjusted mean) (97.5% CI)	-1.9^b (-2.2; -1.5)	-2.4^b (-2.8; -2.0)	N/A^c
In addition to the studies presented above, glycaemic efficacy results observed in an 18-week dual therapy sub-study with a sulphonylurea and a 26-week triple therapy study with metformin and pioglitazone were generally comparable with those observed in other studies.

Active-controlled studies

Canagliflozin was compared to glimepiride as dual therapy with metformin and compared to sitagliptin as triple therapy with metformin and a sulphonylurea (table 3). Canagliflozin 100 mg as dual therapy with metformin produced similar reductions in HbA₁c from baseline and 300 mg produced superior (p < 0.05) reductions in HbA₁c compared to glimepiride, thus demonstrating non-inferiority. A lower proportion of patients treated with canagliflozin 100 mg (5.6%) and canagliflozin 300 mg (4.9%) experienced at least one episode/event of hypoglycaemia over 52 weeks of treatment compared to the group treated with glimepiride (34.2%). In a study comparing canagliflozin 300 mg to sitagliptin 100 mg in triple therapy with metformin and a sulphonylurea, canagliflozin demonstrated non-inferior (p < 0.05) and superior (p < 0.05) reduction in HbA₁c relative to sitagliptin. The incidence of hypoglycaemia episodes/events with canagliflozin 300 mg and sitagliptin 100 mg was 40.7% and 43.2%, respectively. Significant improvements in body weight and reductions in systolic blood pressure compared to both glimepiride and sitagliptin were also observed.

<table>
<thead>
<tr>
<th>Table 3: Efficacy results from active-controlled clinical studies*a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compared to glimepiride as dual therapy with metformin (52 weeks)</td>
</tr>
<tr>
<td>Canagliflozin + metformin</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>HbA₁c (%)</td>
</tr>
<tr>
<td>Baseline (mean)</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
</tr>
<tr>
<td>Difference from glimepiride (adjusted mean) (95% CI)</td>
</tr>
<tr>
<td>Patients (%) achieving HbA₁c < 7%</td>
</tr>
<tr>
<td>Body weight</td>
</tr>
<tr>
<td>Baseline (mean) in kg</td>
</tr>
<tr>
<td>% change from baseline (adjusted mean)</td>
</tr>
<tr>
<td>Difference from glimepiride (adjusted mean) (95% CI)</td>
</tr>
<tr>
<td>Compared to sitagliptin as triple therapy with metformin and sulphonylurea (52 weeks)</td>
</tr>
<tr>
<td>Canagliflozin 300 mg + metformin and sulphonylurea (N = 377)</td>
</tr>
<tr>
<td>HbA₁c (%)</td>
</tr>
<tr>
<td>Baseline (mean)</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
</tr>
<tr>
<td>Difference from sitagliptin (adjusted mean) (95% CI)</td>
</tr>
<tr>
<td>Patients (%) achieving HbA₁c < 7%</td>
</tr>
<tr>
<td>Body weight</td>
</tr>
<tr>
<td>Baseline (mean) in kg</td>
</tr>
<tr>
<td>% change from baseline (adjusted mean)</td>
</tr>
</tbody>
</table>
Difference from sitagliptin (adjusted mean) (95% CI) | -2.8d | (−3.3; −2.2) | N/Ac

a Intent-to-treatment population using last observation in study prior to glycaemic rescue therapy.
b p < 0.05.
c Not applicable.
d p < 0.001.

Special populations
In three studies conducted in special populations (older patients, patients with an eGFR of 30 mL/min/1.73 m² to < 50 mL/min/1.73 m² and patients with or at high risk for cardiovascular disease), canagliflozin was added to patients’ current stable diabetes treatments (diet, monotherapy, or combination therapy).

Older patients
A total of 714 patients ≥ 55 years of age to ≤ 80 years of age (227 patients 65 years of age to < 75 years of age and 46 patients 75 years of age to ≤ 80 years of age) with inadequate glycaemic control on current diabetes treatment (glucose-lowering medicinal products and/or diet and exercise) participated in a double-blind, placebo-controlled study over 26 weeks. Statistically significant (p < 0.001) changes from baseline HbA1c relative to placebo of -0.57% and -0.70% were observed for 100 mg and 300 mg, respectively (see sections 4.2 and 4.8).

Patients with eGFR 45 mL/min/1.73 m² to < 60 mL/min/1.73 m²
In a pooled analysis of patients (N = 721) with a baseline eGFR 45 mL/min/1.73 m² to < 60 mL/min/1.73 m², canagliflozin provided clinically meaningful reduction in HbA1c compared to placebo, with -0.47% for canagliflozin 100 mg and -0.52% for canagliflozin 300 mg. Patients with a baseline eGFR 45 mL/min/1.73 m² to < 60 mL/min/1.73 m² treated with canagliflozin 100 mg and 300 mg exhibited mean improvements in percent change in body weight relative to placebo of -1.8% and -2.0%, respectively.

The majority of patients with a baseline eGFR 45 mL/min/1.73 m² to < 60 mL/min/1.73 m² were on insulin and/or a sulphonylurea (85% [614/721]). Consistent with the expected increase of hypoglycaemia when a medicinal product not associated with hypoglycaemia is added to insulin and/or sulphonylurea, an increase in hypoglycaemia episodes/events was seen when canagliflozin was added to insulin and/or a sulphonylurea (see section 4.8).

Fasting plasma glucose
In four placebo-controlled studies, treatment with canagliflozin as monotherapy or add-on therapy with one or two oral glucose-lowering medicinal products resulted in mean changes from baseline in FPG of -1.2 mmol/L to -1.9 mmol/L for canagliflozin 100 mg and -1.9 mmol/L to -2.4 mmol/L for canagliflozin 300 mg, respectively. These reductions were sustained over the treatment period and near maximal after the first day of treatment.

Postprandial glucose
Using a mixed-meal challenge, canagliflozin as monotherapy or add-on therapy with one or two oral glucose-lowering medicinal products reduced postprandial glucose (PPG) from baseline relative to placebo by -1.5 mmol/L to -2.7 mmol/L for canagliflozin 100 mg and -2.1 mmol/L to -3.5 mmol/L for 300 mg, respectively, due to reductions in the pre-meal glucose concentration and reduced postprandial glucose excursions.

Body weight
Canagliflozin 100 mg and 300 mg as monotherapy and as dual or triple add-on therapy resulted in statistically significant reductions in the percentage of body weight at 26 weeks relative to placebo. In two 52-week active-controlled studies comparing canagliflozin to glimepiride and sitagliptin, sustained and statistically significant mean reductions in the percentage of body weight for canagliflozin as add-on therapy to metformin were -4.2% and -4.7% for canagliflozin 100 mg and 300 mg, respectively, compared to the combination of glimepiride and metformin (1.0%) and -2.5%
for canagliflozin 300 mg in combination with metformin and a sulphonylurea compared to sitagliptin in combination with metformin and a sulphonylurea (0.3%).

A subset of patients (N = 208) from the active-controlled dual therapy study with metformin who underwent dual energy X-ray densitometry (DXA) and abdominal computed tomography (CT) scans for evaluation of body composition demonstrated that approximately two-thirds of the weight loss with canagliflozin was due to loss of fat mass with similar amounts of visceral and abdominal subcutaneous fat being lost. Two hundred eleven (211) patients from the clinical study in older patients participated in a body composition substudy using DXA body composition analysis. This demonstrated that approximately two-thirds of the weight loss associated with canagliflozin was due to loss of fat mass relative to placebo. There were no meaningful changes in bone density in trabecular and cortical regions.

Cardiovascular safety
A pre-specified interim meta-analysis was conducted of adjudicated major cardiovascular events in the phase 2 and 3 clinical studies in 9,632 patients with type 2 diabetes, including 4,327 patients (44.9%) with cardiovascular disease or at high risk for cardiovascular disease who are participating in an ongoing cardiovascular study. The hazard ratio for the composite primary endpoint (time to event of cardiovascular death, non-fatal stroke, non-fatal myocardial infarction, and unstable angina requiring hospitalisation) for canagliflozin (both doses pooled) versus combined active and placebo comparators was 0.91 (95% CI: 0.68; 1.22); therefore, there was no evidence of an increase in cardiovascular risk with canagliflozin relative to comparators. The hazard ratios for the 100 mg and 300 mg doses were similar.

Blood pressure
In placebo-controlled studies, treatment with canagliflozin 100 mg and 300 mg resulted in mean reductions in systolic blood pressure of -3.9 mmHg and -5.3 mmHg, respectively, compared to placebo (-0.1 mmHg) and a smaller effect on diastolic blood pressure with mean changes for canagliflozin 100 mg and 300 mg of -2.1 mmHg and -2.5 mmHg, respectively, compared to placebo (-0.3 mmHg). There was no notable change in heart rate.

Patients with baseline HbA1c > 10% to ≤ 12%
A substudy of patients with baseline HbA1c > 10% to ≤ 12% with canagliflozin as monotherapy resulted in reductions from baseline in HbA1c (not placebo-adjusted) of -2.13% and -2.56% for canagliflozin 100 mg and 300 mg, respectively.

Paediatric population
The European Medicines Agency has deferred the obligation to submit the results of studies with canagliflozin in one or more subsets of the paediatric population in type 2 diabetes (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties

The pharmacokinetics of canagliflozin are essentially similar in healthy subjects and patients with type 2 diabetes. After single-dose oral administration of 100 mg and 300 mg in healthy subjects, canagliflozin was rapidly absorbed, with peak plasma concentrations (median T\text{max}) occurring 1 hour to 2 hours post-dose. Plasma C\text{max} and AUC of canagliflozin increased in a dose-proportional manner from 50 mg to 300 mg. The apparent terminal half-life (t\text{1/2}) (expressed as mean ± standard deviation) was 10.6 ± 2.13 hours and 13.1 ± 3.28 hours for the 100 mg and 300 mg doses, respectively. steadystate was reached after 4 days to 5 days of once-daily dosing with canagliflozin 100 mg to 300 mg. Canagliflozin does not exhibit time-dependent pharmacokinetics, and accumulated in plasma up to 36% following multiple doses of 100 mg and 300 mg.

Absorption
The mean absolute oral bioavailability of canagliflozin is approximately 65%. Co-administration of a high-fat meal with canagliflozin had no effect on the pharmacokinetics of canagliflozin; therefore,
Invokana may be taken with or without food. However, based on the potential to reduce postprandial plasma glucose excursions due to delayed intestinal glucose absorption, it is recommended that Invokana be taken before the first meal of the day (see sections 4.2 and 5.1).

Distribution

The mean steady-state volume of distribution of canagliflozin following a single intravenous infusion in healthy subjects was 119 litres, suggesting extensive tissue distribution. Canagliflozin is extensively bound to proteins in plasma (99%), mainly to albumin. Protein binding is independent of canagliflozin plasma concentrations. Plasma protein binding is not meaningfully altered in patients with renal or hepatic impairment.

Biotransformation

O-glucuronidation is the major metabolic elimination pathway for canagliflozin, which is mainly glucuronidated by UGT1A9 and UGT2B4 to two inactive O-glucuronide metabolites. CYP3A4-mediated (oxidative) metabolism of canagliflozin is minimal (approximately 7%) in humans.

In in vitro studies, canagliflozin neither inhibited cytochrome P450 CYP1A2, CYP2A6, CYP2C19, CYP2D6, or CYP2E1, CYP2B6, CYP2C8, CYP2C9, nor induced CYP1A2, CYP2C19, CYP2B6, CYP3A4 at higher than therapeutic concentrations. No clinically relevant effect on CYP3A4 was observed in vivo (see section 4.5).

Elimination

Following administration of a single oral [14C]canagliflozin dose to healthy subjects, 41.5%, 7.0%, and 3.2% of the administered radioactive dose was recovered in faeces as canagliflozin, a hydroxylated metabolite, and an O-glucuronide metabolite, respectively. Enterohepatic circulation of canagliflozin was negligible.

