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Executive summary

This paper reviews approaches for balancing benefits and risks in decision making about medicinal
products. Each approach is defined, illustrated with a case study, and set in a theoretical or empirical
context. Our view of its usefulness to regulators, for decisions at both pre- and post-approval stages,
completes each review.

The paper begins by establishing working definitions of ‘benefit’ and ‘risk’, then details criteria of
logical soundness, comprehensiveness, acceptability of results, practicality and generativeness for
evaluating the approaches.

A generic qualitative approach of eight steps for decision making, PrOACT, is presented as it might
apply to decision-making by regulators, followed by descriptions of three approaches currently under
development: PhRMA BRAT, CMR CASS study and FDA BRF.

The paper continues with descriptions of 18 quantitative approaches under four major headings:
simulation, models, statistics and measurement methods.

The review concludes with four suggestions to guide work in WP3:

1. Any quantitative method or approach requires a qualitative framework within which the model can
be effectively developed. Indeed, the qualitative approach may be sufficient by itself for simpler
benefit/risk decisions.

2. Only three quantitative approaches are sufficiently comprehensive to enable the benefit-risk
balance to be represented numerically (as a difference or a ratio) by incorporating the value or
utilities of favourable and unfavourable effects, along with probabilities representing the
uncertainties of those effects: Bayesian statistics, decision trees and influence/relevance diagrams,
and multi-criteria decision analysis (MCDA).

3. Five other approaches, while more restricted in scope, may well prove useful for particular cases:
probabilistic simulation when the focus is on uncertainty of effects; Markov processes and Kaplan-
Meier estimators for changes in health states over time; QALYS for modelling multiple health
outcomes; and conjoint analysis to explicate trade-offs among effects, especially for eliciting
patient preferences.

4. Combinations of approaches will prove useful in situations characterised by more than one of the
following issues: the magnitude of favourable effects, the seriousness of unfavourable effects,
uncertainty about the effects, transitions in health states and the time spent in each state, and
trade-offs between effects.

Disclaimer

This report was sponsored by the European Medicines Agency in the context of the Benefit-risk
methodology project and the views expressed are those of the authors. The views and conclusions in
this report have been endorsed as a record of this phase of the project and they should be considered
preliminary for the entirety of the project. An opportunity for public consultation will be given in the
future prior to the adoption of a formal and final position from EMA." This report is the intellectual
property of the European Medicines Agency.

* Revision 1: This revision refers to the update of the disclaimer in order to state the opportunity for public consultation
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1. Introduction

The purpose of this paper is to provide a brief description of all approaches that have appeared in the
literature for balancing benefits and risks in drug regulatory decision making, and to present our view
of each approach. We began this task by searching the literature and listing every suggestion, but we
soon discovered that the approaches could be classified first into two distinctly different categories:
qualitative and quantitative approaches. The quantitative approaches are further articulated into the
four sub-categories: simulation, models, statistical approaches, and measurement methods. Within
some of these sub-categories, we distinguish between static and dynamic approaches. A static
approach represents some aspect of reality at a slice in time, while dynamic approaches capture
changes in the reality over time. We provide our view of the potential usefulness of each approach to
regulatory decision making about medicinal products both before and after approval.

Several assumptions underlie our work. First, we recognise that for decision making, human
judgement plays an essential role; tools, models or processes by themselves are insufficient. Roles for
judgement include framing the decision problem, identifying the relevant features of the problem,
agreeing what evidence is relevant to the decision, forming preferences about the relative desirability
of favourable effects and the undesirability of unfavourable effects, and assessing uncertainty about
the effects. Second, we take for granted that the final decision to recommend approval of a drug, or
not, is an act of human judgement, so any of the approaches reviewed here must in some way provide
an aid to those making the decision. The approach does not make the decision; an individual or group
does. Decision aids can do no more than assist human judgment; they do not make the judgments.
Third, we assume that balancing benefits with risks, and the process of deciding to recommend
approval or not, demands that multiple sets of information be processed and combined to make the
final judgment that, overall, benefits exceed risks sufficiently to approve.

Balancing benefits and risks is no small task: a regulatory authority might receive a dossier of 10GB or
more, parts of which are farmed out to relevant experts, then reassembled and discussed, without the
help of any models, to decide ‘yes’ or ‘'no’. However, a substantial literature exists showing that people
are limited in the amount of information they can combine intuitively, and the problem is particularly
acute for integrating uncertainties 2#, so this is where the most egregious errors occur. Fortunately,
the research literature shows that model-based, structured approaches to problem-solving can not only
avoid or correct the biases and errors of intuitive aggregation, they can also yield solutions that were
not evident initially to any of the participants in the process °.

These three assumptions led us to search for approaches that can aid, supplement and enhance
human judgement on the one hand, and also provide support for combining the relevant information
on the other. Let experts take a problem apart into its pieces and exercise judgement to turn data into
useful information, but then let a computer or other decision aid put the pieces back together. This
should make the benefit-risk judgement more explicit, more communicable, and possibly smarter and
quicker than if no aids had been employed.

Finally, we note that much of the drug approval process is carried out in groups, so we considered the
extent to which an approach could provide support to both individuals and groups in their work.
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1.1. The meaning of ‘benefit’ and ‘risk’

In reviewing this literature we frequently stumbled when trying to understand an author’s meaning in
explaining issues of benefit-risk balance. For example, consider a drug that can lower the incidence of
heart attacks in otherwise healthy people. “There is a risk this drug won't lower your risk and there are
risks from taking the drug.” Three possible meanings here: the possibility the drug won't work for an
individual, the chance of a heart attack, and side effects. Indeed, our interviews in 2009 with 55
people at six European drug approval agencies confirmed the observation reported 11 years earlier in
CIOMS 1V © that “There is no standard, widely acknowledged definitions of the terms benefit and risk
as applied to medicine and particularly to medicinal products...”.

We have, therefore, avoided these terms in this review. Instead, we have adopted the terms from
Work Package 1 to the CHMP’s Assessment Report Guidance 7, as summarised in Figure 1.

Figure 1. The EMA's four-fold model of ‘benefits’ and ‘risks’

Uncertainty of
Favourable effects favourable
effects

Uncertainty of
Unfavourable effects unfavourable
effects

Definitions
Favourable effects are any beneficial effects for the target population (often referred to as “benefits” or “clinical
benefits”) that are associated with the product.

Unfavourable effects are any detrimental effects (often referred to as risks, harms, hazards both known and
unknown) that can be attributed to the product or that are otherwise of concern for their undesirable effect on
patients’ health, public health, or the environment.

Uncertainties about both types of effects arise from variation, important sources of bias, methodological flaws or
deficiencies (including GCP, compliance, etc.), unsettled issues, and limitations of the data set, e.g., due to sample
size, study design, or duration of follow-up.

It will be important in reading this paper to keep in mind that a favourable effect could mean an
expected efficacy outcome as well as a clinically-meaningful consequence, such as the elimination of
an existing disease state, or the prevention of a negative consequence in a healthy person. Curing
tuberculosis and preventing heart attacks are both favourable effects. Unfavourable effects are usually
side effects, which can include the elimination of normal, healthy effects.

Within this framework, balancing benefits against risks is a matter of comparing the favourable and
unfavourable effects, with an account of how that comparison is affected by consideration of the
uncertainties. The remainder of this paper covers approaches to the assessment or measurement of
favourable and unfavourable effects, and their uncertainties, as well as methods for combining the
features of the four-fold model to effect a comparison of benefits with risks.
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1.2. Evaluation criteria

The approaches are evaluated by considering the following criteria, which are based on past experience
in evaluating decision models & and experience gained from Work Package 1:

Logical soundness

The overall benefit-risk evaluation is decomposed into separate elements that are demonstrated
theoretically and/or empirically to be meaningful.

The elements are recombined according to a theoretically sound rule.

The approach is coherent, that is, it ensures that related decisions based on the approach do not
contradict each other or the objectives that are to be met.

The approach aids rational thinking about benefits and risks.

The approach gives results that do not change relative evaluations when alternatives are added or
removed.

Comprehensiveness

The approach can handle any form of data, continuous or discrete, qualitative or quantitative data,
objective or subjective.

The approach can accommodate uncertainty and value judgements, time preferences and risk
attitudes.

