

13 April 2012 EMA/CAT/600280/2010 Committee for Advanced Therapies (CAT)

Reflection paper on classification of advanced therapy medicinal products

Draft Agreed by CAT	March 2012
Adoption by CAT for release for consultation	13 April 2012
Start of public consultation	30 April 2012
End of consultation (deadline for comments)	31 July 2012

Comments should be provided using this <u>template</u>. The completed comments form should be sent to <u>AdvancedTherapies@ema.europa.eu</u>

Keywords	ATMP classification, Gene therapy, Somatic cell therapy, Tissue engineered
	Products, Combined ATMPs

An agency of the European Union

© European Medicines Agency, 2012. Reproduction is authorised provided the source is acknowledged.

Reflection paper on classification of Advanced Therapy Medicinal Products

Table of contents

1. Executive summary	3
2. Discussion	4
2.1. Legal basis of ATMP classification	4
2.2. Scientific grounds applied to the classification of ATMPs	6
2.2.1. Claim on the mode of action (MoA)	6
2.2.2. Criteria for GTMP	6
2.2.3. Criteria for somatic cell therapy medicinal products (sCTMP) and tissue engineered products (TEP):	9
2.2.4. Criteria for combined ATMPs1	2
2.3. Evolving and borderlines areas1	2
2.3.1. Advanced therapies versus transplant/transfusion1	3
2.3.2. Gene therapy medicinal product versus biologicals containing or consisting of GMOs (genetically modified organisms)	3
2.3.3. Gene therapy medicinal product versus cell therapy medicinal product	3
2.3.4. Combined products versus TEP non-combined (device acting as excipient or no longer acting as device)	- 4
2.4. Clarifications on procedural aspects information to be submitted by the applicant1	4
References10	5

1 **1. Executive summary**

- 2 Further to the implementation of Article 17 of Regulation (EC) No 1394/2007ⁱ (hereinafter referred as
- 3 to 'the Advanced Therapy Medicinal Products (ATMPs) Regulation'), applicants have access to an
- 4 optional procedure which is the CAT (Committee for Advanced Therapies) scientific recommendation
- 5 for the classification of ATMPs, hereafter referred to as "ATMP classification". It is underpinned by the
- 6 ATMP Regulation which enables the European Medicines Agency (EMA) in close collaboration with the
- 7 European Commission to determine whether or not a given product meets the scientific criteria, which
- 8 define ATMPsⁱⁱ. The ATMP classification procedure can be used in order to clarify the status of a product
- 9 which may fall under different legislation (e.g. medical devices, transplants and cosmetics, etc...).
- The CAT issues scientific recommendations determining whether or not the referred product falls,within the definition of an ATMP in the European Union.
- 12 The ATMP Regulation and the Directive 2001/83/EC Annex I Part IVⁱⁱ provide precise legal definitions
- 13 for ATMPs. As a prerequisite to any further ATMP classification, the product under development has
- 14 first to be qualified as a biological medicinal product for human use, according to the definitions in the
- 15 Directive 2001/83/ECⁱⁱⁱ
- 16 The ATMP classification is based on the evaluation of whether a given product fulfils one of the
- 17 definitions of gene therapy medicinal product (GTMP), somatic cell therapy medicinal product (sCTMP)
- 18 or tissue engineered product (TEP) and whether the product fulfils the definition of a combined ATMP
- 19 or not. However, it is also acknowledged that, due to the complex nature of these therapeutic products,
- 20 the limited data package at an early stage of product development and the rapid evolution of science
- 21 and technology, questions of borderline may arise^{iv}.
- 22 The ATMP classification is a non-mandatory, free of charge, legally non-binding procedure that helps
- 23 developers to clarify the applicable regulatory framework. It also provides clarity on the development
- 24 path and scientific-regulatory guidance to be followed. The ATMP classification may sometimes also be
- a useful tool for applicants to initiate a tailored dialogue on the product development with regulators.
- 26 Indeed, due to its easy and fast process, the ATMP classification, along with other tools (e.g.
- 27 ITF briefing meetings¹), should be seen as a first opportunity to engage with regulators. Once the
- 28 candidate ATMP classification has been clarified and confirmed, the dialogue can continue with the use
- 29 of other regulatory procedures such as scientific advice and ATMP certification, the latter exclusively
- 30 set up under the auspices of the dedicated committee (CAT). In addition, and depending on the type of
- product under development, liaison with other committees such as Committee for Orphan Medicinal
 Products (COMP) and/or Paediatric Committee (PDCO) may be recommended to the applicant. The
- 33 ATMP classification may also help developers to gain access to all relevant services and incentives
- 34 offered by the EMA.
- 35 Although clinical trials are under the responsibility of the National Competent Authorities, it is
- 36 important to stress that the classification recommendation made by the CAT may help when submitting
- 37 a clinical trial dossier, as the applicant and the concerned competent authorities will be made aware of
- 38 a European classification position which can clarify and facilitate identification of the most relevant
- 39 criteria and procedure to be applied.
- 40 Moreover, the ATMP classification can be applied for at any stage of the product development, even at
- 41 a very early stage when non-clinical and clinical data are not available. It should be noted that
- scientific recommendations given by the CAT are always related to a defined product. It is thus not
- 43 possible to classify scientific 'concepts' where a clear description of the product cannot be provided.