Approximately 33% of the administered radioactive dose was excreted in urine, mainly as O-glucuronide metabolites (30.5%). Less than 1% of the dose was excreted as unchanged canagliflozin in urine. Renal clearance of canagliflozin 100 mg and 300 mg doses ranged from 1.30 mL/min to 1.55 mL/min.

Canagliflozin is a low-clearance substance, with a mean systemic clearance of approximately 192 mL/min in healthy subjects following intravenous administration.

Special populations

Patients with renal impairment

A single-dose, open-label study evaluated the pharmacokinetics of canagliflozin 200 mg in subjects with varying degrees of renal impairment (classified using CrCl based on the Cockroft-Gault equation) compared to healthy subjects. The study included 8 subjects with normal renal function (CrCl ≥ 80 mL/min), 8 subjects with mild renal impairment (CrCl 50 mL/min to < 80 mL/min), 8 subjects with moderate renal impairment (CrCl 30 mL/min to < 50 mL/min), and 8 subjects with severe renal impairment (CrCl < 30 mL/min) as well as 8 subjects with ESRD on haemodialysis.

The Cmax of canagliflozin was moderately increased by 13%, 29%, and 29% in subjects with mild, moderate, and severe renal failure, respectively, but not in subjects on haemodialysis. Compared to healthy subjects, plasma AUC of canagliflozin was increased by approximately 17%, 63%, and 50% in subjects with mild, moderate, and severe renal impairment, respectively, but was similar for ESRD subjects and healthy subjects.

Canagliflozin was negligibly removed by haemodialysis.
Patients with hepatic impairment
Relative to subjects with normal hepatic function, the geometric mean ratios for Cmax and AUC∞ of canagliflozin were 107% and 110%, respectively, in subjects with Child-Pugh class A (mild hepatic impairment) and 96% and 111%, respectively, in subjects with Child-Pugh class B (moderate) hepatic impairment following administration of a single 300 mg dose of canagliflozin.

These differences are not considered to be clinically meaningful. There is no clinical experience in patients with Child-Pugh class C (severe) hepatic impairment.

Elderly (≥65 years old)
Age had no clinically meaningful effect on the pharmacokinetics of canagliflozin based on a population pharmacokinetic analysis (see sections 4.2, 4.4, and 4.8).

Paediatric population
Studies characterising the pharmacokinetics of canagliflozin in paediatric patients have not been conducted.

Other special populations
Pharmacogenetics
Both UGT1A9 and UGT2B4 are subject to genetic polymorphism. In a pooled analysis of clinical data, increases in canagliflozin AUC of 26% were observed in UGT1A9*1/*3 carriers and 18% in UGT2B4*2/*2 carriers. These increases in canagliflozin exposure are not expected to be clinically relevant. The effect of being homozygote (UGT1A9*3/*3, frequency < 0.1%) is probably more marked, but has not been investigated.

Gender, race/ethnicity, or body mass index had no clinically meaningful effect on the pharmacokinetics of canagliflozin based on a population pharmacokinetic analysis.

5.3 Pre-clinical safety data
Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, and genotoxicity.

Canagliflozin showed no effects on fertility and early embryonic development in the rat at exposures up to 19 times the human exposure at the maximum recommended human dose (MRHD).

In an embryo-foetal development study in rats, ossification delays of metatarsal bones were observed at systemic exposures 73 times and 19 times higher than the clinical exposures at the 100 mg and 300 mg doses. It is unknown whether ossification delays can be attributed to effects of canagliflozin on calcium homeostasis observed in adult rats. Ossification delays were also observed for the combination of canagliflozin and metformin, which were more prominent than for metformin alone at canagliflozin exposures 43 times and 12 times higher than clinical exposures at 100 mg and 300 mg doses.

In a pre- and postnatal development study, canagliflozin administered to female rats from gestation day 6 to lactation day 20 resulted in decreased body weights in male and female offspring at maternally toxic doses > 30 mg/kg/day (exposures ≥5.9 times the human exposure to canagliflozin at the MHRD). Maternal toxicity was limited to decreased body weight gain.

A study in juvenile rats administered canagliflozin from day 1 through day 90 postnatal did not show increased sensitivity compared to effects observed in adults rats. However, dilatation of the renal pelvis was noticed with a No Observed Effect Level (NOEL) at exposures 2.4 times and 0.6 times the clinical exposures at 100 mg and 300 mg doses, respectively, and did not fully reverse within the approximately 1-month recovery period. Persistent renal findings in juvenile rats can most likely be attributed to reduced ability of the developing rat kidney to handle canagliflozin-increased urine volumes, as functional maturation of the rat kidney continues through 6 weeks of age.
Canagliflozin did not increase the incidence of tumours in male and female mice in a 2-year study at doses of 10, 30, and 100 mg/kg. The highest dose of 100 mg/kg provided up to 14 times the clinical dose of 300 mg based on AUC exposure. Canagliflozin increased the incidence of testicular Leydig cell tumours in male rats at all doses tested (10, 30, and 100 mg/kg); the lowest dose of 10 mg/kg is approximately 1.5 times the clinical dose of 300 mg based on AUC exposure. The higher doses of canagliflozin (100 mg/kg) in male and female rats increased the incidence of pheochromocytomas and renal tubular tumours. Based on AUC exposure, the NOEL of 30 mg/kg/day for pheochromocytomas and renal tubular tumours is approximately 4.5 times the exposure at the daily clinical dose of 300 mg. Based on preclinical and clinical mechanistic studies, Leydig cell tumours, renal tubule tumours, and pheochromocytomas are considered to be rat-specific. Canagliflozin-induced renal tubule tumours and pheochromocytomas in rats appear to be caused by carbohydrate malabsorption as a consequence of intestinal SGLT1 inhibitory activity of canagliflozin in the gut of rats; mechanistic clinical studies have not demonstrated carbohydrate malabsorption in humans at canagliflozin doses of up to 2-times the maximum recommended clinical dose. The Leydig cell tumours are associated with an increase in luteinizing hormone (LH), which is a known mechanism of Leydig cell tumour formation in rats. In a 12-week clinical study, unstimulated LH did not increase in male patients treated with canagliflozin.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Tablet core

Lactose anhydrous
Microcrystalline cellulose
Hydroxypropylcellulose
Croscarmellose sodium
Magnesium stearate

Film-coating

Polyvinyl alcohol
Titanium dioxide (E171)
Macrogol 3350
Talc
Iron oxide yellow (E172)

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

2 years.

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

6.5 Nature and contents of container

Polyvinyl chloride/Aluminum (PVC/Alu) perforated unit dose blister.
Pack sizes of 10 x 1, 30 x 1, 90 x 1, and 100 x 1 film-coated tablets.

Not all pack sizes may be marketed.
6.6 Special precautions for disposal

No special requirements.

7. MARKETING AUTHORISATION HOLDER

Janssen-Cilag International NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

8. MARKETING AUTHORISATION NUMBER(S)

EU/1/13/884/001 (10 tablets)
EU/1/13/884/002 (30 tablets)
EU/1/13/884/003 (90 tablets)
EU/1/13/884/004 (100 tablets)

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 15 November 2013

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu/.
This medicinal product is subject to additional monitoring. This will allow quick identification of new safety information. Healthcare professionals are asked to report any suspected adverse reactions. See section 4.8 for how to report adverse reactions.

1. **NAME OF THE MEDICINAL PRODUCT**
Invokana 300 mg film-coated tablets

2. **QUALITATIVE AND QUANTITATIVE COMPOSITION**
Each tablet contains canagliflozin hemihydrate, equivalent to 300 mg canagliflozin.

Excipient(s) with known effect:
Each tablet contains 117.78 mg lactose.

For the full list of excipients, see section 6.1.

3. **PHARMACEUTICAL FORM**
Film-coated tablet (tablet).

The tablet is white, capsule-shaped, approximately 17 mm in length, immediate-release and film-coated, with “CFZ” on one side and “300” on the other side.

4. **CLINICAL PARTICULARS**

4.1 **Therapeutic indications**
Invokana is indicated in adults aged 18 years and older with type 2 diabetes mellitus to improve glycaemic control as:

Monotherapy

When diet and exercise alone do not provide adequate glycaemic control in patients for whom the use of metformin is considered inappropriate due to intolerance or contraindications.

Add-on therapy

Add-on therapy with other glucose-lowering medicinal products including insulin, when these, together with diet and exercise, do not provide adequate glycaemic control (see sections 4.4, 4.5, and 5.1 for available data on different add-on therapies).

4.2 **Posology and method of administration**

Posology

The recommended starting dose of canagliflozin is 100 mg once daily. In patients tolerating canagliflozin 100 mg once daily who have an eGFR ≥ 60 mL/min/1.73 m² or CrCl ≥ 60 mL/min and need tighter glycaemic control, the dose can be increased to 300 mg once daily orally (see below and section 4.4).
Care should be taken when increasing the dose in patients ≥ 75 years of age, patients with known cardiovascular disease, or other patients for whom the initial canagliflozin-induced diuresis poses a risk (see section 4.4). In patients with evidence of volume depletion, correcting this condition prior to initiation of canagliflozin is recommended (see section 4.4).

When canagliflozin is used as add-on therapy with insulin or an insulin secretagogue (e.g., sulphonylurea), a lower dose of insulin or the insulin secretagogue may be considered to reduce the risk of hypoglycaemia (see sections 4.5 and 4.8).

Elderly (≥ 65 years old)
Renal function and risk of volume depletion should be taken into account (see section 4.4).

Patients with renal impairment
For patients with an eGFR 60 mL/min/1.73 m² to < 90 mL/min/1.73 m² or CrCl 60 mL/min to < 90 mL/min, no dose adjustment is needed.

Canagliflozin should not be initiated in patients with an eGFR < 60 mL/min/1.73 m² or CrCl < 60 mL/min. In patients tolerating canagliflozin whose eGFR falls persistently below 60 mL/min/1.73 m² or CrCl 60 mL/min, the dose of canagliflozin should be adjusted to or maintained at 100 mg once daily. Canagliflozin should be discontinued when eGFR is persistently below 45 mL/min/1.73 m² or CrCl persistently below 45 mL/min (see sections 4.4, 4.8, 5.1, and 5.2).

Canagliflozin should also not be used in patients with end stage renal disease (ESRD) or in patients on dialysis as it is not expected to be effective in such populations (see sections 4.4 and 5.2).

Patients with hepatic impairment
For patients with mild or moderate hepatic impairment, no dose adjustment is required.

Canagliflozin has not been studied in patients with severe hepatic impairment and is not recommended for use in these patients (see section 5.2).

Paediatric population
The safety and efficacy of canagliflozin in children under 18 years of age have not yet been established. No data are available.

Method of administration

For oral use
Invokana should be taken orally once a day, preferably before the first meal of the day. Tablets should be swallowed whole.

If a dose is missed, it should be taken as soon as the patient remembers; however, a double dose should not be taken on the same day.

4.3 Contraindications

Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.

4.4 Special warnings and precautions for use

General

Invokana has not been studied in patients with type 1 diabetes and is therefore not recommended for use in these patients.

Invokana should not be used for the treatment of diabetic ketoacidosis as it is not effective in this setting.
Use in patients with renal impairment

The efficacy of canagliflozin is dependent on renal function, and efficacy is reduced in patients who have moderate renal impairment and likely absent in patients with severe renal impairment (see section 4.2).

In patients with an eGFR < 60 mL/min/1.73 m² or CrCl < 60 mL/min, a higher incidence of adverse reactions associated with volume depletion (e.g., postural dizziness, orthostatic hypotension, hypotension) was reported, particularly with the 300 mg dose. In addition, in such patients more events of elevated potassium and greater increases in serum creatinine and blood urea nitrogen (BUN) were reported (see section 4.8).

Therefore, the canagliflozin dose should be limited to 100 mg once daily in patients with eGFR < 60 mL/min/1.73 m² or CrCl < 60 mL/min and canagliflozin should not be used in patients with an eGFR < 45 mL/min/1.73 m² or CrCl < 45 mL/min (see section 4.2). Canagliflozin has not been studied in severe renal impairment (eGFR < 30 mL/min/1.73 m² or CrCl < 30 mL/min) or ESRD.