The approach makes multiple objectives and trade-offs explicit.

Acceptability of results

The approach provides consistency checks that identify inconsistencies in the data and in people’s
judgements.

The outputs of the approach should be understandable and interpretable in the user’s terms,
readily understandable and in quantitative form to facilitate comparison between options.

The approach should be ‘scrutable’ in that it should make sense to anyone using it and be seen as
a realistic way to evaluate benefits and risks.

Practicality

Implementation of an approach should be economical in the use of participants’ time.

The approach should be easy to teach and easy to use.

Additions or deletions to the approach should be possible without having to re-do existing inputs.
Extending a model based on the approach should grow linearly with its inputs.

Computer support should be available for any approach, enabling the user to make changes quickly
and provide immediate feedback. The functionality of the software should include clear and
effective graphical displays, and support for sensitivity analyses.

Generativeness

The output of the approach should link clearly to action.

The approach should provide a clear audit trail so that all aspects of the benefit-risk evaluation can
be traced.

The approach should develop insight and promote learning about benefit-risk evaluation.

The approach should transform a fragmented, covert benefit-risk evaluation into an overt structure
and set of rational processes.

The results should be readily communicable and easily understood.

No approach satisfies all these criteria. Indeed, many of the criteria are not even relevant to some of
the approaches. Thus, the following evaluations will make use of only those criteria that are relevant to
the approaches.
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2. Qualitative approaches

Several organisations are developing qualitative approaches to benefit-risk decision making. This is, of
course, the first step in applying quantitative modelling: structuring the problem °. An eight-step
generic framework, PrOACT, developed by Hammond, Keeney and Raiffa !° and applied to decision
making in health care by Hunink et al *
to benefit-risk decision-making by regulators.

, provides a generic problem structure, which is here adapted

1. PrOBLEM. Determine the nature of the problem and its context: what is the medicinal product
(e.g., new or marketed chemical or biological entity, device, generic); what sort of decision or
recommendation is required (e.g., approve/disapprove, restrict); who are the stakeholders and key
players; what factors should be considered in solving the problem (e.g., the therapeutic area, the
unmet medical need, severity of condition, affected population, an individual’s social context, time
frame for outcomes). Then frame the problem (e.g., as mainly a problem of uncertainty, or of
multiple conflicting objectives, or as some combination of the two).

2. OBIJECTIVES. Identify objectives that indicate the overall purposes to be achieved (e.g., maximise
favourable effects, minimise unfavourable effects), and develop criteria against which the
alternatives can be evaluated (i.e., what are the favourable and unfavourable effects?).

3. ALTERNATIVES. Identify the options (actions about a medicinal product or the products
themselves) to be evaluated against the criteria (e.g., pre-approval: new treatment, placebo,
active comparator; post-approval: do nothing, limit duration, restrict indication, suspend).

4. CONSEQUENCES. Based on available data, describe how the alternative would perform on the
criteria (e.g., describe the magnitude of possible favourable and unfavourable effects). It may be
helpful to consider intermediate outcomes, such as safety and efficacy effects. Consequences
describe clinically relevant effects. Create a ‘consequence table’ with alternatives in rows and
criteria in columns. Write descriptions of the consequences in each cell, qualitative and
quantitative. (See the reference in ‘Our view’ at section 3.2.8, below.) It may at this stage be
helpful to record the basis for uncertainties about the consequences in preparation for step 6, if
relevant.

5. TRADE-OFFS. Assess the balance between favourable and unfavourable effects.

These five steps are common to all decisions in which the consequences are known with certainty. In
approving drugs, regulators typically must face uncertainty and risk, in which case three additional
steps are relevant:

6. UNCERTAINTY. Consider how the balance between favourable and unfavourable effects would
change by taking account of the uncertainty associated with the consequences.

7. RISK. Judge the relative importance of the Agency’s risk attitude for this medicinal product (by
considering, e.g., the therapeutic area, the unmet medical need and patients’ concerns) and adjust
the uncertainty-adjusted balance between favourable and unfavourable effects accordingly.
Consider, too, how risks would be perceived by stakeholders (according to their views of risk).

8. LINKED DECISIONS. Consider the consistency of this decision with similar past decisions, and
assess whether taking this decision could impact future decisions either favourably or unfavourably
(e.g., would it set a precedent or make similar decisions in the future easier or more difficult).

This eight-step framework will be used throughout the remainder of the paper, as it provides a
definition of what is meant by a comprehensive approach.
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2.1. PhRMA BRAT

Since 2006, the PhRMA Benefit-Risk Action Team (BRAT), a collection of academics, regulators and
pharmaceutical staff interested in improving decision making in pharmaceutical industries and
regulatory agencies, has developed a broad framework that could inform the steps in the benefit-risk
evaluation process. As can be seen in Figure 2, the six-step process can guide the development of a
new medicine, help to interpret available clinical evidence and serve to improve communications
between a pharmaceutical company and the regulator, with particular emphasis on the benefit-risk
balance. It is currently being tested.

Figure 2. Steps in the BRAT

4 Framework Steps
- A Cuantify & Decision
ustomize SIE55 antify &
dgceﬂs?:Sn » ldlentify Id;a'}';fy Fram eumrk oukcome interpret . defense
frame outcomes Sources far B/R impor- key BIR of BIR
frame tance metrcs B5SE55-
ment

| Before Phase I 2 By MDA Filing

Source: Unpublished report by PhARMA-BRAT.

2.2. CMR CASS study

The CMR International Institute for Regulatory Science has been exploring approaches for benefit-risk
assessment in various workshops since 2002. A six-step framework reported by Walker et al 2
requires identifying options and benefit-risk criteria, organising the latter in a value tree, scoring
options on the criteria, weighting the criteria, calculating weighted scores at each level in the value
tree and overall, and conducting sensitivity analyses. A subsequent paper by Liberti *3 et al gives a
similar five-step qualitative framework that omits the assessment of numerical scores and weights.
This latter approach is being tested by a task force from Health Canada, Australia’s Therapeutic Goods
Administration, Swissmedic and the Singapore Health Science Authority, the CASS Group.

2.3. FDA BRF: Mullen and Korvick

While work on an integrating approach is still in progress, the currently-proposed framework is shown
in Table 1 *, The FDA’s stated intention is to provide “a high-level snapshot - the ‘big picture’ - of the
issues relevant to the regulatory decision.” It is intended to provide a standardized structure, which
can be updated as new information is received, and to help focus discussions on the evidence and
improve consistency in assessments. As it was developed from the mental models of regulators, the
framework makes explicit current regulator perspectives of important topics that are considered in any
benefit-risk assessment. It can be used throughout the regulatory process, and could facilitate
communicating decisions outside the FDA.
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Table 1. The FDA's developing framework for identifying key issues in the benefit-risk deliberations
of regulators

Consideration Favorable Non-contributory Unfavorable

benefit-risk benefit-risk

Severity of condition

Unmet medical need

Clinical benefit

Risk

Risk management

Source: Unpublished presentation by John Jenkins, 23 April 2010.

Our view

It would be premature to comment on any of these approaches as they are still in
development or testing. However, it is worth noting that none makes explicit mention of the
last three steps, U-R-L, in the PrOACT model. Uncertainty in particular is of serious concern
to regulators '°. Ignoring it is possibly due to the influence of multi-criteria decision analysis
(MCDA); certainly both the BRAT and CMR approaches acknowledge MCDA, and they appear
to have been guided by the steps shown in Figure 6.1 in Multi-Criteria Analysis: A Manual?,
none of which mention uncertainty. As the discussion later in Chapter 6 of the Manual
makes clear, uncertainty and risk can be accommodated in MCDA, when they are relevant,
but that seems to have been omitted in the transfer to frameworks for drug regulation.

3. Quantitative approaches

Quantitative approaches tend to focus on formal models and numbers, and often leave out some of the
steps included in the qualitative frameworks, particularly in framing the problem at the start. It is for
this reason, that none of the following approaches is in itself comprehensive; an act of judgement is
needed, for a start, just in choosing the way to model a problematical situation.