¹ See EMA website: <u>European Medicines Agency - Human medicines - Innovation Task Force (ITF)</u>

Reflection paper on classification of Advanced Therapy Medicinal Products EMA/CAT/600280/2010

- 44 As of January 2012, more than 50 products have been evaluated for classification by the CAT.²
- 45 **Scope**
- 46 The aim of this reflection paper is to introduce the ATMP classification procedure by means of:
- clarifying the legal basis for ATMP classification;
- 48 providing clarification on the grounds applied for the classification of ATMPs;
- providing further clarification on the information to be submitted by applicants for the purpose of
 the ATMP classification;
- communicating the current status of discussions on some borderline cases and on selected areas
 where scientific knowledge is fast evolving or experience is limited.

53 2. Discussion

54 2.1. Legal basis of ATMP classification

- According to Article 1(a) of Regulation (EC) No.1394/2007, an 'advanced therapy medicinal product'
 means any of the following medicinal products for human use:
- a gene therapy medicinal product as defined in Part IV of Annex I to Directive 2001/83/EC, as
 amended
- a somatic cell therapy medicinal product as defined in Part IV of Annex I to Directive 2001/83/EC,
 as amended
- a tissue engineered product as defined in Article 1(b) of Regulation (EC) No. 1394/2007.
- The ATMP Regulation also gives a definition of 'Combined ATMP' which contain as an integral part of
 the product a medical Device (see below)
- 64 The definitions of a gene therapy medicinal product and a somatic cell therapy medicinal product
- according to Directive 2001/83/EC, Annex I, Part IV, as amended (implementing Directive
- 66 2009/120/EC) are as follows:

67 Gene therapy medicinal product

- 68 Gene therapy medicinal product means a biological medicinal product which fulfils the following two 69 characteristics:
- 70 (a) it contains an active substance which contains or consists of a recombinant nucleic acid used in or
- administered to human beings with a view to regulating, repairing, replacing, adding or deleting a
 genetic sequence;
- 73 (b) its therapeutic, prophylactic or diagnostic effect relates directly to the recombinant nucleic acid
- sequence it contains, or to the product of genetic expression of this sequence.
- 75 Gene therapy medicinal products shall not include vaccines against infectious diseases.

76 Somatic cell therapy medicinal product

- Somatic cell therapy medicinal product means a biological medicinal product which fulfils the followingtwo characteristics:
- 79 (a) contains or consists of cells or tissues that have been subject to substantial manipulation so that
- 80 biological characteristics, physiological functions or structural properties relevant for the intended
- 81 clinical use have been altered, or of cells or tissues that are not intended to be used for the same
- 82 essential function(s) in the recipient and the donor;