Monitoring of renal function is recommended as follows:
- Prior to initiation of canagliflozin and at least annually, thereafter (see sections 4.2, 4.8, 5.1, and 5.2)
- Prior to initiation of concomitant medicinal products that may reduce renal function and periodically thereafter
- For renal function approaching moderate renal impairment, at least 2 times to 4 times per year.
If renal function falls persistently below eGFR 45 mL/min/1.73 m² or CrCl < 45 mL/min, canagliflozin treatment should be discontinued.

Use in patients at risk for adverse reactions related to volume depletion

Due to its mechanism of action, canagliflozin, by increasing urinary glucose excretion (UGE) induces an osmotic diuresis, which may reduce intravascular volume and decrease blood pressure (see section 5.1). In controlled clinical studies of canagliflozin, increases in adverse reactions related to volume depletion (e.g., postural dizziness, orthostatic hypotension, or hypotension) were seen more commonly with the 300 mg dose and occurred most frequently in the first three months (see section 4.8).

Caution should be exercised in patients for whom a canagliflozin-induced drop in blood pressure could pose a risk, such as patients with known cardiovascular disease, patients with an eGFR < 60 mL/min/1.73 m², patients on anti-hypertensive therapy with a history of hypotension, patients on diuretics, or elderly patients (≥ 65 years of age) (see sections 4.2 and 4.8).

Due to volume depletion, generally small mean decreases in eGFR were seen within the first 6 weeks of treatment initiation with canagliflozin. In patients susceptible to greater reductions in intravascular volume as described above, larger decreases in eGFR (> 30%) were sometimes seen, which subsequently improved, and infrequently required interruption of treatment with canagliflozin (see section 4.8).

Patients should be advised to report symptoms of volume depletion. Canagliflozin is not recommended for use in patients receiving loop diuretics (see section 4.5) or who are volume depleted, e.g., due to acute illness (such as gastrointestinal illness).

For patients receiving canagliflozin, in case of intercurrent conditions that may lead to volume depletion (such as a gastrointestinal illness), careful monitoring of volume status (e.g., physical examination, blood pressure measurements, laboratory tests including renal function tests), and serum electrolytes is recommended. Temporary interruption of treatment with canagliflozin may be considered for patients who develop volume depletion while on canagliflozin therapy until the
condition is corrected. If interrupted, consideration should be given to more frequent glucose monitoring.

Diabetic ketoacidosis

Rare cases of diabetic ketoacidosis (DKA), including life-threatening cases, have been reported in clinical trials and post-marketing in patients treated with SGLT2 inhibitors, including canagliflozin. In a number of cases, the presentation of the condition was atypical with only moderately increased blood glucose values, below 14 mmol/l (250 mg/dl). It is not known if DKA is more likely to occur with higher doses of canagliflozin.

The risk of diabetic ketoacidosis must be considered in the event of non-specific symptoms such as nausea, vomiting, anorexia, abdominal pain, excessive thirst, difficulty breathing, confusion, unusual fatigue or sleepiness. Patients should be assessed for ketoacidosis immediately if these symptoms occur, regardless of blood glucose level.

In patients where DKA is suspected or diagnosed, treatment with canagliflozin should be discontinued immediately.

Treatment should be interrupted in patients who are hospitalised for major surgical procedures or acute serious medical illnesses. In both cases, treatment with canagliflozin may be restarted once the patient’s condition has stabilised.

Before initiating canagliflozin, factors in the patient history that may predispose to ketoacidosis should be considered.

Patients who may be at higher risk of DKA include patients with a low beta-cell function reserve (e.g., type 2 diabetes patients with low C-peptide or latent autoimmune diabetes in adults (LADA) or patients with a history of pancreatitis), patients with conditions that lead to restricted food intake or severe dehydration, patients for whom insulin doses are reduced and patients with increased insulin requirements due to acute medical illness, surgery or alcohol abuse. SGLT2 inhibitors should be used with caution in these patients.

Restarting SGLT2 inhibitor treatment in patients with previous DKA while on SGLT2 inhibitor treatment is not recommended unless another clear precipitating factor is identified and resolved.

The safety and efficacy of canagliflozin in patients with type 1 diabetes have not been established and canagliflozin should not be used for treatment of patients with type 1 diabetes. Limited data from clinical trials suggest that DKA occurs with common frequency when patients with type 1 diabetes are treated with SGLT2 inhibitors.

Elevated haematocrit

Haematocrit increase was observed with canagliflozin treatment (see section 4.8); therefore, caution in patients with already elevated haematocrit is warranted.

Elderly (≥ 65 years old)

Elderly patients may be at a greater risk for volume depletion, are more likely to be treated with diuretics, and to have impaired renal function. In patients ≥ 75 years of age, a higher incidence of adverse reactions associated with volume depletion (e.g., postural dizziness, orthostatic hypotension, hypotension) was reported. In addition, in such patients greater decreases in eGFR were reported (see sections 4.2 and 4.8).

Genital mycotic infections
Consistent with the mechanism of sodium glucose co-transporter 2 (SGLT2) inhibition with increased UGE, vulvovaginal candidiasis in females and balanitis or balanoposthitis in males were reported in clinical trials (see section 4.8). Male and female patients with a history of genital mycotic infections were more likely to develop an infection. Balanitis or balanoposthitis occurred primarily in uncircumcised male patients. In rare instances, phimosis was reported and sometimes circumcision was performed. The majority of genital mycotic infections were treated with topical antifungal treatments, either prescribed by a healthcare professional or self-treated while continuing therapy with Invokana.

Cardiac failure

Experience in New York Heart Association (NYHA) class III is limited, and there is no experience in clinical studies with canagliflozin in NYHA class IV.

Urine laboratory assessments

Due to its mechanism of action, patients taking canagliflozin will test positive for glucose in their urine.

Lactose intolerance

The tablets contain lactose. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency, or glucose-galactose malabsorption should not take this medicinal product.

4.5 Interaction with other medicinal products and other forms of interaction

Pharmacodynamic interactions

Diuretics
Canagliflozin may add to the effect of diuretics and may increase the risk of dehydration and hypotension (see section 4.4).

Insulin and insulin secretagogues
Insulin and insulin secretagogues, such as sulphonylureas, can cause hypoglycaemia. Therefore, a lower dose of insulin or an insulin secretagogue may be required to reduce the risk of hypoglycaemia when used in combination with canagliflozin (see sections 4.2 and 4.8).

Pharmacokinetic interactions

Effects of other medicinal products on canagliflozin
The metabolism of canagliflozin is primarily via glucuronide conjugation mediated by UDP glucuronosyl transferase 1A9 (UGT1A9) and 2B4 (UGT2B4). Canagliflozin is transported by P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP).

Enzyme inducers (such as St. John’s wort [Hypericum perforatum], rifampicin, barbiturates, phenytoin, carbamazepine, ritonavir, efavirenz) may give rise to decreased exposure of canagliflozin. Following co-administration of canagliflozin with rifampicin (an inducer of various active transporters and drug-metabolising enzymes), 51% and 28% decreases in canagliflozin systemic exposure (AUC) and peak concentration (C_{max}) were observed. These decreases in exposure to canagliflozin may decrease efficacy.

If a combined inducer of these UGT enzymes and transport proteins must be co-administered with canagliflozin, monitoring of glycaemic control to assess response to canagliflozin is appropriate. If an inducer of these UGT enzymes must be co-administered with canagliflozin, increasing the dose to 300 mg once daily may be considered if patients are currently tolerating canagliflozin 100 mg once daily, have an eGFR ≥ 60 mL/min/1.73 m² or CrCl ≥ 60 mL/min, and require additional glycaemic control. In patients with an eGFR 45 mL/min/1.73 m² to < 60 mL/min/1.73 m² or CrCl 45 mL/min to
< 60 mL/min taking canagliflozin 100 mg who are receiving concurrent therapy with a UGT enzyme inducer and who require additional glycaemic control, other glucose-lowering therapies should be considered (see sections 4.2 and 4.4).

Cholestyramine may potentially reduce canagliflozin exposure. Dosing of canagliflozin should occur at least 1 hour before or 4-6 hours after administration of a bile acid sequestrant to minimise possible interference with their absorption.

Interaction studies suggest that the pharmacokinetics of canagliflozin are not altered by metformin, hydrochlorothiazide, oral contraceptives (ethinyl estradiol and levonorgestrol), ciclosporin, and/or probenecid.

Effects of canagliflozin on other medicinal products

Digoxin: The combination of canagliflozin 300 mg once daily for 7 days with a single dose of digoxin 0.5 mg followed by 0.25 mg daily for 6 days resulted in a 20% increase in AUC and a 36% increase in \(C_{\text{max}} \) of digoxin, probably due to inhibition of P-gp. Canagliflozin has been observed to inhibit P-gp *in vitro*. Patients taking digoxin or other cardiac glycosides (e.g., digitoxin) should be monitored appropriately.

Dabigatran: The effect of concomitant administration of canagliflozin (a weak P-gp inhibitor) on dabigatran etexilate (a P-gp substrate) has not been studied. As dabigatran concentrations may be increased in the presence of canagliflozin, monitoring (looking for signs of bleeding or anaemia) should be exercised when dabigatran is combined with canagliflozin.

Simvastatin: The combination of canagliflozin 300 mg once daily for 6 days with a single dose of simvastatin (CYP3A4 substrate) 40 mg resulted in a 12% increase in AUC and a 9% increase in \(C_{\text{max}} \) of simvastatin and an 18% increase in AUC and a 26% increase in \(C_{\text{max}} \) of simvastatin acid. The increases in simvastatin and simvastatin acid exposures are not considered clinically relevant.

Inhibition of BCRP by canagliflozin cannot be excluded at an intestinal level and increased exposure may therefore occur for medicinal products transported by BCRP, e.g. certain statins like rosuvastatin and some anti-cancer medicinal products.

In interaction studies, canagliflozin at steady-state had no clinically relevant effect on the pharmacokinetics of metformin, oral contraceptives (ethinyl estradiol and levonorgestrol), glibenclamide, paracetamol, hydrochlorothiazide, or warfarin.

Drug/Laboratory test interference

1,5-AG assay
Increases in urinary glucose excretion with Invokana can falsely lower 1,5-anhydroglucitol (1,5-AG) levels and make measurements of 1,5-AG unreliable in assessing glycemic control. Therefore, 1,5-AG assays should not be used for assessment of glycemic control in patients on canagliflozin. For further detail, it may be advisable to contact the specific manufacturer of the 1,5-AG assay.

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no data from the use of canagliflozin in pregnant women. Studies in animals have shown reproductive toxicity (see section 5.3).

Canagliflozin should not be used during pregnancy. When pregnancy is detected, treatment with canagliflozin should be discontinued.

Breast-feeding
It is unknown whether canagliflozin and/or its metabolites are excreted in human milk. Available pharmacodynamic/toxicological data in animals have shown excretion of canagliflozin/metabolites in milk, as well as pharmacologically mediated effects in breast-feeding offspring and juvenile rats exposed to canagliflozin (see section 5.3). A risk to newborns/infants cannot be excluded. Canagliflozin should not be used during breast-feeding.

Fertility

The effect of canagliflozin on fertility in humans has not been studied. No effects on fertility were observed in animal studies (see section 5.3).

4.7 Effects on ability to drive and use machines

Canagliflozin has no or negligible influence on the ability to drive and use machines. However, patients should be alerted to the risk of hypoglycaemia when canagliflozin is used as add-on therapy with insulin or an insulin secretagogue, and to the elevated risk of adverse reactions related to volume depletion, such as postural dizziness (see sections 4.2, 4.4 and 4.8).

4.8 Undesirable effects

Summary of the safety profile

The safety of canagliflozin was evaluated in 10,285 patients with type 2 diabetes, including 3,139 patients treated with canagliflozin 100 mg and 3,506 patients treated with canagliflozin 300 mg, who received medicinal product in nine double-blind, controlled phase 3 clinical studies.