At this writing, three reviews of quantitative approaches have appeared in print. Four methods were
presented and discussed in October 2007 at a workshop sponsored by the Office of Health Economics
in London '®, Mussen, Salek and Walker 7 reviewed three approaches, and Guo described 12
quantitative benefit-risk methods. All of these are included in the 18 methods described and evaluated
here.

3.1. Simulation

This approach attempts to mimic the behaviour of a system. For example, a flight simulator mimics the
behaviour of an aircraft and can be used to train pilots. The cockpit of the simulator, which is mounted
on hydraulic jacks, looks and feels like the interior of a plane. Special curved-mirror displays outside
the cockpit provide realistic distance vision scenes to both pilot and co-pilot. Input is required from a
human operator while the simulation is operating. This simulation attempts to mimic the whole system,
plane, environment and pilot. However, other simulations are more restricted in scope, as is evident in
the probabilistic simulation approach below.

Benefit-risk methodology project: Work package 2 report
EMA/549682/2010 Page 9/33



3.1.1. Discrete-event simulation

Dynamic simulation models use differential equations and continuous variables, working at different
levels of detail, from the interactions of physiological processes to the interaction of patients with the
health care system. The complexity of these models provides challenges to transparency and validation
of the model 8, though Brandeau ° claims that they support decision making, not that they predicts
events with certainty. The most comprehensive discrete-event simulation model for health care,
Archimedes, is described by Eddy and Schlessinger ?° as “broad, spanning from biological details to the
care processes, logistics, resources, and costs of health care systems.” At this writing, 12 different
diseases or conditions have been modelled with Archimedes (see:
http://archimedesmodel.com/index.html).

Krishna 2! proposes its use for benefit-risk assessment. He explains that Archimedes is configured to
deal well with predicting cardiometabolic risk, and “is one of the most advanced commercially available
tools for predicting risk in diabetes.” However, he points out several shortcomings, such as the “lack of
confirmatory data related to adverse and side effects,” and he also comments on the lack of validation
based on completed outcome studies. He suggests that discrete-event simulation is worth developing
as an aid to pharmaceutical companies in assessing the risk of new molecular entities. As for its use by
drug regulators, Eddy himself admits that Archimedes will never replace clinical trials for evaluating the
favourable and unfavourable effects of new medicines 22,

Our view

In general, simulation models are logically sound and comprehensive, although many are
stronger on the URL stages of PrOACT than the multi-criteria aspects. That said, their
outputs can be very useful in describing possible future outcomes and consequences.
However, the models are typically large, complex and non-transparent when the system
being simulated is complex, as is the case with weather simulation models. In addition, if
the reality they are simulating is not static, then new data require modifications and
extensions of the model to improve its validity, so keeping the model updated is costly.

Archimedes appears to be logically sound in modelling events, but may be less than
comprehensive in it ability to model alternatives, their consequences and trade-offs. Thus, it
is premature to suggest its use for regulatory decisions about approving drugs. Eddy and
Schlessinger themselves point out that a major reason for clinical trials is that they can
throw up surprises which are beyond current knowledge, which no simulation model can
anticipate. Even so, the very high correlations, 0.97 to 0.99, between outcomes observed in
trials and those predicted by Archimedes, coupled with the potential for the model to
include practical issues like physician and patient behaviours (like non-compliance), suggest
that at some point the model may help regulators to examine real-world deviations from
clinical trial results. This would be especially true for decisions about drugs when adverse
signals have been received after approval. The complexity of these models makes it difficult
to understand why any particular results were obtained, so their outputs may not be
acceptable, although the models can help users to generate new insights. A watching brief
may be advisable for large-system simulations like Archimedes.

3.1.2. Probabilistic simulation (Credence decomposition)

Uncertainty about the overall benefit-risk balance is decomposed into uncertainty associated with the
separate benefit and risk criteria, probability distributions are assessed for each criterion, and the
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overall result is obtained by Monte Carlo simulation. The approach is also known as probabilistic
simulation %3, or risk analysis %*.

For example, Lynd and O'Brien 23 compared the reduced chance of deep vein thrombosis (DVT)
associated with enoxaparin compared to unfractionated heparin, as against the increased chance of a
major bleed. Because these chances are not fixed values for all patients, probability distributions
derived from the clinical data were used to describe the variability across patients in the clinical trials,
as shown in Figure 3. Random sampling from those probability distributions defined 3,000 different
combinations of chances, resulting in as many pairs of favourable effects (benefit: reduced chances of
DVT), and unfavourable effects (risk: increased chances of major bleed). Those 3,000 data points were
plotted on a graph of incremental benefits versus incremental risks and overlaid with various
thresholds indicating different judged trade-offs between numbers of DVTs compared to major bleeds.
Any one of those trade-off judgements equates a unit of benefit to a unit of risk so that benefits can be
compared meaningfully to risks.

The simulation showed “there is a 10% probability that the number of major bleeds induced by
enoxaparin is greater than the number of proximal DVTs averted, which exceeds the conventional
frequentist threshold of p = 0.05.” Thus, taking account of the uncertainty in both favourable and
unfavourable effects gave a different result from traditional significance tests, which showed no
significant difference in the chance of a major bleed and a significant difference (p = 0.012) in the
favourable effects of enoxaparin. The authors concluded that “This analytic approach to risk-benefit
evaluation shows that, depending on the threshold for risk, even when two therapies are not
statistically significantly different in terms of risk or benefit, most often there remains a nonzero
probability that there is a difference between therapies.”

Figure 3. Probability density functions of the population proportion of patients experiencing a major
bleed, a proximal DVT, and any DVT occurring in patients treated with unfractionated
heparin or enoxaparin

EVENT Unfractionated Heparin Enoxaparin
mean = 0.007 | mean = 0,039
se = (0,007 3 sa =0.017

Major i
Bleeds !
0.00 0.10 0.20 0.30
mean = 0.48 mean = 0.35
se = 0.041
All DVTs
1
00 010 020 080 040 060 oen 000 010 020 030 040 050 060
]
mean = 0.15 mean = 0,062
se = 0.030 ze = 0.021
Proximal |
DVTs
000 010 020 030 040 050 06D 000 010 020 030 040 050 060

Source: Lynd & O’Brien, Figure 3, page 799.
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The Lynd-O’Brien study dealt with just two drugs, and single risk and benefit criteria. Additional risk
and benefit criteria can also be accommodated, as Lynd et al 2> have shown in a study of alosetron
compared to placebo for irritable bowel syndrome. This simulation was based on point estimates rather
than probability distribution; the simulation is of patients going through a 1-year treatment (or
placebo) regime, so it might better be classified as a dynamic simulation. It is included here simply to
illustrate one way to deal with issues of trade-offs between benefits, between risks and between risks
and benefits. In this case, multiple thresholds were invoked to ensure the comparability of all units of
benefits and risks. This moves simulation into the arena of multi-criteria decision analysis, which is
certainly doable, but has not yet been reported in the literature. An opportunity exists for combining
these two approaches to assist regulators in simultaneously looking at the effects of both uncertainty
and multiple objectives with no loss of data.

Our view

Probabilistic simulation could prove to be useful for regulatory agencies, both pre- and post-
approval. The approach is based soundly on probability theory, is comprehensive in the
scope of inputs, provides readily interpretable results, and can be implemented using
existing software, such as @Risk or Crystal Ball sitting in Excel, or Analytica. Its outputs are
clear, graphical and easy to understand, though some will not be familiar to regulators. This
approach can display two-dimensional probability distributions for the differences between
a new drug and a placebo or a comparator for either measures of favourable or
unfavourable effects, or the two combined.

Currently, regulatory decisions are informed by looking at statistical summaries such as
means, risk ratios and confidence intervals, which ignore the richer information found in
entire probability distributions. Particularly when probability distributions are skewed, this
extra information might lead to a decision that is different from one that relies on single
estimates, as Savage forcefully points out %°. Recent developments in near-instantaneous
simulation technology now make it possible for these differences of probability distributions
to be calculated as quickly as the click of a mouse %/,

3.1.3. System dynamics

System dynamics is an approach to understanding the behaviour of complex systems in which
feedback and time delays create non-linearity that is difficult to understand in simple cause-and-effect
terms 28, The approach is usually implemented using computer simulation. As far as we know, it has
not been used, or even suggested for use, in modelling regulatory decisions about medicinal products.