- 83 (b) is presented as having properties for, or is used in or administered to human beings with a view to
- treating, preventing or diagnosing a disease through the pharmacological, immunological or metabolic
- 85 action of its cells or tissues.
- 86 For the purposes of point (a), the manipulations listed in Annex I to Regulation (EC) No 1394/2007, in
- 87 particular, shall not be considered as substantial manipulations: cutting, grinding, shaping,
- 88 centrifugation, soaking in antibiotic or antimicrobial solutions, sterilization, irradiation, cell separation,
- 89 concentration or purification, filtering, lyophilization, freezing, cryopreservation, and vitrification. It
- should be pointed out that this list is non-exhaustive. Thus, based on scientific considerations, the CAT
- 91 can also consider any other manipulation as "non substantial". This has already been done by the CAT
- 92 for the radiolabelling of leukocytes. This technique, which has been used in clinical practice in a
- 93 hospital setting since many years, should not be considered a substantial manipulation. Therefore the
- 94 CAT has concluded that radioactively labelled leukocytes should mainly not be considered as ATMPs.
- Further, a 'Tissue engineered product' according to Article 1(b) of Regulation (EC) No. 1394/2007
 means a product that:
- 97 "- contains or consists of engineered cells or tissues, and
- 98 is presented as having properties for, or is used in or administered to human beings with a view
 99 to regenerating, repairing or replacing a human tissue.
- 100 A tissue engineered product may contain cells or tissues of human or animal origin, or both. The
- 101 cells or tissues may be viable or non-viable. It may also contain additional substances, such as
- 102 cellular products, bio-molecules, biomaterials, chemical substances, scaffolds or matrices.
- 103 Products containing or consisting exclusively of non-viable human or animal cells and/or tissues,
- 104 which do not contain any viable cells or tissues and which do not act principally by
- 105 pharmacological, immunological or metabolic action, are excluded from this definition."
- 106 Article 1(c) of Regulation (EC) No. 1394/2007 also states that:
- 107 "Cells or tissues shall be considered 'engineered' if they fulfil at least one of the following108 conditions:
- 109 the cells or tissues have been subject to substantial manipulation, so that biological
- 110 characteristics, physiological functions or structural properties relevant for the intended
- 111 regeneration, repair or replacement are achieved. The manipulations listed in Annex I, in
- 112 particular, shall not be considered as substantial manipulations,
- the cells or tissues are not intended to be used for the same essential function or functions inthe recipient as in the donor."
- According to Article 1(d) of Regulation (EC) No. 1394/2007, *a* '*Combined advanced therapy*
- 116 *medicinal product'* means an advanced therapy medicinal product that fulfils the following conditions:
- 117 it must incorporate, as an integral part of the product, one or more medical devices within the
- meaning of Article 1(2)(a) of Directive 93/42/EEC or one or more active implantable medical
- 119 devices within the meaning of Article 1(2)(c) of Directive 90/385/EEC, and
- 120 its cellular or tissue part must contain viable cells or tissues, or
- 121 its cellular or tissue part containing non-viable cells or tissues must be liable to act upon the
- 122 human body with action that can be considered as primary to that of the devices referred to.
- 123 Article 1(2) of Regulation (EC) No. 1394/2007 states that:

- 124 "Where a product contains viable cells or tissues, the pharmacological, immunological or
- metabolic action of those cells or tissues shall be considered as the principal mode of action of the product."
- Furthermore, an advanced therapy medicinal product containing both autologous and allogeneiccells or tissues shall be considered to be for allogeneic use.
- 129 Finally Article 1(5) of Regulation (EC) No. 1394/2007 states that:
- 130 "A product which may fall within the definition of a tissue engineered product and within the definition
- 131 of a somatic cell therapy medicinal product shall be considered as a tissue engineered product. A
- product which may fall within the definition of a somatic cell therapy medicinal product or a tissue
- engineered product, and a gene therapy medicinal product, shall be considered as a gene therapy
- 134 *medicinal product."*

2.2. Scientific grounds applied to the classification of ATMPs

- According to Article 17 of the ATMP Regulation, products are classified according to the respective
- 137 definitions of gene therapy medicinal product, somatic cell therapy medicinal products, tissue
- engineered product and combined ATMP, on the basis of scientific information provided by theapplicant.
- 140 This section elucidates the scientific criteria applied for the classification of ATMPs. The following list of
- 141 criteria is based largely on the experience gained by the CAT through recommendations on ATMP
- 142 classification issued so far^2 . These should not be considered as exhaustive and might be subject to
- 143 change as science evolves.