The primary assessment of safety and tolerability was conducted in a pooled analysis (n=2,313) of four 26-week placebo-controlled clinical studies (monotherapy and add-on therapy with metformin, metformin and a sulphonylurea, and metformin and pioglitazone). The most commonly reported adverse reactions during treatment were hypoglycaemia in combination with insulin or a sulphonylurea, vulvovaginal candidiasis, urinary tract infection, and polyuria or pollakiuria (i.e., urinary frequency). Adverse reactions leading to discontinuation of ≥ 0.5% of all canagliflozin-treated patients in these studies were vulvovaginal candidiasis (0.7% of female patients) and balanitis or balanoposthitis (0.5% of male patients). Additional safety analyses (including long-term data) from data across the entire canagliflozin programme (placebo- and active-controlled studies) were conducted to assess reported adverse reactions in order to identify adverse reactions (see table 1) (see sections 4.2 and 4.4).

Tabulated list of adverse reactions

Adverse reactions in table 1 are based on the pooled analysis of the four 26-week placebo-controlled studies (n=2,313) described above. Adverse reactions reported from world-wide postmarketing use of canagliflozin are also included in this tabulation. Adverse reactions listed below are classified according to frequency and system organ class (SOC). Frequency categories are defined according to the following convention: very common (≥ 1/10), common (≥ 1/100 to < 1/10), uncommon (≥ 1/1,000 to < 1/100), rare (≥ 1/10,000 to < 1/1,000), very rare (< 1/10,000), not known (cannot be estimated from the available data).

Table 1: Tabulated list of adverse reactions (MedDRA) from placebo-controlled studies* and from postmarketing experience

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Frequency</th>
<th>Adverse reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolism and nutrition disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>very common</td>
<td></td>
<td>Hypoglycaemia in combination with insulin or sulphonylurea</td>
</tr>
<tr>
<td>uncommon</td>
<td></td>
<td>Dehydration*</td>
</tr>
</tbody>
</table>

28
Diabetes Mellitus	**Diabetic ketoacidosis**
Nervous system disorders	**Dizziness postural**, **Syncope**
Vascular disorders	**Hypotension**, **Orthostatic hypotension**
Gastrointestinal disorders	**Constipation**, **Thirst**, **Nausea**
Skin and subcutaneous tissue disorders	**Rash**, **Urticaria**
Musculoskeletal and connective tissue disorders	**Bone fracture**
Renal and urinary disorders	**Polyuria or Pollakiuria**, **Urinary tract infection** (pyelonephritis and urosepsis have been reported postmarketing)
Reproductive system and breast disorders	**Vulvovaginal candidiasis**
Investigations	**Dyslipidemia**, **Haematocrit increased**
	Blood creatinine increased, **Blood urea increased**, **Blood potassium increased**, **Blood phosphate increased**

* Unless otherwise specified, all terms represent cases occurring in at least 1% of patients taking the medication. ** The terms represent cases occurring in at least 1% of patients taking the medication and more than 10% of patients taking the medication.
* Related to volume depletion; see section 4.4.
** See section 4.4.

a Safety data profiles from individual pivotal studies (including studies in moderately renally impaired patients; older patients [≥ 55 years of age to ≤ 80 years of age]; patients with increased CV-risk) were generally consistent with the adverse reactions identified in this table.
b Thirst includes the terms thirst, dry mouth, and polydipsia.
c Rash includes the terms rash erythematous, rash generalised, rash macular, rash maculopapular, rash papular, rash pruritic, rash pustular, and rash vesicular.
d Based on postmarketing experience with canagliflozin.
e Bone fracture was reported in 0.7% and 0.6% for canagliflozin 100 mg and 300 mg, respectively, compared to 0.3% for placebo. See bone fracture section below for additional information.
f Polyuria or pollakiuria includes the terms polyuria, pollakiuria, micturition urgency, nocturia, and urine output increased.
g Vulvovaginal candidiasis includes the terms vulvovaginal candidiasis, vulvovaginal mycotic infection, vulvovaginitis, vaginal infection, vulvitis, and genital infection fungal.
h Balanitis or balanoposthitis includes the terms balanitis, balanoposthitis, balanitis candida, and genital infection fungal.
i Mean percent increases from baseline for canagliflozin 100 mg and 300 mg versus placebo, respectively, were total cholesterol 3.4% and 5.2% versus 0.9%; HDL-cholesterol 9.4% and 10.3% versus 4.0%; LDL-cholesterol 5.7% and 9.3% versus 1.3%; non-HDL-cholesterol 2.2% and 4.4% versus 0.7%; triglycerides 2.4% and 0.0% versus 7.6%.
j Mean changes from baseline in haematocrit were 2.4% and 2.5% for canagliflozin 100 mg and 300 mg, respectively, compared to 0.0% for placebo.
k Mean percent changes from baseline in creatinine were 2.8% and 4.0% for canagliflozin 100 mg and 300 mg, respectively, compared to 1.5% for placebo.
l Mean percent changes from baseline in blood urea nitrogen were 17.1% and 18.0% for canagliflozin 100 mg and 300 mg, respectively, compared to 2.7% for placebo.
m Mean percent changes from baseline in blood potassium were 0.5% and 1.0% for canagliflozin 100 mg and 300 mg, respectively, compared to 0.6% for placebo.
n Mean percent changes from baseline in serum phosphate were 3.6% and 5.1% for canagliflozin 100 mg and 300 mg, compared to 1.5% for placebo.

Description of selected adverse reactions

Adverse reactions related to volume depletion

In the pooled analysis of the four 26-week, placebo-controlled studies, the incidence of all adverse reactions related to volume depletion (e.g., postural dizziness, orthostatic hypotension, hypotension, dehydration, and syncope) was 1.2% for canagliflozin 100 mg, 1.3% for canagliflozin 300 mg, and 1.1% for placebo. The incidence with canagliflozin treatment in the two active-controlled studies was similar to comparators.

In the dedicated cardiovascular study, where patients were generally older with a higher rate of diabetes complications, the incidences of adverse reactions related to volume depletion were 2.8% with canagliflozin 100 mg, 4.6% with canagliflozin 300 mg, and 1.9% with placebo.

To assess risk factors for these adverse reactions, a larger pooled analysis (N=9,439) of patients from eight controlled phase 3 studies including both doses of canagliflozin was conducted. In this pooled analysis, patients on loop diuretics, patients with a baseline eGFR 30 mL/min/1.73 m² to < 60 mL/min/1.73 m², and patients ≥ 75 years of age had generally higher incidences of these adverse reactions. For patients on loop diuretics, the incidences were 3.2% on canagliflozin 100 mg and 8.8% on canagliflozin 300 mg compared to 4.7% in the control group. For patients with a baseline eGFR 30 mL/min/1.73 m² to < 60 mL/min/1.73 m², the incidences were 4.8% on canagliflozin 100 mg and 8.1% on canagliflozin 300 mg compared to 2.6% in the control group. In patients ≥ 75 years of age, the incidences were 4.9% on canagliflozin 100 mg and 8.7% on canagliflozin 300 mg compared to 2.6% in the control group (see sections 4.2 and 4.4).

In the dedicated cardiovascular study and the larger pooled analysis, discontinuations due to adverse reactions related to volume depletion and serious adverse reactions related to volume depletion were not increased with canagliflozin.

Hypoglycaemia in add-on therapy with insulin or insulin secretagogues
The frequency of hypoglycaemia was low (approximately 4%) among treatment groups, including placebo, when used as monotherapy or as an add-on to metformin. When canagliflozin was added to insulin therapy, hypoglycaemia was observed in 49.3%, 48.2%, and 36.8% of patients treated with canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively, and severe hypoglycaemia occurred in 1.8%, 2.7%, and 2.5% of patients treated with canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively. When canagliflozin was added to a sulphonylurea therapy, hypoglycaemia was observed in 4.1%, 12.5%, and 5.8% of patients treated with canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively (see sections 4.2 and 4.5).

Genital mycotic infections
Vulvovaginal candidiasis (including vulvovaginitis and vulvovaginal mycotic infection) was reported in 10.4% and 11.4% of female patients treated with canagliflozin 100 mg and canagliflozin 300 mg, respectively, compared to 3.2% in placebo-treated female patients. Most reports of vulvovaginal candidiasis occurred during the first four months of treatment with canagliflozin. Among female patients taking canagliflozin, 2.3% experienced more than one infection. Overall, 0.7% of all female patients discontinued canagliflozin due to vulvovaginal candidiasis (see section 4.4).

Candidal balanitis or balanoposthitis was reported in 4.2% and 3.7% of male patients treated with canagliflozin 100 mg and canagliflozin 300 mg, respectively, compared to 0.6% in placebo-treated male patients. Among male patients taking canagliflozin, 0.9% had more than one infection. Overall, 0.5% of male patients discontinued canagliflozin due to candidial balanitis or balanoposthitis. In rare instances, phimosis was reported and sometimes circumcision was performed (see section 4.4).

Urinary tract infections
Urinary tract infections were more frequently reported for canagliflozin 100 mg and 300 mg (5.9% versus 4.3%, respectively) compared to 4.0% with placebo. Most infections were mild to moderate with no increase in the occurrence of serious adverse reactions. Subjects responded to standard treatments while continuing canagliflozin treatment.

Bone fracture
In a cardiovascular study of 4,327 patients with known or at high risk for cardiovascular disease, the incidence rates of bone fracture were 1.6, 1.6, and 1.1 per 100 patient years of exposure to canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively, with the fracture imbalance initially occurring within the first 26 weeks of therapy. In other type 2 diabetes studies with canagliflozin, which enrolled a general diabetes population of approximately 5,800 patients, no difference in fracture risk was observed relative to control. After 104 weeks of treatment, canagliflozin did not adversely affect bone mineral density.

Special populations

Elderly (≥65 years old)
In a pooled analysis of eight placebo-controlled and active-controlled studies, the safety profile in elderly patients was generally consistent with younger patients. Patients ≥75 years of age had a higher incidence of adverse reactions related to volume depletion (such as postural dizziness, orthostatic hypotension, hypotension) with incidences of 4.9%, 8.7%, and 2.6% on canagliflozin 100 mg, canagliflozin 300 mg, and in the control group, respectively. Decreases in eGFR (-3.6% and -5.2%) were reported with canagliflozin 100 mg and canagliflozin 300 mg, respectively, compared to the control group (-3.0%) (see sections 4.2 and 4.4).

Patients with renal impairment (eGFR < 60 mL/min/1.73 m² or CrCl < 60 mL/min)
Patients with a baseline eGFR < 60 mL/min/1.73 m² or CrCl < 60 mL/min had a higher incidence of adverse reactions associated with volume depletion (e.g., postural dizziness, orthostatic hypotension, hypotension) with incidences of 4.7%, 8.1%, and 1.5% on canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively (see sections 4.2 and 4.4).
The overall incidence of elevated serum potassium was higher in patients with moderate renal impairment with incidences of 7.5%, 12.3%, and 8.1% on canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively. In general, elevations were transient and did not require specific treatment.

Increases in serum creatinine of 10-11% and BUN of approximately 12% were observed with both doses of canagliflozin. The proportion of patients with larger decreases in eGFR (> 30%) at any time during treatment was 9.3%, 12.2%, and 4.9% with canagliflozin 100 mg, canagliflozin 300 mg, and placebo, respectively. At study endpoint, 3.0% of patients treated with canagliflozin 100 mg, 4.0% with canagliflozin 300 mg, and 3.3% with placebo had such decreases (see section 4.4).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.

4.9 Overdose

Single doses up to 1,600 mg of canagliflozin in healthy subjects and canagliflozin 300 mg twice daily for 12 weeks in patients with type 2 diabetes were generally well-tolerated.

Therapy

In the event of an overdose, it is reasonable to employ the usual supportive measures, e.g., remove unabsorbed material from the gastrointestinal tract, employ clinical monitoring, and institute clinical measures if required. Canagliflozin was negligibly removed during a 4-hour haemodialysis session. Canagliflozin is not expected to be dialysable by peritoneal dialysis.

5. PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Drugs used in diabetes, other blood glucose lowering drugs, excluding insulin. ATC code: A10BX11.