Our view

There may be potential for applying systems dynamics, particularly for post-approval
decisions, as data would be available about the time sequence of health states, compliance
by patients, and other factors that could create a non-linear system.

3.2. Models

The approaches in this section cover methods for decomposing a problematical situation into its
constituent pieces, for making the necessary assessments about the pieces and then recomposing the
pieces into a whole that facilitates, or actually expresses, the benefit-risk tradeoff.
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3.2.1. Bayesian belief networks

Used to model uncertainty, BBNs depict uncertainty about events and quantities represented at nodes
in directed graphs, with arrows between the nodes denoting the conditioning of one node on another
2% This conditioning can represent either causal or diagnostic relationships. For example, one node
could represent the overall benefits of a drug, and another node the risks, with a target node
providing, say, an overall assessment that a drug is both safe and efficacious. Arrows from the benefit
and risk nodes would connect to the observable benefits, and to the observable risks, and any of those
nodes might be connected if they are not conditionally independent of each other.

The network of connected nodes is known as a directed graph, which expresses the conditional
relationships, or lack of them, amongst the nodes. Conditional probabilities, derived from data or
judgements, or a combination of both, are entered into the model to express the relationships. In use,
many items of observed data for a particular case are entered into the model, and the model then
propagates the relevant probabilities throughout the network to give revised probability distributions at
all nodes.

These models are particularly useful for situations in which the structure of the model, the
interconnections and the conditional probabilities remain the same from one problem to the next, but
where the actual pattern of data is different. If these conditions are met, then the BBN can learn as
new problems are presented to it, updating its conditional probabilities so that the accuracy of the
model improves over time. The example in Figure 4 is for diagnosing diabetes.

Figure 4. Directed graph for diagnosing diabetes

Body Mass Index Pregnancies Diabetes Pedigree Function Age
lean Bom! | few 556 | low 380 mmm ! | youth 295 jmm | |
overweight 231 m | | many 444 . avg 34.2 o middle 358 [
obese 63.1 |m— 2244310 high 69 || old 34.7 mmm |
333+330 135+ 270 378426
Triceps Skinfold Thickness Diabetes

lean 74,0 —_— diabetic 371 |
thick 26.0 : not diabetic 62.9 H

148 + 260 0.629 £ 0.48

\J
Plasma Glucose Concentration - . 2hour serum insulin test
Diastolic Blood Pressure

T T T T T T
R~ e ol [ L
diabetes 02| I 1| i 16.5 NN hitypell 161 i | |

99.9 £ 63 ki) 204 % 210

A

Conditions in the top row are predispositions to diabetes, with measurable indicators in the bottom row nodes.
Clicking on a single symptom in any one or all of the three bottom-row indicators revises the probabilities shown in
the Diabetes node, as will choosing the relevant predispositions in the top four nodes and the one at middle left. It
is instructive to see how a single selection causes probability changes in the other nodes; some will change
substantially, others not at all. As more data are collected the probability of diabetes becomes more definitive.

Source: “Diabetes Learned” in Netica Library.
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Our view

This approach is basically a network of conditional probabilities, but for unique drugs the
required data will be limited or absent. There might be some scope for eliciting the required
probabilities using expert judgment, provided that the drug is of a class in which relevant
relative frequency data are available. BBN’s are usually limited to modelling uncertainty,
with perhaps a single outcome measure, but they can provide inputs to more comprehensive
decision models. We see more potential for applying BBNs to the approval of me-too drugs
and in post-marketing decisions.

3.2.2. Bayesian statistics

At the heart of this approach to statistics is the definition of probability as a degree of belief, which
leads to a crucial role for Bayes’s Theorem in providing the means for revising the degrees of belief as
new information from confirmatory trials is obtained. The initial probabilities, which summarise all
relevant evidence, such as from exploratory trials, are known as ‘prior probabilities,” while the resulting
revised probabilities, which take account of the confirmatory trial data, are known as ‘posterior
probabilities.” Those posterior probabilities form a complete expression of the uncertainty attending the
scientific inference about a hypothesis or a treatment effect that was the reason for the confirmatory
trial.

In contrast, the Neyman-Pearson approach to statistical inference, which currently dominates
statistical practice in regulatory decision making, provides a way of making statistical inferences
without regard to prior probabilities, but still requires the exercise of judgement in other matters.
Professor Pearson, quoted in Savage 3°, indicated what he and Neyman were thinking in the mid-
1920s:

“We were certainly aware that inferences must make use of prior information and that decisions must
also take account of utilities, but after some considerable thought and discussion round these points
we came to the conclusion, rightly or wrongly, that it was so rarely possible to give sure numerical
values to these entities that our line of approach must proceed otherwise.”

Today, statisticians of all persuasions recognise judgement is an essential ingredient of inference (e.g.,
a study cannot be powered without some knowledge of the size of the effect), and the old debates
have largely disappeared from the literature as Bayesians have answered their traditionally-minded
critics. Methods for assessing probabilities and utilities are now well developed 3'-3? and numerous
applications in many areas, including medicine 33, show the benefits of the Bayesian approach.

Significance levels, which are commonly used for reporting inferences in clinical trials, are probability
statements about data rather than about the hypotheses and uncertain quantities that are directly
relevant to decisions. Consequently significance levels cannot be formally integrated into decisions
about benefits and risks. However, provided that the sufficient statistics of clinical trials are reported
(i.e., summary statistics that contain all the information necessary to make a proper inference) it is
possible to develop decision-relevant posterior probabilities using *non-informative’ prior probabilities.
Ashby and Smith 33 argue that evidence-based decision making in medicine requires an integration of
evidence, uncertainty and the utility of outcomes, which is provided by the Bayesian approach.

Our view

Bayesian statistics focuses on valid inferences from evidence, providing probabilities as part
of the wider whole that is Bayesian decision theory. Although traditional significance testing
still dominates in regulatory decision making, the data used to calculate the significance

levels can be used to determine relevant posterior probabilities for decision models. As they
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are based on probability theory, posterior probabilities are logically sound, and readily
understandable to regulators, but Bayesian statistical models do not generally deal with
multiple criteria. However, integrated into decision models that do include multiple criteria,
probabilities are an essential ingredient for sound regulatory decision making both pre- and
post-approval.

3.2.3. Decision trees & influence/relevance diagrams

These are models that incorporate, in diagrammatic displays, decisions (options), subsequent
uncertain events, consequences and multiple criteria describing the consequences 34. Decision trees
show these as branching structures, like trees tipped on their sides, with roots (decisions) at the left,
and branches to the right showing possible outcomes of the uncertain events, followed by more
decisions, etc., until finally the tree is chopped of at the right, representing some time in the future
when consequences will be apparent. This form of representation typified the early textbooks on
decision analysis 32, and are still widely used today 3°, largely because they can represent almost any
decision situation whatever the topic. They are often seen in the journal Medical Decision Making.

One problem with decision trees is that they can expand exponentially as more and more nodes are
included, thereby becoming very complex. Influence/relevance diagrams, which are graphical networks
of decision, event, consequence, criteria and ‘no-forgetting’ (time sequence) nodes, are more compact
representations than decision trees. (Bayesian belief networks are special cases of influence diagrams
that mostly depict only event nodes.) Arrows connect nodes that ‘influence’ each other in a causal
sense, though diagnostic relationships are also possible (knowing the time shown on my wristwatch
reduces my uncertainty about the time on yours, though there is no direct causal relationship between
our watches, only a diagnostic one). To accommodate both causal and diagnostic relationships, these
structures are also known as ‘relevance’ diagrams (the time on my watch is relevant to my knowing
the time on yours, but there is no direct causal connection between them). Stonebraker 3¢ reports how
Bayer used an influence diagram to guide data collection for information relevant to a new blood-clot-
busting drug. The elements of a decision tree and its associated influence/relevance diagram, for
assessing a regulatory decision about approval of vaccines for the 2009 swine flu pandemic are shown
in Figures 5 and 6, respectively.