144 **2.2.1.** Claim on the mode of action (MoA)

- 145 In this context, the information on the claimed MoA is particularly important in order to ascertain 146 whether the product is for treatment, prevention or diagnosis of a disease, and exerts its activity via a
- pharmacological, immunological or metabolic action or whether the intended MoA of the product is
- 148 regeneration, repair or replacement of cells/tissues.
- 149 For example, if mesenchymal stem cells are used to treat a diseased organ, this could act via a
- 150 combination of mechanisms which can include metabolic, immunological, pharmacological,
- regeneration and repair. In such a case, the predominant mode of action claimed will affect whether
- this will be classified as somatic cell therapy or tissue-engineered product.
- 153 The claim can be based either on data and/or on current scientific knowledge, but it has to be
- 154 sufficiently substantiated in each case. Otherwise, the CAT may only conclude that a product is an
- ATMP, but not yet if it is, for example, a tissue engineered product or a somatic cell therapy medicinal
- 156 product.

157 2.2.2. Criteria for GTMP

- 158 The definition of gene therapy medicinal product according to Annex I, part IV, section 2.1 of Directive
- 159 2001/83/EC, as amended, is articulated into two conditions that have both to be fulfilled
- simultaneously: 1) the product has to be of biological origin and contains recombinant nucleic acid(s)

² The complete list of scientific recommendations on classification of ATMPS can be found at: <u>http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000301.jsp&mid=WC0b01ac05</u> <u>800862c0</u>

Reflection paper on classification of Advanced Therapy Medicinal Products EMA/CAT/600280/2010

- and 2) the recombinant nucleic acid(s) should be directly involved in the therapeutic action of theproduct. In this respect the following observations can be made:
- Indent (a) of the definition of Gene therapy medicinal product :
- 164 the recombinant nucleic acids should be of biological origin independently from the origin of the 165 vector system used (e.g. viral/bacterial vectors or micellar and liposomal formulations, etc.)
- Indent (b) of the definition of Gene therapy medicinal product on the notion of "*its therapeutic, prophylactic or diagnostic effect relates directly to the* recombinant nucleic acid sequence it
 contains, or to the product of genetic expression of this sequence":
- pending fulfilment of the indent (a) of the definition, the MoA and proposed indication, as claimed
 by the applicant for the defined products, are of importance when considering the "direct"
 relationship of the effect to the delivered genetic sequence or the expressed product. As an
 illustration, the CAT provided two scientific recommendations for classifications for genetically
 modified T cells encoding an exogenous thymidine kinase gene. The T cell preparations were
 intended for immune reconstitution as adjunct treatment in haematopoietic stem cell
 transplantation.
- 176 These T cell preparations have been classified as somatic cell therapy medicinal products 177 considering that the treatment was adjunctive T-cell therapy supporting immune reconstitution of 178 leukaemia patients who underwent bone marrow transplantation after myeloablative conditioning 179 regime. In both cases, the genetic modification leading to the expression of the exogenous gene 180 herpes simplex virus thymidine kinase - by the addition of the corresponding genetic sequence -181 relates to the treatment (with ganciclovir administration) of a potential graft versus host disease 182 that may occur in some patients undergoing Haematopoietic Stem Cell Therapy (HSCT). The 183 recommendation on the classification as somatic cell therapy considered the primary role of the cells intended for the "immune reconstitution" of the patients while the genetic modification was 184 185 restricted to a second role of controlling the potential risk of graft versus host disease. However, it 186 should be stressed that being considered as a genetically modified somatic cell therapy product, 187 most of the principles and requirements that normally apply to gene therapy medicinal products, 188 may also apply for these products (i.e. the classification does not necessarily exempt from the 189 relevant and applicable regulatory requirements of GTMP).
- The gene transfer does not necessarily have to take place in the human body, since for example
 the product encoding <......> for ex-vivo transduction of corneal tissue has also been classified as a
 gene therapy medicinal product
- The legislation also foresaw that "Gene therapy medicinal products shall not include vaccines against infectious diseases". Live recombinant viral vectors (delivering genes encoding specific antigen sequences into human somatic cells) could fulfil the definition of Gene Therapy Medicinal Products (GTMP) when administered for example in oncology, but similar products would not be classified GTMPs when intended as prophylactic or therapeutic against infectious disease, based on this legal exemption. This is, on a scientific level, also stressed by the fact that the term "cancer vaccine" is considered obsolete and should be replaced by "cancer immunotherapy product".
- As example, CAT has classified a live recombinant lentiviral vector encoding viral epitopes for
 therapeutic vaccination against that virus as not being an ATMP in application of the above mentioned exception.