Mechanism of action

The SGLT2 transporter, expressed in the proximal renal tubules, is responsible for the majority of the reabsorption of filtered glucose from the tubular lumen. Patients with diabetes have been shown to have elevated renal glucose reabsorption which may contribute to persistent elevated blood glucose concentrations. Canagliflozin is an orally-active inhibitor of SGLT2. By inhibiting SGLT2, canagliflozin reduces reabsorption of filtered glucose and lowers the renal threshold for glucose (RT\textsubscript{g}), and thereby increases UGE, lowering elevated plasma glucose concentrations by this insulin-independent mechanism in patients with type 2 diabetes. The increased UGE with SGLT2 inhibition also translates to an osmotic diuresis, with the diuretic effect leading to a reduction in systolic blood pressure; the increase in UGE results in a loss of calories and therefore a reduction in body weight, as has been demonstrated in studies of patients with type 2 diabetes.

Canagliflozin’s action to increase UGE directly lowering plasma glucose is independent of insulin. Improvement in homeostasis model assessment for beta-cell function (HOMA beta-cell) and improved beta-cell insulin secretion response to a mixed-meal challenge has been observed in clinical studies with canagliflozin.

In phase 3 studies, pre-meal administration of canagliflozin 300 mg provided a greater reduction in postprandial glucose excursion than observed with the 100 mg dose. This effect at the 300 mg dose of
canagliflozin may, in part, be due to local inhibition of intestinal SGLT1 (an important intestinal glucose transporter) related to transient high concentrations of canagliflozin in the intestinal lumen prior to medicinal product absorption (canagliflozin is a low potency inhibitor of the SGLT1 transporter). Studies have shown no glucose malabsorption with canagliflozin.

Pharmacodynamic effects

Following single and multiple oral doses of canagliflozin to patients with type 2 diabetes, dose-dependent decreases in RTG and increases in UGE were observed. From a starting value of RTG of approximately 13 mmol/L, maximal suppression of 24-hour mean RTG was seen with the 300 mg daily dose to approximately 4 mmol/L to 5 mmol/L in patients with type 2 diabetes in phase 1 studies, suggesting a low risk for treatment-induced hypoglycaemia. The reductions in RTG led to increased UGE in subjects with type 2 diabetes treated with either 100 mg or 300 mg of canagliflozin ranging from 77 g/day to 119 g/day across the phase 1 studies; the UGE observed translates to a loss of 308 kcal/day to 476 kcal/day. The reductions in RTG and increases in UGE were sustained over a 26-week dosing period in patients with type 2 diabetes. Moderate increases (generally < 400 mL to 500 mL) in daily urine volume were seen that attenuated over several days of dosing. Urinary uric acid excretion was transiently increased by canagliflozin (increased by 19% compared to baseline on day 1 and then attenuating to 6% on day 2 and 1% on day 13). This was accompanied by a sustained reduction in serum uric acid concentration of approximately 20%.

In a single-dose study in patients with type 2 diabetes, treatment with 300 mg before a mixed meal delayed intestinal glucose absorption and reduced postprandial glucose through both a renal and a non-renal mechanism.

Clinical efficacy and safety

A total of 10,285 patients with type 2 diabetes participated in nine double-blind, controlled clinical efficacy and safety studies conducted to evaluate the effects of Invokana on glycaemic control. The racial distribution was 72% White, 16% Asian, 4% Black, and 8% other groups. 16% of patients were Hispanic. Approximately 58% of patients were male. Patients had an overall mean age of 59.6 years (range 21 years to 96 years), with 3,082 patients ≥ 65 years of age and 510 patients ≥ 75 years of age. 58% of patients had a body mass index (BMI) ≥ 30 kg/m². In the clinical development programme, 1,085 patients with a baseline eGFR 30 mL/min/1.73 m² to < 60 mL/min/1.73 m² were evaluated.

Placebo-controlled studies

Canagliflozin was studied as monotherapy, dual therapy with metformin, dual therapy with a sulphonylurea, triple therapy with metformin and a sulphonylurea, triple therapy with metformin and pioglitazone, and as an add-on therapy with insulin (table 2). In general, canagliflozin produced clinically and statistically significant (p<0.001) results relative to placebo in glycaemic control, including HbA₁c, the percentage of patients achieving HbA₁c < 7%, change from baseline fasting plasma glucose (FPG), and 2-hour postprandial glucose (PPG). In addition, reductions in body weight and systolic blood pressure relative to placebo were observed.

Table 2: Efficacy results from placebo-controlled clinical studies

<table>
<thead>
<tr>
<th>Monotherapy (26 weeks)</th>
<th>Canagliflozin</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 mg (N=195)</td>
<td>300 mg (N=197)</td>
</tr>
<tr>
<td>HbA₁c (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.06</td>
<td>8.01</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
<td>-0.77</td>
<td>-1.03</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean)</td>
<td>-0.91<sup>b</sup> (-1.09; -0.73)</td>
<td>-1.16<sup>b</sup> (-1.34; -0.98)</td>
</tr>
<tr>
<td>Patients (%) achieving HbA₁c < 7%</td>
<td>44.5<sup>b</sup></td>
<td>62.4<sup>b</sup></td>
</tr>
<tr>
<td>Body weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean) in kg</td>
<td>85.9</td>
<td>86.9</td>
</tr>
<tr>
<td>% change from baseline (adjusted mean)</td>
<td>-2.8</td>
<td>-3.9</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (95% CI)</td>
<td>-2.2<sup>b</sup> (-2.9; -1.6)</td>
<td>-3.3<sup>b</sup> (-4.0; -2.6)</td>
</tr>
</tbody>
</table>

Dual therapy with metformin (26 weeks)

<table>
<thead>
<tr>
<th>Canagliflozin + metformin</th>
<th>Placebo + metformin</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mg (N=368)</td>
<td>300 mg (N=367)</td>
</tr>
<tr>
<td>HbA<sub>1c</sub> (%)</td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>7.94</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
<td>-0.79</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (95% CI)</td>
<td>-0.62<sup>b</sup> (-0.76; -0.48)</td>
</tr>
</tbody>
</table>

Patients (%) achieving HbA_{1c} < 7%

| 45.5^b | 57.8^b | 29.8 |

Body weight

<table>
<thead>
<tr>
<th>Baseline (mean) in kg</th>
<th>88.7</th>
<th>85.4</th>
<th>86.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>% change from baseline (adjusted mean)</td>
<td>-3.7</td>
<td>-4.2</td>
<td>-1.2</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (95% CI)</td>
<td>-2.5<sup>b</sup> (-3.1; -1.9)</td>
<td>-2.9<sup>b</sup> (-3.5; -2.3)</td>
<td>N/A<sup>c</sup></td>
</tr>
</tbody>
</table>

Triple therapy with metformin and sulphonylurea (26 weeks)

<table>
<thead>
<tr>
<th>Canagliflozin + metformin and sulphonylurea</th>
<th>Placebo + metformin and sulphonylurea</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mg (N=157)</td>
<td>300 mg (N=156)</td>
</tr>
<tr>
<td>HbA<sub>1c</sub> (%)</td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.13</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
<td>-0.85</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (95% CI)</td>
<td>-0.71<sup>b</sup> (-0.90; -0.52)</td>
</tr>
</tbody>
</table>

Patients (%) achieving HbA_{1c} < 7%

| 43.2^b | 56.6^b | 18.0 |

Body weight

<table>
<thead>
<tr>
<th>Baseline (mean) in kg</th>
<th>93.5</th>
<th>93.5</th>
<th>90.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>% change from baseline (adjusted mean)</td>
<td>-2.1</td>
<td>-2.6</td>
<td>-0.7</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (95% CI)</td>
<td>-1.4<sup>c</sup> (-2.1; -0.7)</td>
<td>-2.0<sup>c</sup> (-2.7; -1.3)</td>
<td>N/A<sup>c</sup></td>
</tr>
</tbody>
</table>

Add-on therapy with insulin^d (18 weeks)

<table>
<thead>
<tr>
<th>Canagliflozin + insulin</th>
<th>Placebo + insulin</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mg (N=566)</td>
<td>300 mg (N=587)</td>
</tr>
<tr>
<td>HbA<sub>1c</sub> (%)</td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>8.33</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
<td>-0.63</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (97.5% CI)</td>
<td>-0.65<sup>b</sup> (-0.73; -0.56)</td>
</tr>
</tbody>
</table>

Patients (%) achieving HbA_{1c} < 7%

| 19.8^b | 24.7^b | 7.7 |

Body weight

<table>
<thead>
<tr>
<th>Baseline (mean) in kg</th>
<th>96.9</th>
<th>96.7</th>
<th>97.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>% change from baseline (adjusted mean)</td>
<td>-1.8</td>
<td>-2.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Difference from placebo (adjusted mean) (97.5% CI)</td>
<td>-1.9<sup>b</sup> (-2.2; -1.5)</td>
<td>-2.4<sup>b</sup> (-2.8; -2.0)</td>
<td>N/A<sup>c</sup></td>
</tr>
</tbody>
</table>

^a Intent-to-treat population using last observation in study prior to glycaemic rescue therapy.

^b p<0.001 compared to placebo.

^c Not applicable.

^d Canagliflozin as add-on therapy to insulin (with or without other glucose-lowering medicinal products).
In addition to the studies presented above, glycaemic efficacy results observed in an 18-week dual therapy sub-study with a sulphonylurea and a 26-week triple therapy study with metformin and pioglitazone were generally comparable with those observed in other studies.

Active-controlled studies

Canagliflozin was compared to glimepiride as dual therapy with metformin and compared to sitagliptin as triple therapy with metformin and a sulphonylurea (table 3). Canagliflozin 100 mg as dual therapy with metformin produced similar reductions in HbA1c from baseline and 300 mg produced superior (p<0.05) reductions in HbA1c compared to glimepiride, thus demonstrating non-inferiority. A lower proportion of patients treated with canagliflozin 100 mg (5.6%) and canagliflozin 300 mg (4.9%) experienced at least one episode/event of hypoglycaemia over 52 weeks of treatment compared to the group treated with glimepiride (34.2%). In a study comparing canagliflozin 300 mg to sitagliptin 100 mg in triple therapy with metformin and a sulphonylurea, canagliflozin demonstrated non-inferior (p<0.05) and superior (p<0.05) reduction in HbA1c relative to sitagliptin. The incidence of hypoglycaemia episodes/events with canagliflozin 300 mg and sitagliptin 100 mg was 40.7% and 43.2%, respectively. Significant improvements in body weight and reductions in systolic blood pressure compared to both glimepiride and sitagliptin were also observed.

Table 3: Efficacy results from active-controlled clinical studies

<table>
<thead>
<tr>
<th>Compared to glimepiride as dual therapy with metformin (52 weeks)</th>
<th>Canagliflozin + metformin</th>
<th>Glimepiride (titrated) + metformin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 mg (N=483)</td>
<td>300 mg (N=485)</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.78</td>
<td>7.97</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td></td>
<td>7.83</td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
<td>-0.82</td>
<td>-0.93</td>
</tr>
<tr>
<td>Difference from glimepiride (adjusted mean) (95% CI)</td>
<td>-0.01<sup>b</sup> (-0.11; 0.09)</td>
<td>-0.12<sup>b</sup> (-0.22; -0.02)</td>
</tr>
<tr>
<td>N/A<sup>c</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients (%) achieving HbA1c < 7%</td>
<td>53.6</td>
<td>60.1</td>
</tr>
<tr>
<td>Body weight</td>
<td></td>
<td>55.8</td>
</tr>
<tr>
<td>Baseline (mean) in kg</td>
<td>86.8</td>
<td>86.6</td>
</tr>
<tr>
<td>% change from baseline (adjusted mean)</td>
<td>-4.2</td>
<td>-4.7</td>
</tr>
<tr>
<td>Difference from glimepiride (adjusted mean) (95% CI)</td>
<td>-5.2<sup>a</sup> (-5.7; -4.7)</td>
<td>-5.7<sup>a</sup> (-6.2; -5.1)</td>
</tr>
<tr>
<td>N/A<sup>c</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compared to sitagliptin as triple therapy with metformin and sulphonylurea (52 weeks)</th>
<th>Canagliflozin 300 mg + metformin and sulphonylurea (N=377)</th>
<th>Sitagliptin 100 mg + metformin and sulphonylurea (N=378)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c (%)</td>
<td>8.12</td>
<td>8.13</td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from baseline (adjusted mean)</td>
<td>-1.03</td>
<td>-0.66</td>
</tr>
<tr>
<td>Difference from sitagliptin (adjusted mean) (95% CI)</td>
<td>-0.37<sup>d</sup> (-0.50; -0.25)</td>
<td>N/A<sup>c</sup></td>
</tr>
<tr>
<td>Patients (%) achieving HbA1c < 7%</td>
<td>47.6</td>
<td>35.3</td>
</tr>
<tr>
<td>Body weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline (mean)</td>
<td>87.6</td>
<td>89.6</td>
</tr>
<tr>
<td>% change from baseline (adjusted mean)</td>
<td>-2.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Difference from sitagliptin (adjusted mean) (95% CI)</td>
<td>-2.8<sup>a</sup> (-3.3; -2.2)</td>
<td>N/A<sup>c</sup></td>
</tr>
</tbody>
</table>

^a Intent-to-treat population using last observation in study prior to glycaemic rescue therapy.