Both decision trees and influence diagrams are models derived from decision theory, which is a theory
grounded in Frank Ramsey’s concept of coherent preference 3. As elaborated by Savage 3°, the theory
starts by establishing self-evident axioms of preferences that exhibit simple consistency principles, like
transitivity: if A is preferred to B, and B is preferred to C, then A should be preferred to C. From these
axioms, three theorems are established: (1) probabilities exist, (2) utilities exist, and (3) the
alternative associated with the highest expected (weighted average) utility should be most preferred.
Essentially, this theory shows that coherent preference logically implies that just two quantities are
needed for decisions: numbers that express the relative values of possible consequences, and numbers
showing how likely these consequences are to occur. Multiplying utilities by their associated
probabilities and summing those products over all consequences for a given alternative provides an
expected utility figure that is a guide to action. Note that it is not just utilities that are compared, nor
probabilities, but probability-weighted utilities, i.e., expected utilities.

The theory is thought by some to be flawed because the preferences of real people are not always
coherent, but that argument fails to recognise that while these axioms logically imply the theorems, so
the theorems also logically imply the axioms. Thus, decision analysts start by decomposing a complex
problem into its elements, then assessing probabilities and utilities about the relevant pieces, and
finally reassembling the pieces using the expected utility calculation. That result is examined to help
people form their preferences. In other words, decision analysis is used to help people construct

Benefit-risk methodology project: Work package 2 report
EMA/549682/2010 Page 15/33



coherent preferences; it doesn’t start by assuming preferences are coherent. Thus, any of the models
derived from decision theory are classed in this paper as logically sound. Indeed, any model that does
not exhibit in-built potential for violating consistency is classed here as logically sound.

Our view

From a theoretical point of view, decision trees and influence/relevance diagrams are
certainly logically sound. They are particularly applicable to unique situations, and they can
integrate data from many sources (in the form of probabilities of outcomes at each event
node) and value or utility judgements (of the consequences). It is also possible for a single
event node to be modelled as a Bayesian belief network, and for multi-criteria decision
analysis to model consequences characterised by multiple objectives. Decision trees are
often found in medical decision making papers to extend data-based statistical inferences to
include costs and payoffs of taking a decision.

However, building decision trees and influence/relevance diagrams is an art, so care and
experience is needed to ensure a realistic representation of the problem facing regulators,
and some problems are so complex that the time and effort to build a decision tree are not
easily justified. On the other hand, if the problem is very complex, unaided human
judgement can also be questioned as an acceptable alternative.

Figure 5. Decision tree for approving swine-flu vaccines

Options Disease seriousness

0.8 Efficacy
moderate

Approve by end Sep =75% Safety

0.2

p
good 1/100,000

severe

0.75
moderate

1-p
poor 1/10,000

Delay to end Oct

0.25
SEVEre

These are the elements of a decision tree on 1 September 2009 for approving swine flu vaccines by the end of
September or delaying until the end of October. The left branches show the decisions followed by disease
seriousness events and their probabilities. Events about efficacy and safety of the vaccines follow. The efficacy
node, with its three outcome branches, attach at points A through D; the safety node and its two outcome branches
attach at points E through G. This creates 24 scenarios of decisions and event outcomes. The 24 triangles at the
end of the branches indicate the end of the decision tree, where they receive the number of deaths and serious
debilitating adverse events appropriate for the outcomes of the uncertain events in that path through the tree.

Source: Phillips et al'.
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Figure 6. Influence diagram of the swine-flu decision tree

(o),

Directed arrows indicate the direction of relevance. The probabilities of Seriousness, Safety and Efficacy depend on
the decision taken; the probabilities of Efficacy depend also on Seriousness, but the probabilities of Safety and
Efficacy are conditionally independent of each other.

Source: Phillips et al'.
3.2.4. Evidence-based benefit and risk model

This model, suggested by Jiirgen Beckman 3® of the Federal Institute for Drugs and Medical Devices in
Germany, depicts benefits as a ‘box’ whose sides are efficacy, responder rate and evidence for benefit.
Risks are shown as several boxes, one for each ADR, with the dimensions “seriousness of the ADR, if it
occurs,” “frequency of the ADR in the exposed patient population” and “evidence for the respective
risk.” A two-armed balance depicts the relative weight of the benefit box under one arm against the
sum of the weights of the risk boxes under the other arm.

Our view

This is, of course, a simple multi-criteria model, with all risks and benefits evaluated on
three criteria each. Two of the benefit criteria, efficacy and responder rate, are favourable
effects, while the third dimension, evidence for benefit, captures uncertainty about the
favourable effects. Similarly, risks show two unfavourable effects, and an uncertainty.
Beckman admits it is a simplified model, but suggests that "many properties of drugs can
often be seen as irrelevant if not dissimilar so that only a few ‘box sides’ remain to be
compared.” His approach might be useful in displays of multi-criteria analyses, especially if
the boxes are coloured to represent a fourth dimension. It might then be possible visually to
balance benefits with risks.

However, the approach is silent on how the dimensions can all be expressed in equivalent
units of value, which is essential for assessing and comparing the total volumes of the
boxes. Thus, it is an incomplete technology, but worth thinking about for graphical displays
of any multi-criteria analysis in summarising data analyses for both pre- and post-approval
decisions. Dr James Felli has developed graphical displays showing box cars of different
sizes and colours in a railway train that have helped managers at Lilly visualise their
development portfolio and make decisions about it (personal communication), so the
simplicity of this approach should not be summarily dismissed.

3.2.5. Incremental net health benefit

The net improvement in a patient’s health state from taking a drug over a placebo, comparator or
current treatment can be represented by a single number, incremental net health benefit (INHB), in
this simple equation:

Benefit-risk methodology project: Work package 2 report
EMA/549682/2010 Page 17/33



INHB = (FEq4 - FE.) - (UFE4 - UFE,)

The difference in the unfavourable effects, UFE,4 - IFE. between the drug, d, and the comparison, ¢, is
subtracted from the difference in favourable effects, FE4 - FE., when all effects are measured in the
same units, which allows multiple effects to be considered. The previously-mentioned study by Lynd,
Najafzadeh et al 2° applied this approach using the common metric of RVALYs (relative value-adjusted
life-years), but QALYS (see section 3.2.9) or utilities or any other health outcome metric could be
used.

Our view

INHB is one version of a multi-criteria model, which is discussed below. In the case of the
Lynd, Najafzadeh et al 2° study, they extended the model to include multiple favourable and
unfavourable effects, and used simulation to capture the uncertainty associated with the
effects. Overall, a good demonstration of the power of applying multiple approaches to
modelling. On its own, however, INHB deals only with multiple criteria, so is restricted in
comprehensiveness.

3.2.6. Markov processes

Markov models capture the dynamic element of processes that develop or change over time, such as
the progression of a disease in a patient®. Each stage in the developing process is represented by a
node, a clinical state, and progression to the next one of several possible nodes is given by a
probability distribution across the several nodes. Thus, the time-dependencies among event
probabilities and state utilities can be represented. By running the model many times, it is possible to
see at any given time in the future what proportion of trials were found in the relevant states, such as
full health and death, thereby providing an insight into the probability that an individual patient will
arrive at a particular future health state.

Theoretically speaking, a decision tree analysis should arrive at the same result as a Markov model
that includes alternative decisions. The advantage of the Markov representation is that it more clearly
shows the transition of patients from one health state to another over one time period to the next. An
excellent example was reported by Thompson et al 4°, who used a Markov model, displayed as a
decision tree, to examine the relative long-term effectiveness of natalizumab over interferon p-1a in
the treatment of MS. The model showed the superiority of natalizumab in terms of the utilities of
health gains as compared to the small disutility of health losses from developing PML. In conclusion,
Thompson et al conclude that "Understanding the long-term risks and benefits of treatment has never
been more important given the serious limits to the old paradigm of short-term clinical trials, FDA
approval, and weak postmarketing oversight.”