203 Figure 1. DECISION TREE FOR GTMP

204 The following questions can help applicants to classify their product:

Reflection paper on classification of Advanced Therapy Medicinal Products EMA/CAT/600280/2010

206 2.2.3. Criteria for somatic cell therapy medicinal products (sCTMP) and 207 tissue engineered products (TEP):

sCTMP and TEP both contain or consist of engineered cells or tissues (see definition in section 2.1
 above). To be considered 'engineered', cells or tissue(s) should fulfil <u>at least one</u> of the following
 criteria:

 Substantial manipulation: during the manufacturing process the cells or tissue(s) have been manipulated so that their biological characteristics, physiological functions or structural properties have been modified to achieve their intended function. Examples of substantial manipulations include cell expansion (culture), genetic modification of cells, differentiation with growth factors, etc.

216 Cell enrichment and expansion by culturing is currently by default considered substantial 217 manipulation. Although it may not necessarily lead to apparent changes in cell behavior of the gross 218 phenotype of the cells before and after culture, it is possible that the biological characteristics, 219 physiological function(s) or structural properties of the cells are changed by cell culture. Most 220 adherent cells, for example, are impacted by the repeated attachment and detachment cycles. It 221 has been demonstrated that even the techniques applied for cell detachment might lead to different 222 permanent phenotypic changes especially on cell surface proteins. Another example is primary cells, 223 where genotypic changes leading to senescence which begin to appear during in vitro cell culture. 224 Some cell types are shown to be especially sensitive to culture conditions and prone to genotypic 225 alterations.

226 2. Non-homologous use: the cells or tissues are not intended to be used for the same essential 227 function or functions in the recipient as in the donor. A relevant example is represented by 228 autologous bone-marrow derived cells which are only minimally manipulated (e.g. bone-marrow 229 aspirate) but injected in the patient's heart for regeneration of the myocardium. In this context it is 230 important to mention that only the function and mechanism of action of the cells is crucial with 231 regard to the non-homologous use regardless of the anatomical region where they are applied.

The main difference between sCTMP and TEP is determined on the basis of the intended function of the product as claimed by the Applicant. The sCTMPs are intended for the prevention, diagnosis and/or treatment of diseases via pharmacological, metabolic actions, whereas TEPs are used in or

- administered to human beings with a view to regenerating, repairing or replacing a human tissue. The
- decision, whether a product fulfils the requirements of a sCTMP or a TEP, is taken on the basis of the
- claimed mode of action in association with its associated claimed intended function.
- The therapeutic action of the product i.e. "regeneration- repair replacement" is an important component in determining the classification as TEP. These may be interlinked processes that cannot be defined separately but have to be considered together. The three processes may occur concomitantly or sequentially (e.g. implantation of chondrocytes to replace missing cartilage followed by repair and induction of regeneration).
- 243 Isolated pancreatic beta cells embedded in an alginate matrix may serve as example for the 244 delineation between somatic cell therapy and tissue engineering: This product is administered to 245 patients with a view to restoring, correcting or modifying physiological function via a metabolic action of the cells it contains (secretion of insulin). The intended function is not to regenerate, repair or 246 247 replace an organ or tissue. This decision was driven by the fact that the claimed MoA of the product 248 was the transient restoration of beta cell activity (the "replacement of the function"), but not the 249 regeneration, repair nor the replacement of the human tissue itself. In line with this approach, human 250 liver-derived progenitor cells were also classified as somatic cell therapy, since the cells serve to

- primarily replace a function (treatment of inborn errors of liver metabolism) rather than the tissueitself.
- 253 In contrast, a preparation of cells derived from adult skeletal muscle tissue, intended for the treatment
- of stress urinary incontinence, was classified as a TEP. Here, the cells are administered primarily with a
- view to regenerating, repairing or replacing a human tissue, in this case the replacement of urethral
- 256 sphincter muscle cells, or to repair respective injured tissue.
- 257 It should be noted that the effect of a tissue engineered product can be transient, e.g. autologous
- human keratinocytes intended for the treatment of acute burns may only transiently repair theunderlying structure and later be replaced.