^b p<0.05.

^c Not applicable.

^d p<0.001.
Special populations
In three studies conducted in special populations (older patients, patients with an eGFR of 30 mL/min/1.73 m² to < 50 mL/min/1.73 m² and patients with or at high risk for cardiovascular disease), canagliflozin was added to patients’ current stable diabetes treatments (diet, monotherapy, or combination therapy).

Older patients
A total of 714 patients ≥ 55 years of age to ≤ 80 years of age (227 patients 65 years of age to < 75 years of age and 46 patients 75 years of age to ≤ 80 years of age) with inadequate glycaemic control on current diabetes treatment (glucose-lowering medicinal products and/or diet and exercise) participated in a double-blind, placebo-controlled study over 26 weeks. Statistically significant (p<0.001) changes from baseline HbA1c relative to placebo of -0.57% and -0.70% were observed for 100 mg and 300 mg, respectively (see sections 4.2 and 4.8).

Patients with eGFR 45 mL/min/1.73 m² to < 60 mL/min/1.73 m²
In a pooled analysis of patients (N=721) with a baseline eGFR 45 mL/min/1.73 m² to < 60 mL/min/1.73 m², canagliflozin provided clinically meaningful reduction in HbA1c compared to placebo, with -0.47% for canagliflozin 100 mg and -0.52% for canagliflozin 300 mg. Patients with a baseline eGFR 45 mL/min/1.73 m² to < 60 mL/min/1.73 m² treated with canagliflozin 100 mg and 300 mg exhibited mean improvements in percent change in body weight relative to placebo of -1.8% and -2.0%, respectively.

Fasting plasma glucose
In four placebo-controlled studies, treatment with canagliflozin as monotherapy or add-on therapy with one or two oral glucose-lowering medicinal products resulted in mean changes from baseline relative to placebo in FPG of -1.2 mmol/L to -1.9 mmol/L for canagliflozin 100 mg and -1.9 mmol/L to -2.4 mmol/L for canagliflozin 300 mg, respectively. These reductions were sustained over the treatment period and near maximal after the first day of treatment.

Postprandial glucose
Using a mixed-meal challenge, canagliflozin as monotherapy or add-on therapy with one or two oral glucose-lowering medicinal products reduced postprandial glucose (PPG) from baseline relative to placebo by -1.5 mmol/L to -2.7 mmol/L for canagliflozin 100 mg and -2.1 mmol/L to -3.5 mmol/L for 300 mg, respectively, due to reductions in the pre-meal glucose concentration and reduced postprandial glucose excursions.

Body weight
Canagliflozin 100 mg and 300 mg as monotherapy and as dual or triple add-on therapy resulted in statistically significant reductions in the percentage of body weight at 26 weeks relative to placebo. In two 52-week active-controlled studies comparing canagliflozin to glimepiride and sitagliptin, sustained and statistically significant mean reductions in the percentage of body weight for canagliflozin as add-on therapy to metformin were -4.2% and -4.7% for canagliflozin 100 mg and 300 mg, respectively, compared to the combination of glimepiride and metformin (1.0%) and -2.5% for canagliflozin 300 mg in combination with metformin and a sulphonylurea compared to sitagliptin in combination with metformin and a sulphonylurea (0.3%).

A subset of patients (N=208) from the active-controlled dual therapy study with metformin who underwent dual energy X-ray densitometry (DXA) and abdominal computed tomography (CT) scans for evaluation of body composition demonstrated that approximately two-thirds of the weight loss with canagliflozin was due to loss of fat mass with similar amounts of visceral and abdominal
subcutaneous fat being lost. Two hundred eleven (211) patients from the clinical study in older patients participated in a body composition substudy using DXA body composition analysis. This demonstrated that approximately two-thirds of the weight loss associated with canagliflozin was due to loss of fat mass relative to placebo. There were no meaningful changes in bone density in trabecular and cortical regions.

Cardiovascular safety
A pre-specified interim meta-analysis was conducted of adjudicated major cardiovascular events in the phase 2 and 3 clinical studies in 9,632 patients with type 2 diabetes, including 4,327 patients (44.9%) with cardiovascular disease or at high risk for cardiovascular disease who are participating in an ongoing cardiovascular study. The hazard ratio for the composite primary endpoint (time to event of cardiovascular death, non-fatal stroke, non-fatal myocardial infarction, and unstable angina requiring hospitalisation) for canagliflozin (both doses pooled) versus combined active and placebo comparators was 0.91 (95% CI: 0.68; 1.22); therefore, there was no evidence of an increase in cardiovascular risk with canagliflozin relative to comparators. The hazard ratios for the 100 mg and 300 mg doses were similar.

Blood pressure
In placebo-controlled studies, treatment with canagliflozin 100 mg and 300 mg resulted in mean reductions in systolic blood pressure of -3.9 mmHg and -5.3 mmHg, respectively, compared to placebo (-0.1 mmHg) and a smaller effect on diastolic blood pressure with mean changes for canagliflozin 100 mg and 300 mg of -2.1 mmHg and -2.5 mmHg, respectively, compared to placebo (-0.3 mmHg). There was no notable change in heart rate.

Patients with baseline HbA1c > 10% to ≤ 12%
A substudy of patients with baseline HbA1c > 10% to ≤ 12% with canagliflozin as monotherapy resulted in reductions from baseline in HbA1c (not placebo-adjusted) of -2.13% and -2.56% for canagliflozin 100 mg and 300 mg, respectively.

Paediatric population
The European Medicines Agency has deferred the obligation to submit the results of studies with canagliflozin in one or more subsets of the paediatric population in type 2 diabetes (see section 4.2 for information on paediatric use).

5.2 Pharmacokinetic properties
The pharmacokinetics of canagliflozin are essentially similar in healthy subjects and patients with type 2 diabetes. After single-dose oral administration of 100 mg and 300 mg in healthy subjects, canagliflozin was rapidly absorbed, with peak plasma concentrations (median T_{max}) occurring 1 hour to 2 hours post-dose. Plasma C_{max} and AUC of canagliflozin increased in a dose-proportional manner from 50 mg to 300 mg. The apparent terminal half-life (t_{1/2}) (expressed as mean ± standard deviation) was 10.6 ± 2.13 hours and 13.1 ± 3.28 hours for the 100 mg and 300 mg doses, respectively. Steady-state was reached after 4 days to 5 days of once-daily dosing with canagliflozin 100 mg to 300 mg. Canagliflozin does not exhibit time-dependent pharmacokinetics, and accumulated in plasma up to 36% following multiple doses of 100 mg and 300 mg.

Absorption
The mean absolute oral bioavailability of canagliflozin is approximately 65%. Co-administration of a high-fat meal with canagliflozin had no effect on the pharmacokinetics of canagliflozin; therefore, Invokana may be taken with or without food. However, based on the potential to reduce postprandial plasma glucose excursions due to delayed intestinal glucose absorption, it is recommended that Invokana be taken before the first meal of the day (see sections 4.2 and 5.1).

Distribution
The mean steady-state volume of distribution of canagliflozin following a single intravenous infusion in healthy subjects was 119 litres, suggesting extensive tissue distribution. Canagliflozin is extensively bound to proteins in plasma (99%), mainly to albumin. Protein binding is independent of canagliflozin plasma concentrations. Plasma protein binding is not meaningfully altered in patients with renal or hepatic impairment.

Biotransformation

O-glucuronidation is the major metabolic elimination pathway for canagliflozin, which is mainly glucuronidated by UGT1A9 and UGT2B4 to two inactive O-glucuronide metabolites. CYP3A4-mediated (oxidative) metabolism of canagliflozin is minimal (approximately 7%) in humans.

In *in vitro* studies, canagliflozin neither inhibited cytochrome P450 CYP1A2, CYP2A6, CYP2C19, CYP2D6, or CYP2E1, CYP2B6, CYP2C8, CYP2C9, nor induced CYP1A2, CYP2C19, CYP2B6, CYP3A4 at higher than therapeutic concentrations. No clinically relevant effect on CYP3A4 was observed *in vivo* (see section 4.5).

Elimination

Following administration of a single oral [14C]canagliflozin dose to healthy subjects, 41.5%, 7.0%, and 3.2% of the administered radioactive dose was recovered in faeces as canagliflozin, a hydroxylated metabolite, and an O-glucuronide metabolite, respectively. Enterohepatic circulation of canagliflozin was negligible.

Approximately 33% of the administered radioactive dose was excreted in urine, mainly as O-glucuronide metabolites (30.5%). Less than 1% of the dose was excreted as unchanged canagliflozin in urine. Renal clearance of canagliflozin 100 mg and 300 mg doses ranged from 1.30 mL/min to 1.55 mL/min.

Canagliflozin is a low-clearance substance, with a mean systemic clearance of approximately 192 mL/min in healthy subjects following intravenous administration.

Special populations

Patients with renal impairment

A single-dose, open-label study evaluated the pharmacokinetics of canagliflozin 200 mg in subjects with varying degrees of renal impairment (classified using CrCl based on the Cockroft-Gault equation) compared to healthy subjects. The study included 8 subjects with normal renal function (CrCl ≥ 80 mL/min), 8 subjects with mild renal impairment (CrCl 50 mL/min to < 80 mL/min), 8 subjects with moderate renal impairment (CrCl 30 mL/min to < 50 mL/min), and 8 subjects with severe renal impairment (CrCl < 30 mL/min) as well as 8 subjects with ESRD on haemodialysis.

The C_{max} of canagliflozin was moderately increased by 13%, 29%, and 29% in subjects with mild, moderate, and severe renal failure, respectively, but not in subjects on haemodialysis. Compared to healthy subjects, plasma AUC of canagliflozin was increased by approximately 17%, 63%, and 50% in subjects with mild, moderate, and severe renal impairment, respectively, but was similar for ESRD subjects and healthy subjects.

Canagliflozin was negligibly removed by haemodialysis.

Patients with hepatic impairment

Relative to subjects with normal hepatic function, the geometric mean ratios for C_{max} and AUC$_{\infty}$ of canagliflozin were 107% and 110%, respectively, in subjects with Child-Pugh class A (mild hepatic impairment) and 96% and 111%, respectively, in subjects with Child-Pugh class B (moderate) hepatic impairment following administration of a single 300 mg dose of canagliflozin.
These differences are not considered to be clinically meaningful. There is no clinical experience in patients with Child-Pugh class C (severe) hepatic impairment.

Elderly (≥ 65 years old)

Age had no clinically meaningful effect on the pharmacokinetics of canagliflozin based on a population pharmacokinetic analysis (see sections 4.2, 4.4, and 4.8).

Paediatric population

Studies characterising the pharmacokinetics of canagliflozin in paediatric patients have not been conducted.

Other special populations

Pharmacogenetics

Both UGT1A9 and UGT2B4 are subject to genetic polymorphism. In a pooled analysis of clinical data, increases in canagliflozin AUC of 26% were observed in UGT1A9*1/*3 carriers and 18% in UGT2B4*2/*2 carriers. These increases in canagliflozin exposure are not expected to be clinically relevant. The effect of being homozygote (UGT1A9*3/*3, frequency < 0.1%) is probably more marked, but has not been investigated.

