

12 May 2025 EMA/151689/2025 Rev. 1* Committee for Medicinal Products for Human Use (CHMP)

Apixaban film-coated tablet 2.5 and 5 mg product-specific bioequivalence guidance

Draft Agreed by Pharmacokinetics Working Party (PKWP)	April 2018
Adopted by CHMP for release for consultation	31 May 2018
Start of public consultation	27 June 2018
End of consultation (deadline for comments)	30 September 2018
Agreed by Pharmacokinetics Working Party (PKWP)	June 2019
Adopted by CHMP	25 July 2019
Date of coming into effect	1 February 2020
Draft revision agreed by Methodology Working Party (MWP)	5 December 2024
Adopted by CHMP	12 May 2025
Date of coming into effect	1 December 2025

^{*} This revision addresses a change in recommendation on strength in line with the ICH M13A guideline

Keywords	Bioequivalence, generics, apixaban
----------	------------------------------------

Apixaban film-coated tablet 2.5 and 5 mg product-specific bioequivalence guidance

Disclaimer:

This guidance should not be understood as being legally enforceable and is without prejudice to the need to ensure that the data submitted in support of a marketing authorisation application complies with the appropriate scientific, regulatory and legal requirements.

Requirements for bioequivalence demonstration (PKWP)*

BCS Classification**	BCS Class: I I III Neither of the two
	Background: Apixaban is a compound with incomplete absorption, but the available data on solubility does not allow its BCS classification. If the applicant generates the solubility data and classifies the drug according to the BCS criteria as highly soluble, apixaban could be classified as BCS class III drug and a BCS-based biowaiver could be applicable.
Bioequivalence study design in case a BCS biowaiver is not feasible or applied	single dose cross-over
	healthy volunteers
	$oxed{\boxtimes}$ fasting $oxed{\square}$ fed $oxed{\square}$ both $oxed{\square}$ either fasting or fed
	Strength: 5 mg

	Background: Highest strength to be used for a drug with linear pharmacokinetics.
	Number of studies: One single dose study.
Analyte	$oxed{oxed}$ parent $oxed{\Box}$ metabolite $oxed{\Box}$ both
	$oxed{oxed}$ plasma/serum $oxed{\Box}$ blood $oxed{\Box}$ urine
	Enantioselective analytical method: \Box yes $oxtimes$ no
Bioequivalence assessment	Main pharmacokinetic variables: AUC _{0-t} and C _{max}
	90% confidence interval: 80.00 - 125.00%

^{*} As intra-subject variability of the reference product has not been reviewed to elaborate this product-specific bioequivalence guideline, it is not possible to recommend at this stage the use of a replicate design to demonstrate high intra-subject variability and widen the acceptance range of C_{max} . If high intra-individual variability ($CV_{intra} > 30$ %) is expected, the applicants might follow respective quideline recommendations.

^{**} This tentative BCS classification of the drug substance serves to define whether *in vivo* studies seems to be mandatory (BCS class II and IV) or, on the contrary (BCS Class I and III), the Applicant may choose between two options: *in vivo* approach or *in vitro* approach based on a BCS biowaiver. In this latter case, the BCS classification of the drug substance should be confirmed by the Applicant at the time of submission based on available data (solubility experiments, literature, etc.). However, a BCS-based biowaiver might not be feasible due to product specific characteristics despite the drug substance being BCS class I or III (e.g. *in vitro* dissolution being less than 85 % within 15 min (BCS class III) or 30 min (BCS class I) either for test or reference, or unacceptable differences in the excipient composition).