Reflection paper on classification of Advanced Therapy Medicinal Products EMA/CAT/600280/2010

260 Figure 2. DECISION TREE FOR sCTMP and TEP

261 The following questions can help applicants to classify their product:

262

Reflection paper on classification of Advanced Therapy Medicinal Products EMA/CAT/600280/2010

263 2.2.4. Criteria for combined ATMPs

- A product is classified as a combined ATMP when it fulfils the definitions provided in Article 2(1)(d) of the ATMP Regulation (EC) 1394/2007 (See Section 2.1 above).
- 266 Combined ATMPs incorporate a cellular part consisting of viable or non-viable cells or tissues and of
- one or more medical devices or one or more active implantable medical devices as an integral part of
- the product. If cells or tissues are not viable these must exert the primary action of the combinedproduct.

270 Examples of combined ATMPs:

- Autologous chondrocytes are put in culture medium in order to proliferate until the appropriate number of cells is reached. The expanded cells are thereafter seeded onto a collagen membrane and administered into the cartilage lesion in a joint fixed on this membrane. The primary action of the combined product is given by the viable cells that repair the damaged tissue, while the medical device part is a tool that is needed to retain the cells physically to the cartilage defect and guide their local distribution.
- 277 Autologous osteoprogenitor cells, isolated from bone marrow, are cultured together with a
- bioresorbable scaffold, which is CE marked for surgical use. During cell culture, the cells expand and
- grow within and around the scaffold that acts as physical support. The finished combined product is an
- 280 integrated product consisting of a cellular component and a matrix. The repairing/replacing effect on
- the bone defect is accomplished by the living cells that continue to grow within the lesion while the biodegradable matrix is gradually eliminated. However, like in the first example, the matrix still has its
- biodegradable matrix is gradually eliminated. Hintended function at the time of implantation.
- It should be noted that normally the medical device should retain its original form and function to be considered as being "integral part" of the final product and thus qualify this product as a combined product. CAT has, for example, classified a product containing pancreatic beta cells in an alginate matrix as non-combined ATMP (somatic cell therapy), as the function of the matrix was no longer considered to be linked to its structural properties (see also discussion on borderline cases further below).
- 290 Examples of non-combined ATMP:
- 291 Human endothelial cells are cultured in a gelatin matrix and used to treat vascular injury. The applicant 292 claims that the product reduces the intimal thickening of vessels injured by the frequent procedures of 293 artero-venous grafts and fistula placements in patients that undergo hemodialysis. The underlying 294 mechanism of action is based on the concept that the allogeneic endothelial cells release biological 295 factors that inhibit the intimal hyperplasia, reduce the graft thrombosis, and repair the vascular injury. 296 The gel matrix is a CE marked medical device indicated in surgical procedures as an adjunct to 297 haemostasis. In combination with the endothelial cells, the gel is seeded with the cells as starting 298 material and becomes an integrated part of the final product. The applicant is supposing that the gel 299 matrix has the function to keep the cells around the vascular injury site to release the therapeutic 300 factors, but that it is also contributing in some way to provide the correct signals to the cells. The 301 matrix is therefore acting as an active substance of the final product that is therefore considered to be 302 a somatic cell therapy medicinal product and not a combined advanced therapy product.

303 **2.3. Evolving and borderlines areas**

- 304 The ATMP classification procedure will also have to clarify borderline cases between ATMPs versus non-
- ATMPs as well as between the different product categories within the ATMP sphere. Below are given
- 306 examples where assigning ATMPs to their respective categories have been subject to debate.

307 2.3.1. Advanced therapies versus transplant/transfusion

308 Products consisting of cells or tissues may scientifically be at the border between Tissues and Cells 309 directive (Directive 2004/23/EC) and the ATMP regulation. One example is the recommendation of the 310 CAT that a preparation of human pancreatic Langerhans' islets should not be classified as an ATMP. 311 CAT considered that, for this preparation, the described process steps do not constitute substantial 312 manipulations so that there is no change in the biological characteristics of the islets. In addition, the 313 product was intended to be used for the same essential function in the recipients, be it in the 314 allogeneic or autologous conditions described. This conclusion is, however, not directly applicable to 315 any other pancreatic beta cell products which may be submitted for classification, as they may be 316 derived from very different and more complex process and substantial manipulations, as discussed 317 elsewhere also in this paper.

In contrast, some products initially considered as non-ATMP because of an essentially minimal manipulation or maintenance of the initial biological properties and autologous origin have been classified by the CAT as ATMP due to their intended heterologous use. For example, autologous bone marrow-derived progenitor cells intended for treatment of patients with myocardial infarction, or other vascular diseases would be considered non-homologous use and therefore ATMPs (in this case tissue

323 engineering products).