Our view

Markov models require clearly-defined health states and conditional probabilities of moving
between the health states (as well as utilities or preference values of the health states).
Clearly, assessments of these probabilities will be better if data are available over many
years. Therefore, short-term clinical trials may yield insufficient confidence in the observed
proportions of rare events like PML, limiting the use of Markov models for pre-approval
decision making. The potential for Markov models may be greater for post-approval
decisions. In any event, as we have already commented favourably on decision trees, we
see Markov models as a useful extension enabling the dynamic modelling of disease
progression.
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3.2.7. Multi-criteria analysis

This general class of models accommodates decision making with multiple objectives. A review appears
in Belton and Stewart *!, including the approach based on decision theory, multi-criteria decision
analysis (MCDA), which was first introduced in 1976 by Keeney and Raiffa *2. MCDA, like decision trees
and influence/relevance diagrams, is based on Decision Theory (See 3.2.3). An accessible introduction
can be found in Chapter 6 of the publicly-available report Multi-Criteria Analysis: A Manual &. The main
purpose of MCDA is to bring together evaluations of options on different criteria into one overall
evaluation. It does this through two separate processes: scoring and weighting. Scoring is the process
of measuring the value of options, one criterion at a time, using scaling techniques borrowed from
psychology *3, in particular psychometrics (psychological measurement of a person’s abilities,
attitudes, personality, etc.) and psychophysics (the measurement of sensation caused by an
objectively-measurable stimulus). Weighting ensures that the units of value on all the criteria are
comparable, which is necessary for combining the scales into one overall scale. MCDA solves the
problem of comparing benefits and risks by providing a common unit of value so that the added value
of favourable effects can be compared to the loss of value from the unfavourable effects. In practice,
the two-step process of scoring and weighting means that all numerical assessments can be carried
out by applying simple paired comparison techniques in which just two entities are compared at a
time. Hierarchical value trees are often used to structure the benefit and risk criteria, as in Figure 7,
while value functions, as in Figure 8, assessed by the relevant decision makers, show how measurable
outcomes can be translated into relative values.

Figure 7. Value tree of the risk and benefit criteria for comparing an antipsychotic drug with a
comparator and a placebo
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Source: Walker S, Phillips L, Cone M. Benefit-Risk Assessment Model for Medicines: Developing a Structured
Approach to Decision Making. Epsom, Surrey: CMR International Institute for Regulatory Science; 2006.
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Figure 8. A value function showing relative preference values as a function of QTc prolongation
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Well before 2009, pharmaceutical companies had recognised the value of MCDA, particularly for
constructing portfolios of projects under development **. A recent example showing how MCDA enables
benefit-risk comparisons to be made is provided by Felli 4°. Other researchers have provided
alternative multi-criteria analysis approaches, for example the model proposed by Chuang-Stein *°
have essentially re-invented MCDA without, apparently, knowing of its existence. They use constructed
scales to quantify the intensity of the favourable effects and the unfavourable effects, and then they
propose using a ‘proportionality constant’ which effectively equates the units of favourable with
unfavourable effects. They invoke statistical significance to handle uncertainty.

A 1993 paper showed the relevance of decision theory, including MCDA, to pharmaceutical medicine #/,
and noted that “one of the most vexing problems facing all who are concerned with pharmaceutical
medicine is the balancing of risks against benefits.” The paper reported the results of two workshops at
the London School of Economics, one in 1989 sponsored by Ciba-Geigy as part of their RAD-AR
initiative, and the other in 1990 by the Centre for Medicines Research, which showed how MCDA can
resolve decisions at intervention points for marketed pharmaceuticals. Nothing more was heard until
two more seminars sponsored by CMR in 2004 and 2005 resulted in CMR publications reporting how
MCDA could be applied to regulatory decision making *°, Filip Mussen provided an introduction to
MCDA for assessing benefit-risk °°, and this was followed by a more detailed exposition in 2009 with
the publication of the book by Mussen, Walker and Salek 7.

Our view

Based on an extension of the axioms of decision theory, MCDA is a logical, coherent model
for decisions with multiple objectives. As mentioned in the section on qualitative
approaches, MCDA is described in Figure 6.1 of the Multi-Criteria Manual as an eight-step
procedure on which the other qualitative frameworks have drawn. It is comprehensive in its
ability to accommodate all forms of data and time preferences, and provides a way of
transforming input data into values (or utilities). As one of several decision-theoretic
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models, it can handle uncertainty, though the recent expositions in the medical literature
have ignored this aspect of MCDA, so are limited in application. In 1971 Edwards introduced
an easy-to-implement version of MCDA called 'SMART’ °!, which employs a minimal number
of criteria, simple scoring and swing weighting. Its current version is described in Chapter 3
of Goodwin and Wright °.

The four seminars referred to above all took place with a mixture of pharmaceutical and
regulatory specialists, who agreed that the modelling was understandable, practical and
communicable. Five current or former regulators have urged further exploration of MCDA to
aid benefit-risk decision making °>. MCDA is a strong candidate for testing in a live
regulatory setting.

3.2.8. Principle of threes

Either of both benefits and risks are described by three criteria using just three states for each, high =
3, medium = 2 and low =1 (and for some cases, no effect = 0). For risks, generic criteria of
seriousness, duration and incidence are suggested, while for benefits, seriousness, chronicity (e.g.,
acute, chronic, or duration of disease) and extent of control or cure. Simple totals within benefits and
within risks are calculated without weighting the criteria. This approach was first mention by Edwards,
et al °*, and was then picked up in CIOMS 1V ©.

Our view

This is a particular realisation of a ‘performance matrix’ or ‘consequence table’ (see section
4.3.2 of Multi-Criteria Analysis: A Manual 8). It is a two-dimensional summary of the
performance of options (rows) against criteria (columns), with each cell entry describing in
words, symbols or numbers the performance of an option on a criterion. This approach is
universal in magazines that rate consumer products. For regulatory decision making, it can
provide useful displays, but the Principle of Threes is too simplistic for even moderately
complex cases, and unweighted totals fail to recognise that some benefit or risk criteria are
relatively more important than others.

3.2.9. QALYs/DALYs

Favoured by health economists and health technology assessment (HTA) organisations, these
approaches focus on outcome dimensions of health >>. The QALY considers quality adjusted life years,
while the DALY is about disability adjusted life years. Each is a kind of multi-criteria model insofar as
health states are defined for each dimension and rating scores given, higher scores for more desirable
states. Also, weights are assigned to reflect the relative importance of the health dimensions, enabling
a weighted average to be taken for any particular combination of health states across the dimensions.

An excellent short introduction to QALYs is provided by Weinstein, Torrance and McGuire %, who
explain that QALYs measure preference or desirability, and were developed to inform cost-
effectiveness decisions about health care, define health outcomes in terms of multiple, weighted
criteria about health states, and are applied to population-level health, value-weighted over time. The
entire supplement to Value in Health, volume 12, 2009, is devoted to discussing the value of QALYs *?,
so is a good reference to the extensive debates about these measures. Many alternative measures of
health outcomes have been developed and compared to QALYs >8¢!, and it is now apparent that
different measures suit different purposes.
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Our view

There is no doubt that QALYs and other health-outcome measures have improved decision
making about resource allocation in many countries, though there is also disagreement
about potential biases and inadequacies in the various measures that are being used. It
remains unclear how useful these measures would be for regulatory decision making, which
must be concerned with outcomes of safety and efficacy as well as health consequences.
Also, QALY models, with some exceptions °?, are not differentiated by therapeutic area;
regulators need to include considerations that are unique to disease states, so regulators
would find QALY models insufficiently comprehensive.

Still, as all QALY models are versions of multi-criteria models, it is in principle possible to
use any mix of criteria in these models, from measures of efficacy on endpoints through to
health consequences over time. For the most part, these models are weak in acknowledging
uncertainty about the outcomes and consequences, as they rely heavily on point estimates.
Still, there are good reasons to believe that further developments in these multi-criteria
models will occur to ensure that the models provide genuine assistance to the decision
makers in specific domains. Indeed, it may well be possible for regulators to include QALY-
type modelling in their models, which would make it possible to deliver the regulator’s
model to an HTA so they would then only have to add the cost criterion to the model to
determine cost-effectiveness.

3.2.10. TURBO - transparent uniform risk-benefit overview

A drug is scored on one primary and one ancillary benefit criterion, and on the most serious adverse
effect and an additional risk, using 5-point scales. Relative weights are assigned to each pair of scores,
and the weighted average of the two benefit scores and of the two risk scores are computed. These
two scores determine a single point in a two-dimensional benefit versus risk plot, in which acceptable,
unacceptable and indeterminate combinations are indicated. This approach is explained in Appendix F
of CIOMS 1V 8. This is, of course, a simple multi-criteria analysis model, but lacking the theoretical
foundations of MCDA.