Gender, race/ethnicity, or body mass index had no clinically meaningful effect on the pharmacokinetics of canagliflozin based on a population pharmacokinetic analysis.

5.3 Pre-clinical safety data

Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, and genotoxicity.

Canagliflozin showed no effects on fertility and early embryonic development in the rat at exposures up to 19 times the human exposure at the maximum recommended human dose (MRHD).

In an embryo-foetal development study in rats, ossification delays of metatarsal bones were observed at systemic exposures 73 times and 19 times higher than the clinical exposures at the 100 mg and 300 mg doses. It is unknown whether ossification delays can be attributed to effects of canagliflozin on calcium homeostasis observed in adult rats. Ossification delays were also observed for the combination of canagliflozin and metformin, which were more prominent than for metformin alone at canagliflozin exposures 43 times and 12 times higher than clinical exposures at 100 mg and 300 mg doses.

In a pre- and postnatal development study, canagliflozin administered to female rats from gestation day 6 to lactation day 20 resulted in decreased body weights in male and female offspring at maternally toxic doses > 30 mg/kg/day (exposures ≥ 5.9 times the human exposure to canagliflozin at the MHRD). Maternal toxicity was limited to decreased body weight gain.

A study in juvenile rats administered canagliflozin from day 1 through day 90 postnatal did not show increased sensitivity compared to effects observed in adults rats. However, dilatation of the renal pelvis was noticed with a No Observed Effect Level (NOEL) at exposures 2.4 times and 0.6 times the clinical exposures at 100 mg and 300 mg doses, respectively, and did not fully reverse within the approximately 1-month recovery period. Persistent renal findings in juvenile rats can most likely be attributed to reduced ability of the developing rat kidney to handle canagliflozin-increased urine volumes, as functional maturation of the rat kidney continues through 6 weeks of age.

Canagliflozin did not increase the incidence of tumours in male and female mice in a 2-year study at doses of 10, 30, and 100 mg/kg. The highest dose of 100 mg/kg provided up to 14 times the clinical dose of 300 mg based on AUC exposure. Canagliflozin increased the incidence of testicular Leydig cell tumours in male rats at all doses tested (10, 30, and 100 mg/kg); the lowest dose of 10 mg/kg is approximately 1.5 times the clinical dose of 300 mg based on AUC exposure. The higher doses of canagliflozin (100 mg/kg) in male and female rats increased the incidence of pheochromocytomas and...
renal tubular tumours. Based on AUC exposure, the NOEL of 30 mg/kg/day for pheochromocytomas and renal tubular tumours is approximately 4.5 times the exposure at the daily clinical dose of 300 mg. Based on preclinical and clinical mechanistic studies, Leydig cell tumours, renal tubule tumours, and pheochromocytomas are considered to be rat-specific. Canagliflozin-induced renal tubule tumours and pheochromocytomas in rats appear to be caused by carbohydrate malabsorption as a consequence of intestinal SGLT1 inhibitory activity of canagliflozin in the gut of rats; mechanistic clinical studies have not demonstrated carbohydrate malabsorption in humans at canagliflozin doses of up to 2-times the maximum recommended clinical dose. The Leydig cell tumours are associated with an increase in luteinizing hormone (LH), which is a known mechanism of Leydig cell tumour formation in rats. In a 12-week clinical study, unstimulated LH did not increase in male patients treated with canagliflozin.

6. PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Tablet core
Lactose anhydrous
Microcrystalline cellulose
Hydroxypropylcellulose
Croscarmellose sodium
Magnesium stearate

Film-coating
Polyvinyl alcohol
Titanium dioxide (E171)
Macrogol 3350
Talc

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

2 years.

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

6.5 Nature and contents of container

Polyvinyl chloride/Aluminum (PVC/Alu) perforated unit dose blister.
Pack sizes of 10 x 1, 30 x 1, 90 x 1, and 100 x 1 film-coated tablets.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal

No special requirements.

7. MARKETING AUTHORISATION HOLDER
8. MARKETING AUTHORISATION NUMBER(S)

EU/1/13/884/005 (10 tablets)
EU/1/13/884/006 (30 tablets)
EU/1/13/884/007 (90 tablets)
EU/1/13/884/008 (100 tablets)

9. DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

Date of first authorisation: 15 November 2013

10. DATE OF REVISION OF THE TEXT

Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu/.
ANNEX II

A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORISATION

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT
A. MANUFACTURER RESPONSIBLE FOR BATCH RELEASE

Name and address of the manufacturer responsible for batch release

Janssen-Cilag S.p.A.
Via C. Janssen
Borgo San Michele
04100 Latina
Italy

B. CONDITIONS OR RESTRICTIONS REGARDING SUPPLY AND USE

Medicinal products subject to medical prescription

C. OTHER CONDITIONS AND REQUIREMENTS OF THE MARKETING AUTHORIZATION

- Periodic safety update reports

The marketing authorisation holder shall submit the first periodic safety update report for this product within 6 months following authorisation. Subsequently, the marketing authorisation holder shall submit periodic safety update reports for this product in accordance with the requirements set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and published on the European medicines web-portal.

D. CONDITIONS OR RESTRICTIONS WITH REGARD TO THE SAFE AND EFFECTIVE USE OF THE MEDICINAL PRODUCT

- Risk Management Plan (RMP)

The MAH shall perform the required pharmacovigilance activities and interventions detailed in the agreed RMP presented in Module 1.8.2 of the Marketing Authorisation and any agreed subsequent updates of the RMP.

An updated RMP should be submitted:
- At the request of the European Medicines Agency;
- Whenever the risk management system is modified, especially as the result of new information being received that may lead to a significant change to the benefit/risk profile or as the result of an important (pharmacovigilance or risk minimisation) milestone being reached.

If the submission of a PSUR and the update of a RMP coincide, they can be submitted at the same time.
ANNEX III

LABELLING AND PACKAGE LEAFLET
A. LABELLING
PARTICULARS TO APPEAR ON THE OUTER PACKAGING

OUTER CARTON

1. NAME OF THE MEDICINAL PRODUCT

Invokana 100 mg film-coated tablets
Invokana 300 mg film-coated tablets
Canagliflozin

2. STATEMENT OF ACTIVE SUBSTANCE(S)

Each film-coated tablet contains canagliflozin hemihydrate, equivalent to 100 mg canagliflozin.
Each film-coated tablet contains canagliflozin hemihydrate, equivalent to 300 mg canagliflozin.

3. LIST OF EXCIPIENTS

Contains lactose.
See the package leaflet for further information.

4. PHARMACEUTICAL FORM AND CONTENTS

- Film-coated tablet
- 10 x 1 film-coated tablets
- 30 x 1 film-coated tablets
- 90 x 1 film-coated tablets
- 100 x 1 film-coated tablets

5. METHOD AND ROUTE(S) OF ADMINISTRATION

Read the package leaflet before use.
Oral use.

6. SPECIAL WARNING THAT THE MEDICINAL PRODUCT MUST BE STORED OUT OF THE SIGHT AND REACH OF CHILDREN

Keep out of the sight and reach of children.

7. OTHER SPECIAL WARNING(S), IF NECESSARY

8. EXPIRY DATE

EXP
9. SPECIAL STORAGE CONDITIONS

10. SPECIAL PRECAUTIONS FOR DISPOSAL OF UNUSED MEDICINAL PRODUCTS OR WASTE MATERIALS DERIVED FROM SUCH MEDICINAL PRODUCTS, IF APPROPRIATE

11. NAME AND ADDRESS OF THE MARKETING AUTHORISATION HOLDER

Janssen-Cilag International NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

12. MARKETING AUTHORISATION NUMBER(S)

- EU/1/13/884/001 (100 mg - 10 tablets)
- EU/1/13/884/002 (100 mg - 30 tablets)
- EU/1/13/884/003 (100 mg - 90 tablets)
- EU/1/13/884/004 (100 mg - 100 tablets)
- EU/1/13/884/005 (300 mg - 10 tablets)
- EU/1/13/884/006 (300 mg - 30 tablets)
- EU/1/13/884/007 (300 mg - 90 tablets)
- EU/1/13/884/008 (300 mg - 100 tablets)

13. BATCH NUMBER

Lot

14. GENERAL CLASSIFICATION FOR SUPPLY

Medicinal product subject to medical prescription.

15. INSTRUCTIONS ON USE

16. INFORMATION IN BRAILLE

invokana 100 mg
invokana 300 mg
MINIMUM PARTICULARS TO APPEAR ON BLISTERS OR STRIPS

BLISTERS

<table>
<thead>
<tr>
<th>1. NAME OF THE MEDICINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invokana 100 mg tablets</td>
</tr>
<tr>
<td>Invokana 300 mg tablets</td>
</tr>
<tr>
<td>canagliflozin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. NAME OF THE MARKETING AUTHORISATION HOLDER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3. EXPIRY DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. BATCH NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. OTHER</th>
</tr>
</thead>
</table>
B. PACKAGE LEAFLET
This medicine is subject to additional monitoring. This will allow quick identification of new safety information. You can help by reporting any side effects you may get. See the end of section 4 for how to report side effects.

Read all of this leaflet carefully before you start taking this medicine because it contains important information for you.

- Keep this leaflet. You may need to read it again.
- If you have any further questions, ask your doctor, pharmacist or nurse.
- This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours.
- If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. See section 4.

What is in this leaflet
1. What Invokana is and what it is used for
2. What you need to know before you take Invokana
3. How to take Invokana
4. Possible side effects
5. How to store Invokana
6. Contents of the pack and other information

1. What Invokana is and what it is used for

Invokana contains the active substance canagliflozin which belongs to a group of medicines called “blood-glucose lowering drugs.”

“Blood-glucose lowering drugs” are medicines used by adults to treat type 2 diabetes.

This medicine works by increasing the amount of sugar removed from your body in your urine. This reduces the amount of sugar in your blood.

Invokana can be used by itself or along with other medicines you may be using to treat your type 2 diabetes (such as metformin, insulin, a DPP-4 inhibitor [such as sitagliptin, saxagliptin, or linagliptin], a sulphonylurea [such as glimepiride or glipizide], or pioglitazone) that lower blood sugar levels. You may already be taking one or more of these to treat your type 2 diabetes.

It is also important to keep following advice about diet and exercise given by your doctor or nurse.

What is type 2 diabetes?
Type 2 diabetes is a condition in which your body does not make enough insulin, and the insulin that your body produces does not work as well as it should. Your body can also make too much sugar. When this happens, sugar (glucose) builds up in the blood. This can lead to serious medical conditions such as heart disease, kidney disease, blindness, and amputation.

2. What you need to know before you take Invokana

Do not take Invokana
- if you are allergic to canagliflozin or any of the other ingredients of this medicine (listed in section 6).
Warnings and precautions
Talk to your doctor, pharmacist or nurse before taking this medicine, and during treatment:

- about what you can do to prevent dehydration
- if you have type 1 diabetes (your body does not produce any insulin). Invokana should not be used to treat this condition.
- if you experience rapid weight loss, feeling sick or being sick, stomach pain, excessive thirst, fast and deep breathing, confusion, unusual sleepiness or tiredness, a sweet smell to your breath, a sweet or metallic taste in your mouth or a different odour to your urine or sweat, contact a doctor or the nearest hospital straight away. These symptoms could be a sign of “diabetic ketoacidosis” – a problem you can get with diabetes because of increased levels of “ketone bodies” in your urine or blood, seen in tests. The risk of developing diabetic ketoacidosis may be increased with prolonged fasting, excessive alcohol consumption, dehydration, sudden reductions in insulin dose, or a higher need of insulin due to major surgery or serious illness.
- if you have diabetic ketoacidosis (a complication of diabetes with high blood sugar, rapid weight loss, nausea, or vomiting). Invokana should not be used to treat this condition.
- if you have severe kidney problems or are on dialysis
- if you have severe liver problems
- if you have ever had serious heart disease or if you have had a stroke
- if you are on medicines to lower your blood pressure (anti-hypertensives) or have ever had low blood pressure (hypotension). More information is given below in “Other medicines and Invokana”.