324 2.3.2. Gene therapy medicinal product versus biologicals containing or 325 consisting of GMOs (genetically modified organisms)

326 CAT discussed several examples of genetically modified bacteria which express a human gene 327 sequence. The decisive factor for classification was to determine whether the medicinal product is 328 administered to human beings with a view to regulating, repairing, replacing adding or deleting a 329 genetic sequence. One could in this case argue that the genetic sequence is not "added" to human 330 cells, but remains in the bacteria, and equally also the protein it expresses. On the other hand, 331 although there is no integration of the genetic sequence into human cells, it may still be claimed that 332 the medicinal product is adding a genetic sequence into humans to elicit a pharmacological effect. It 333 was clarified that the legal definition "it contains an active substance which contains or consists of a 334 recombinant nucleic acid used in or administered to human beings with a view to regulating, repairing, 335 replacing, adding or deleting a genetic sequence" should be read "as is", that is, without adding for 336 example "to the human body" when interpreting it. Accordingly, the CAT classified this medicinal 337 product as a gene therapy medicinal product, since a genetic sequence is added.

338 2.3.3. Gene therapy medicinal product versus cell therapy medicinal 339 product

Another borderline scenario is products that are modified by adding a mRNA sequence, for example 340 341 dendritic cells (DC) electroporated with mRNA in vitro and administrated to the patient to elicit a 342 specific immune response. One could argue that the claimed mechanism of action is directly related to 343 the expression of the mRNA encoded antigens to stimulate e.g. tumour specific immune responses. 344 However, due to its relatively short half life there may be little or no residual mRNA at the time of re-345 administration of the dendritic cells to the patient. Thus, it can be claimed that a recombinant nucleic 346 acid is not administered to human beings with a view to adding a genetic sequence, but rather the 347 mRNA electroporated DCs could be seen as an intermediate in the manufacturing process where the 348 phenotype is finally altered without alteration of the genotype of the cells. Therefore, the product was 349 considered not to comply with the definition of a gene therapy medicinal product. Instead CAT 350 considered that the product was a somatic cell therapy product as it consists of cells which were

351 administered to human beings with a view to treating a disease through the immunological action of 352 the modified cell populations.

2.3.4. Combined products versus TEP non-combined (device acting as 353 excipient or no longer acting as device) 354

355 The border between combined or non-combined ATMPs is often discussed in classification procedures. 356 Two situations have to be taken into account: first, the medical device is an active integral part of the 357 final product (combined) and, secondly, the combined component is not a medical device but 358 considered as an excipient in the final formulation of the drug (and therefore not combined).

- 359 Human aortic endothelial cells cultured in a matrix and intended for the treatment of vascular injury 360 were classified as sCTMP, not combined. The matrix alone has been approved as medical device in the 361 EU but the CAT considered that the matrix, as a component of this medicinal product, is remodelled by 362 the cells contributing to product efficacy. Thus, the manufacturing process uses the medical device in a 363 way that it was not intended to be used. As an active integral part of the final product it was not 364 considered to be a medical device any more.
- 365 A similar situation applies to another example, already discussed, which is the mixture of pancreatic 366 beta cells and their accompanying endocrine cell populations embedded in an alginate matrix for the
- 367 treatment of diabetes. The CAT was of the opinion that the inert alginate matrix is reworked by the 368 cells during culture and becomes an active integral part of the product that supports to
- 369 contain/preserve the biological characteristics and functional activities of the cells. The CAT therefore 370 classified the product as a sCTMP, not combined.
- 371 In contrast, human fibroblasts cultured onto a biodegradable matrix were classified as a combined TEP.
- 372 Here, the matrix is an integral but not an active part of the product, but it fulfils its function as CE marked medical device when administered to patients. 373

2.4. Clarifications on procedural aspects information to be submitted by 374 375 the applicant

- 376 In order to facilitate the access to the ATMP classification, the CAT has published the procedural
- advice for the ATMP classification³, which describes the procedure and gives guidance for the steps 377 to be followed by the applicant for the submission of an ATMP classification. 378
- Upon receipt of a valid request⁴, the CAT delivers a scientific recommendation on an ATMP 379 380 classification after consultation with the European Commission within 60 days.
- 381 The following scientific information is deemed as minimal and necessary to be submitted, in 382 order for the CAT to classify a product:
- 383 Active substance: description of active substance (including starting materials, when relevant), any 384 additional substances (e.g. when applicable: structural component such as scaffolds, matrices, 385
 - biomaterials, biomolecules and/or other components), medical device or active implantable medical