Our view

In complex multi-criteria cases involving many criteria, a typical finding is that the same
results could be obtained with fewer criteria. Unfortunately, it isn’t possible to determine at
the start of modelling which criteria are the ones that are mainly responsible for the results.
For regulators, focusing on only two benefits and two criteria from the start will not, in the
majority of cases, be sufficient, and certainly would not satisfy regulatory standards. Yes,
TURBO is transparent, but it is also too simple for use in regulatory decision making.

3.3. Statistics

This section covers various suggestions for measures, based on statistical analysis of data, to be taken
into account in making benefit-risk comparisons. None of these is as comprehensive as the models
discussed above.

3.3.1. Kaplan-Meier estimator

The intention here is to represent a survival function over time: for a particular condition or context,
the proportion surviving over time from some initial starting point. These curves enable comparisons to
be made between conditions. For example, the number of people surviving after contracting some
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disease at discrete times in the future, based on statistical data over the time period. The curve for a
treated sample of patients can be compared to the curve for those untreated to gain an indication of
the difference. A ratio of the two data points at any given time can be used to express the magnitude
of the difference in survival. This approach can also be used for any single measurable quantity of
either unfavourable or favourable effects to see the change over time of the effect.

An extension of the Kaplan-Meier curves that accommodates the trade-off between the durations of
different health states is provided by the Q-TWiST method: Quality-adjusted Time Without Symptoms
of disease and Toxicity of treatment 34, Basically, this is a trade-off between the duration of suffering
from the toxicity of treatment against the prolongation of life. The authors indicated that “it is not
intended to provide a unique result combining quality and quantity of life”. However, it can display
utilities and sensitivity plots of utilities of the two duration dimensions that reveal how the trade-off
affects survival time.

Our view

Kaplan-Meier curves are one way of displaying the results of a Markov model or decision
tree with repeating event nodes at each time period. Any of these might be incorporated in a
more comprehensive model. The Q-TWiST extension demonstrates one way of incorporating
utilities into the analysis, though it does not extend to a full multi-criteria analysis of all
favourable and unfavourable effects, nor does it formally incorporate uncertainty. Thus, the
K-M approach is one way that could be useful, when data are available, for showing time
sequences of health states. Our view about Markov models applies here as well.

3.3.2. NNT/NNH

NNT, the ‘number needed to treat’, is the average number of patients that would have to be treated in
order for just one of them to receive the expected favourable effect. NNH, the ‘number needed to
harm’, is the average number of patients that would have to be treated in order for just one person to
experience a particular unfavourable effect. Both NNT and NNH are calculated as the inverse of the
difference in proportions of the effects between the treatment and control groups °°:

NNT (NNH)=—+

t c

The denominator is often referred to as the absolute risk reduction. For a given disease, a smaller
value of the NNT (i.e., a big improvement in the probability of a favourable effect—which might mean a
reduction in the chance of a negative outcome) is better as it indicates a drug that is effective for more
people, while a larger value of the NNH (a small increase in the chance of an undesirable effect) is
preferred because the adverse effect caused by the drug is so rare. Thus, a small NNT means fewer
people have to be treated to see one favourable effect, while a large NNH shows that only by treating
many people will just one person show the unfavourable effect. Of course, that is true only on average,
since the proportions are uncertain.

Our view

NNT and NNH might seem practical because of their simplicity but this simplicity is
deceiving. Their main problem is that they cannot be combined to determine if benefits
outweigh risks because neither statistic takes account of clinical relevance 6. For example!?,
suppose a drug is found to reduce the incidence of death in vClID sufferers from 100% to

! Thanks to Rob Hemmings for this example, and for bringing to our attention other problems about NNT and NNH.

Benefit-risk methodology project: Work package 2 report
EMA/549682/2010 Page 23/33



90%. The NNT is 10. Now imagine a drug that reduces pneumonia deaths from 50% to 40%.
The NNT is also 10, but it seems unlikely that anyone would consider these two cases of
equal value, and that is just for comparing NNT for two different disease states. A
comparison of NNT with NNH for the same disease state requires considering the clinical
significance of the favourable event with the unfavourable event: if NNT=NNH, that doesn’t
mean that the benefit-risk ratio is one. A further problem arises in attempting to apply these
statistics to outcomes over time—different values of the statistics would be obtained at
different time periods, as for example shown in Kaplan-Meier curves. This difficulty led
Hildebrandt et al ¢7 to conclude “there is much room for improvement in the application of
the number needed to treat to present results of randomised controlled trials, especially
where the outcome is time to an event.”

The underlying problem here is that preference judgements based solely on differences in
probabilities violate the criterion of logical soundness, and no amount of ‘fixing’ the
statistics can overcome this problem. In decision theory, probabilities multiply by utilities
and it is the probability-weighted utilities, i.e., expected utilities, that are compared, not the
probabilities themselves. It is expected utilities that express clinical relevance as well as the
probability of realising the effects.

More generally, preferences cannot be well informed by proportions, where both numerator
and denominator can take on different ranges of values, with the result that the same
proportion could result from very different base conditions. Doubling a survival rate from
one month to two months is surely not equivalent in preference to a doubling from one year
to two years. Thus, relative risk, p:/p., by itself also violates logical soundness. As Fahey et
al have shown empirically 8, different measures yielding the same results can lead to
different preferences.

Finally, we should add that Holden’s suggestions °° to incorporate relative utility values
(RVs) into the NNH calculations, and to apply minimum clinical efficacy (MCE) analysis for
comparing therapeutic options, use probability differences in these models, which can lead
to failures of logical soundness.

Note that our critique here is aimed only at the usefulness of NNT/NNH for decisions by
drug regulators. We have not formulated a view about applications for other purposes, such
as communication by physicians to their patients.

3.4. Measurement methods

The section includes methods that have been proposed for measuring favourable and unfavourable
effects and their uncertainties. All the methods result in quantitative expressions of benefits and risks,
and some make it possible to compare benefits with risks.

3.4.1. Conjoint analysis

Conjoint analysis (CA) is a measurement method that forces respondents to think about trade-offs.
Real or hypothetical products described by various attribute levels are compared, and from many
comparisons it is possible to calculate overall preferences and preference functions. Typically, a more
preferred level on attribute X is combined with a less preferred level on attribute Y, and this
combination is compared with a less preferred level on X combined with a more preferred level on Y,
where, a priori, at least an ordinal sense of preference is assumed by the experimenters. When several
attributes are to be compared, mixtures of more and less preferred levels are presented to
respondents, who are asked for their overall preferences, either by stating a preference for Treatment
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option A (combination of low X and high Y) or Treatment Option B (combination of high X and low Y)
over the other, or by rating their strength of preference for one over the other.

As an example of the latter approach, consider the example shown in Table 2, which concerns a
hypothetical treatment for gastroesophageal reflux disease (GERD) ®°. Different combinations of the
attribute levels are chosen and presented to respondents, like the example in Table 3. In a choice
format, a box would be ticked under either Treatment A or Treatment B to indicate preference for one
or the other treatment, or, in the strength-of-preference format, a point would be chosen from a five-
point rating scale extending from “Strongly Prefer A” to “Strongly Prefer B”.

By repeatedly asking for many comparisons between many pairs of different treatments, it is possible
to apply statistical multiple regression analysis, which provides ‘utility weights’ associated with the
attribute levels. Each ‘weight’ in CA could be interpreted from the perspective of MCDA as a
combination of a score on a criterion and the weight assigned to the criterion. However, the concept of
‘weight’ is different in MCDA and CA; a weighted score in MCDA is simply a weight in CA. Also, the
concept of ‘utility’ and ‘utility function’ is different from the interpretations in decision theory 7°. From a
decision theory perspective, the 'utility weights’ could be interpreted as values on an interval scale.

The origins of conjoint analysis can be found in psychometrics and measurement theory. The idea of
decomposing a person’s overall judgement about a multi-dimensional entity into its component parts
became feasible with the development of an axiomatically-based theory, which showed how to do it"*.
Hammond applied CA to capture the ‘policy’ of an individual in making judgements in situations
characterised by multiple ‘cues’””?, and Green exploited the ability of CA to capture tradeoffs among
competing features of products to assist marketers to achieve a better understanding of how people
perceive products’® and how they trade-off product attributes in making choices.