If any of the above apply to you (or you are not sure), talk to your doctor, pharmacist, or nurse before taking this medicine.

Kidney function
Your kidneys will be tested by a blood test before you start taking and while you are on this medicine.

Urine glucose
Because of how this medicine works, your urine will test positive for sugar (glucose) while you are on this medicine.

Children and adolescents
Invokana is not recommended for children and adolescents under 18 years.

Other medicines and Invokana
Tell your doctor or pharmacist if you are taking, have recently taken, or might take any other medicines. This is because this medicine can affect the way some other medicines work. Also, some other medicines can affect the way this medicine works.

In particular, tell your doctor if you are taking any of the following medicines:

- other antidiabetics - either insulin or a sulphonylurea (such as glimepiride or glipizide) – your doctor may want to reduce your dose in order to avoid your blood sugar level from getting too low (hypoglycaemia)
- medicines used to lower your blood pressure (anti-hypertensives), including diuretics (medicines used to remove levels of excess water in the body, also known as water tablets) since this medicine can also lower your blood pressure by removing levels of excess water in the body. Possible signs of losing too much fluid from your body are listed at the top of section 4 “Possible side effects”.
- St. John’s wort (an herbal medicine to treat depression)
- carbamazepine, phenytoin, or phenobarbital (medicines used to control seizures)
- efavirenz or ritonavir (a medicine used to treat HIV infection)
- rifampicin (an antibiotic used to treat tuberculosis)
- cholestyramine (medicine used to reduce cholesterol levels in the blood). See section 3, “Taking this medicine”.

51
• digoxin or digitoxin (medicines used for certain heart problems). The level of digoxin or digitoxin in your blood may need to be checked if taken with Invokana.
• dabigatran (blood thinner medicine that lowers the risk of blood clot formation).

Pregnancy and breast-feeding
If you are pregnant or breast-feeding, think you may be pregnant or are planning to have a baby, ask your doctor or pharmacist for advice before taking or continuing to take this medicine. Invokana should not be used during pregnancy. Talk to your doctor about the best way to discontinue Invokana and control your blood sugar as soon as you know that you are pregnant.

You should not take this medicine if you are breast-feeding. Talk to your doctor about whether to stop taking this medicine or to stop breast-feeding.

Driving and using machines
Invokana has no or negligible influence on the ability to drive, cycle, and use tools or machines. However, dizziness or lightheadedness has been reported, which may affect your ability to drive, cycle, or use tools or machines.

Taking Invokana with other medicines for diabetes called sulphonylureas (such as glimepiride or glipizide) or insulin can increase the risk of having low blood sugar (hypoglycaemia). Signs include blurred vision, tingling lips, trembling, sweating, pale looking, a change in mood, or feeling anxious or confused. This may affect your ability to drive, cycle, and use any tools or machines. Tell your doctor as soon as possible if you get any of the signs of low blood sugar.

Invokana contains lactose
If you have been told by your doctor that you have an intolerance to some sugars, contact your doctor before taking this medicine.

3. How to take Invokana

Always take this medicine exactly as your doctor or pharmacist has told you. Check with your doctor or pharmacist if you are not sure.

How much to take
- The starting dose of Invokana is one 100 mg tablet each day. Your doctor will decide whether to increase your dose to 300 mg.
- Your doctor may limit your dose to 100 mg if you have a kidney problem.
- Your doctor will prescribe the strength that is right for you.

Taking this medicine
- Swallow the tablet whole with a half glass of water.
- You can take your tablet with or without food. It is best to take your tablet before the first meal of the day.
- Try to take it at the same time each day. This will help you remember to take it.
- If your doctor has prescribed canagliflozin along with any bile acid sequestrant such as cholestyramine (medicines for lowering cholesterol) you should take canagliflozin at least 1 hour before or 4 hours to 6 hours after the bile acid sequestrant.

Your doctor may prescribe Invokana together with another glucose-lowering medicinal product. Remember to take all medicines as directed by your doctor to achieve the best results for your health.

Diet and exercise
To control your diabetes, you still need to follow the advice about diet and exercise from your doctor, pharmacist or nurse. In particular, if you are following a diabetic weight control diet, continue to follow it while you are taking this medicine.
If you take more Invokana than you should
If you take more of this medicine than you should, talk to a doctor straight away.

If you forget to take Invokana
- If you forget to take a dose, take it as soon as you remember. However, if it is nearly time for the next dose, skip the missed dose.
- Do not take a double dose (two doses on the same day) to make up for a forgotten dose.

If you stop taking Invokana
Your blood sugar levels may rise if you stop taking this medicine. Do not stop taking this medicine without talking to your doctor first.

If you have any further questions on the use of this medicine, ask your doctor, pharmacist or nurse.

4. Possible side effects
Like all medicines, this medicine can cause side effects, although not everybody gets them.

Stop taking Invokana and see a doctor as soon as possible if you have any of the following serious side effects:

Dehydration (uncommon, may affect up to 1 in 100 people)
- loss of too much fluid from your body (dehydration). This happens more often in elderly people (aged 75 and over), people with kidney problems, and people taking water tablets (diuretics).
 Possible signs of dehydration are:
 - feeling light-headed or dizzy
 - passing out (fainting) or feeling dizzy or faint when you stand up
 - very dry or sticky mouth, feeling very thirsty
 - feeling very weak or tired
 - passing little or no urine
 - fast heartbeat.

Contact a doctor or the nearest hospital straight away if you have any of the following side effects:

Diabetic ketoacidosis (rare, may affect up to 1 in 1,000 people)
These are the signs of diabetic ketoacidosis (see also section 2 Warnings and precautions):
- increased levels of “ketone bodies” in your urine or blood
- rapid weight loss
- feeling sick or being sick
- stomach pain
- excessive thirst
- fast and deep breathing
- confusion
- unusual sleepiness or tiredness
- a sweet smell to your breath, a sweet or metallic taste in your mouth or a different odour to your urine or sweat.

This may occur regardless of blood glucose level. The doctor may decide to temporarily or permanently stop the treatment with Invokana.

Tell your doctor as soon as possible if you have any of the following side effects:

Hypoglycaemia (very common, may affect more than 1 in 10 people)
- low blood sugar levels (hypoglycaemia) - when taking this medicine with insulin or a sulphonylurea (such as glimepiride or glipizide).
 Possible signs of low blood sugar are:
 - blurred vision
 - tingling lips
- trembling, sweating, pale looking
- a change in mood or feeling anxious or confused.

Your doctor will tell you how to treat low blood sugar levels and what to do if you have any of the signs above.

Other side effects:
Very common
• vaginal yeast infection.

Common (may affect up to 1 in 10 people)
• rash or redness of the penis or foreskin (yeast infection)
• urinary tract infections
• changes in urination (including urinating more frequently or in larger amounts, urgent need to urinate, need to urinate at night)
• constipation
• feeling thirsty
• nausea
• blood tests may show changes in blood fat (cholesterol) levels and increases in amount of red blood cells in your blood (haematocrit).

Uncommon
• rash or red skin – this may be itchy and include raised bumps, oozing fluid or blisters
• hives
• blood tests may show changes related to kidney function (creatinine or urea) or potassium
• blood tests may show increases in your blood phosphate level
• bone fracture
• kidney failure (mainly as a consequence of loss of too much fluid from your body).

Not known
• severe allergic reaction (may include swelling of the face, lips, mouth, tongue, or throat that may lead to difficulty breathing or swallowing).

Reporting of side effects
If you get any side effects, talk to your doctor, pharmacist or nurse. This includes any possible side effects not listed in this leaflet. You can also report side effects directly via the national reporting system listed in Appendix V. By reporting side effects, you can help provide more information on the safety of this medicine.

5. How to store Invokana

Keep this medicine out of the sight and reach of children.

Do not use this medicine after the expiry date which is stated on the blister and carton after EXP. The expiry date refers to the last day of that month.

This medicine does not require any special storage conditions.

Do not use Invokana if the packaging is damaged or shows signs of tampering.

Do not throw away any medicines via wastewater or household waste. Ask your pharmacist how to throw away medicines you no longer use. These measures will help protect the environment.
6. Contents of the pack and other information

What Invokana contains
- The active substance is canagliflozin.
 - Each tablet contains 100 mg or 300 mg of canagliflozin.
- The other ingredients are:
 - tablet core: croscarmellose sodium, hydroxypropyl cellulose, lactose anhydrous, magnesium stearate, and microcrystalline cellulose
 - film-coating: macrogol (3350), polyvinyl alcohol, talc, and titanium dioxide (E171). The 100 mg tablet also contains iron oxide yellow (E172).

What Invokana looks like and contents of the pack
- Invokana 100 mg film-coated tablets (tablets) are yellow, capsule-shaped, 11 mm long, with “CFZ” on one side and “100” on the other side.
- Invokana 300 mg film-coated tablets (tablets) are white, capsule-shaped, 17 mm long, with “CFZ” on one side and “300” on the other side.

Invokana is available in PVC/aluminium perforated unit dose blisters. The pack sizes are cartons of 10 x 1, 30 x 1, 90 x 1, or 100 x 1 tablets.

Not all pack sizes may be marketed.

Marketing Authorisation Holder
Janssen-Cilag International NV
Turnhoutseweg 30
B-2340 Beerse
Belgium

Manufacturer
Janssen-Cilag SpA
Via C. Janssen
Borgo San Michele
04100 Latina
Italy

For any information about this medicine, please contact the local representative of the Marketing Authorisation Holder:

Belgii/Belgique/Belgien
Janssen-Cilag NV
Antwerpseweg 15-17
B-2340 Beerse
Tel/Tél: +32 14 64 94 11

Lietuva
UB „Johnson & Johnson“
Geležinio Vilko g. 18A
LT-08104 Vilnius
Tel: +370 5 278 68 88

България
„Джонсън & Джонсън България” ЕООД
ж.к. Младост 4
Бизнес Парк София, страда 4
София 1766
Тел.: +359 2 489 94 00

Luxembourg/Luxemburg
Janssen-Cilag NV
Antwerpseweg 15-17
B-2340 Beerse
Belgique/Belgien
Tel/Tél: +32 14 64 94 11

Česká republika
Janssen-Cilag s.r.o.
Karla Engliše 3201/06
CZ-150 00 Praha 5 - Smichov
Tel: +420 227 012 227

Magyarország
Janssen-Cilag Kft.
Nagyenyed u. 8-14
H-Budapest, 1123
Tel.: +36 1 884 2858
Ísland
Janssen-Cilag AB
c/o Vistor hf.
Hörgatúni 2
IS-210 Gardabær
Sími: +354 535 7000

Slovenská republika
Johnson & Johnson s.r.o.
CBC III, Karadžičova 12
SK-821 08 Bratislava
Tel: +421 232 408 400

Italia
Janssen-Cilag SpA
Via M.Buonarroti, 23
I-20093 Cologno Monzese MI
Tel: +39 02 2510 1

Suomi/Finland
Janssen-Cilag Oy
Vaisalantie/Vaisalavägen 2
FI-02130 Espoo/Esbo
Puh/Tel: +358 207 531 300

Κύπρος
Βαρνάβας Χατζηπαναγής Λτδ
Λεωφόρος Γιάννου Κρανιδιώτη 226
Λατσιά
CY-2234 Λευκωσία
Τηλ: +357 22 207 700

Sverige
Janssen-Cilag AB
Box 7073
SE-192 07 Sollentuna
Tel: +46 8 626 50 00

Latvija
Janssen-Cilag Polska Sp. z o.o. filiāle Latvijā
Mūkusalas iela 101
Rīga, LV-1004
Tel: +371 678 93561

United Kingdom
Janssen-Cilag Ltd.
50-100 Holmers Farm Way
High Wycombe
Buckinghamshire HP12 4EG - UK
Tel: +44 1 494 567 444

This leaflet was approved in {month YYYY}.

Other sources of information
Detailed information on this medicine is available on the European Medicines Agency web site: http://www.ema.europa.eu/.