³ Procedural advice on the provision of scientific recommendation on classification of advanced therapy medicinal products in accordance with Article 17 of Regulation (EC) No 1394/2007

⁴ For the submission of an ATMP classification, applicants should complete a Pre-submission request form (selecting in the drop-down menu ATMP-ATMP classification) and the ATMP Classification Request form and briefing information and return both to: AdvancedTherapies@ema.europa.eu

- device (including information on the classification status of the Medical Device from a MedicalDevice Competent Authority when applicable).
- Finished Product: qualitative & quantitative composition, mode of administration, pharmaceutical
 form and description of the finished product ready for clinical use.
- 390 Mechanism of Action/ Proposed use: claimed mechanism of action, properties (including 391 pharmacological, immunological or metabolic, if applicable), proposed use / indication (including 392 therapeutic, prophylactic, diagnostic). See also section 2.2.1. above. Applicants should provide an 393 in-depth discussion on how the product works and what data are there to support the mechanism 394 of action. This is essential, since the outcome of the classification will depend on the claim the 395 Applicant provides and how strong the evidence is to support it. For example, CAT was for one 396 product not able to classify it as tissue engineered product or somatic cell therapy medicinal 397 product, since the claim for the mechanism of action was not sufficiently defined, and not enough 398 data (be it data with the product or what is published for that given product class) was presented 399 to support the Applicant's claims.
- Summary of the status of the development of the product: key elements of manufacturing, quality
 aspects (including description and level of manipulations on cells and tissues, when applicable).
 Outline of Non-Clinical development and Clinical development relevant for the ATMP classification.
- Depending on the stage of development at which the classification advice is sought, some of the
 parameters or information requested above may not be finalised. In this case, the target profile
 and intended product description may suffice.
- In addition to the qualitative and quantitative description of the product to be classified, applicants are
 encouraged to present their understanding of the regulatory definition of the product under
 development. They should discuss any aspects supporting or not the applicability of the pharmaceutical
 framework for the development and evaluation of the product. Overlapping aspects relevant to medical
- 410 devices, cosmetics, human tissues and cells, blood products, borderline medical use or other issues411 should also be highlighted if appropriate.
 - 412 Details of the regulatory status of the product (including medical device/active implantable device,
 - 413 when applicable), marketing history in EU and non EU countries and information on the current
 - 414 medical use worldwide are requested to complement the overall understanding on the regulatory
 - 415 status of the candidate ATMP.
 - 416 Applicants can include in the request any additional information or bibliographic references to further
 - 417 substantiate their positions on the classification of their product on the light of legal definitions in force.

418 **References**

ⁱ Article 17(1) Any applicant developing a product based on genes, cells or tissues may request a scientific recommendation of the Agency with a view to determining whether the referred product falls, on scientific grounds, within the definition of an advanced therapy medicinal product. The Agency shall deliver this recommendation after consultation with the Commission and within 60 days after receipt of the request.

(2). The Agency shall publish summaries of the recommendations delivered in accordance with paragraph 1, after deletion of all information of commercial confidential nature.

ii Directive 2001/83/EC Annex I Part IV as amended by Directive 2009/120/EC: Web link to Directive 2009/120/EC: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:242:0003:0012:EN:PDF

iii A medicinal product as defined in Article 1(2) of Directive 2001/83/EC, as amended, is: (a) Any substance or combination of substances presented as having properties for treating or preventing disease in human beings; or

(b) Any substance or combination of substances which may be used in or administered to human beings either with a view to restoring, correcting or modifying physiological functions by exerting a pharmacological, immunological or metabolic action, or to making a medical diagnosis"

^{iv} Recital 24 of ATMP Regulation: *The Agency should be empowered to give scientific recommendations on whether a given product based on genes, cells or tissues meets the scientific criteria which define advanced therapy medicinal products, in order to address, as early as possible, questions of borderline with other areas such as cosmetics or medical devices, which may arise as science develops. The Committee for Advanced Therapies, with its unique expertise, should have a prominent role in the provision of such advice.*