Table 2. Example of attributes, attribute levels and health-state descriptions for GERD treatments

Attribute Level Description
Response time Fast Immediate
Medium Within one hour
Slow Within three days
Relief duration High 24 hours
Medium 8 hours
Low 2 hours
Reversibility Yes Effect stops immediately after last dose
No Effect lasts for several days after last dose
Dose frequency Once Once a day
Twice Morning and evening
Three times Before each meal
Cost $100 Medication cost is $100 per month
$50 Medication cost is $50 per month
$25 Medication cost is $10 per month

Source: F. Reed Johnson .

Benefit-risk methodology project: Work package 2 report
EMA/549682/2010 Page 25/33



Table 3. A combination of attribute levels for hypothetical treatments A and B

Feature Treatment A Treatment B
Response time Immediate Within three days
Relief duration 8 hours 24 hours
Reversibility Yes No

Dose Twice a day Once a day

Cost $100 $25

Source: F. Reed Johnson .
Our view

It would appear that CA could be useful to regulators in judging the trade-off between
favourable and unfavourable effects. This raises the question of whose trade-offs would be
modelled. Most applications to date have engaged patients in health economics studies to
determine the relative values associated with different health states. Studies of hypothetical
treatments, as in the example above, have also been carried out on members of the public.
So, it is clear that CA could be useful in making explicit patients’ perspectives. It is less clear
how CA could be used directly with regulators, for the factorial designs used in CA
experiments are time-consuming, and even the non-factorial designs are cognitively
demanding because of the complexity of the stimuli, which leads to cognitive simplification
strategies, such as ignoring attributes judged to be of lesser importance 7%,

A possible way to circumvent the cognitive burden problem is to apply the ‘self-explicated
method’ of CA described by Hauser 7° as an approach that makes it possible to “compose
preferences by asking respondents questions about the features themselves.” This is a two-
stage process of, first, directly valuing the levels within an attribute, then judging the
relative importance of the attributes themselves. This is, of course, precisely the process
used in MCDA, so with this approach, CA and MCDA come together. The advantage for
regulators is that the approach can be used quickly for a unique medicinal product to
produce the scores and weights used in an MCDA model.

3.4.2. Contingent valuation

This is the favoured approach of cost-benefit analysis, in which all benefits are translated into
monetary values through questions that elicit an amount of money an individual is willing to pay for a
good’®. This approach is not reviewed here as monetary valuations are not deemed relevant to the
benefit/risk task facing drug regulators.

3.4.3. Stated preferences

These constitute a collection of methods for assessing an individual’s utility functions from their
preference statements. There is as substantial literature on these methods in health economics, which
is beyond the scope of this paper. A review is provided by Torrance 77, who describes rating scale,
standard gamble and time trade-off techniques in detail. Any of these might be useful to regulators.
Probability assessment is well covered by Morgan and Henrion 72.
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4. Discussion

The intention when we began this paper was to discover the main approaches to benefit-risk
evaluation that might be useful to regulators. We soon discovered that ‘approaches’ is a term whose
breadth encompasses nearly everything from a framework to a model to a measurement method, and
several other things in between. We soon found that there is potential in nearly every approach, save
for a few that we have dismissed, mainly because they are overly simple or too-prescriptive versions of
more comprehensive and flexible approaches.

We have formulated suggestions for approaches that could be explored in WP3, in full recognition that
no regulator of medicinal products is using any quantitative model or fully-structured, explicit process
to support their benefit-risk judgements. Our summary views of the relevance of each approach or
method are summarised in Table 4, along with an indication of the potential usefulness to regulators,
pre- and post-approval. In general, if an approach or method accommodates both the value or utility
of favourable and unfavourable effects, and their uncertainty, the greater the relevance to regulatory
decisions. In addition, if the approach lends transparency and aids communication, it is judged to be
useful.

Table 4. Suggestions for WP3. Usefulness to regulators is indicated as high, medium or low

Approach/method Relevance to regulators Usefulness

Qualitative approach Essential to follow a structured set of steps for any High
regulatory decision and to develop a quantitative model.

Discrete event Complex models such as Archimedes could be relevant Low

simulation post-approval to understand actual drug usage. Lack of

transparency restricts understanding of its results.
Probabilistic simulation Can illuminate the risk/benefit trade-off when uncertainty Medium
is a major feature of a regulatory decision.

System dynamics No use of this approach has yet appeared, but it may be Low
relevant to post-approval decisions about drug usage.

Bayesian belief No use yet reported, but may be relevant to modelling Low

networks (BBNs) the conditional uncertainties about safety and efficacy.

Bayesian statistics Can integrate evidence and its uncertainty, both pre- and High
post-approval, with multiple criteria in decision models.

Decision trees and Many applications in the medical decision making High

influence/relevance literature demonstrate the relevance of this approach.

diagrams Can be integrated with BBNs and MCDA.

Evidence-based benefit A simple multi-criteria model that is too prescriptive and None

and risk model restricted in scope. Can be subsumed under MCDA.

Incremental net health A simple multi-criteria model, restricted in scope, that Low

benefit can be extended to accommodate uncertainty.

Markov processes Extends a decision tree to include the movement between Medium

health states over time. May be most relevant for post-

approval decisions.
Multi-criteria analysis Multi-criteria decision analysis extends decision theory to  High
(esp. MCDA) accommodate multiple, conflicting objectives. Provides

common units of value for both benefits and risks.
Principle of threes Too restricted and simplistic to be relevant to regulators. None
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Approach/method Relevance to regulators

QALYs/DALYs Current focus on health outcomes restricts their
relevance, but as they are multi-criteria models, they
could be developed for both regulators and health
technology assessors.

TURBO Too restricted; it is a simplistic multi-criteria model.

Kaplan-Meier estimator  Relevant to displaying changes in health states over time,
these can be used in Markov models or decision trees,
and can incorporate the utilities of the health states.

NNT/NNH These statistics don‘t provide a means for balancing
benefits against risks, and their focus on probability
differences can lead to logically unsound decisions.

Conjoint analysis Focuses on trade-offs between favourable and
unfavourable effects, particularly relevant to eliciting
patients’ preferences but doesn’t consider uncertainty.

Contingent valuation Converts all effects into monetary values, so not relevant
to regulators.

Stated preferences These methods for assessing utilities and probabilities,
can be relevant to any of the above models.

Usefulness

Medium

None
Medium

None

Medium

None

Low
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5. Conclusions

Our survey of methods and approaches recognises that human judgement plays an important role in
regulatory decision making. Research findings in cognitive psychology show that models can assist,
though not replace, the complex process of translating data into useable evidence, and combining
favourable and unfavourable effects and their uncertainties into an overall judgement about the
balance between benefits and risks. Our evaluations of 18 quantitative approaches, guided by criteria
of logical soundness, comprehensiveness, acceptability of results, practicality and generativeness, lead
us to these conclusions:

1.

Any quantitative method or approach requires a qualitative framework within which the model can
be effectively developed. Indeed, the qualitative approach may be sufficient by itself for simpler
benefit/risk decisions.

Only three quantitative approaches are sufficiently comprehensive to enable the benefit-risk
balance to be represented numerically (as a difference or a ratio) by incorporating the value or
utilities of favourable and unfavourable effects, along with probabilities representing the
uncertainties of those effects: Bayesian statistics, decision trees and influence/relevance diagrams,
and multi-criteria decision analysis (MCDA).

Five other approaches, while more restricted in scope, may well prove useful for particular cases:
probabilistic simulation when the focus is on uncertainty of effects; Markov processes and Kaplan-
Meier estimators for changes in health states over time; QALYS for modelling multiple health
outcomes; and conjoint analysis to explicate trade-offs among effects, especially for eliciting
patient preferences.

Combinations of approaches will prove useful in situations characterised by more than one of the
following issues: the magnitude of favourable effects, the seriousness of unfavourable effects,
uncertainty about the effects, transitions in health states and the time spent in each state, and
trade-offs between effects.

Sufficient examples and case studies in the literature reinforce our belief that structured processes,
both qualitative and quantitative, could further improve the transparency, communicability,
auditability, quality and speed of decision making.
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