

- 1 20 February 2014
- 2 EMA/CHMP/792679/2013
- 3 Committee for Medicinal Products for Human Use (CHMP)
- 4 Concept Paper on revision of the points to consider on
- 5 pharmacokinetics and pharmacodynamics in the
- 6 development of antibacterial medicinal products
- 7 (CHMP/EWP/2655/99) and conversion to a CHMP
- 8 guideline

9

Agreed by Infectious Diseases Working Party	November 2013
Adopted by CHMP for release for consultation	20 February 2014
Start of public consultation	28 February 2014
End of consultation (deadline for comments)	31 May 2014

11 The proposed guideline will replace CPMP/EWP/2655/99

Comments should be provided using this <u>template</u>. The completed comments form should be sent to IDWPsecretariat@ema.europa.eu

Keywords Pharmacokinetics; pharmacodynamics; exposure-response; target attainment

14

10

12

13

15

1. Introduction

16

- 17 This Concept Paper proposes a revision of the CHMP's Points to consider on pharmacokinetics and
- 18 pharmacodynamics in the development of antibacterial medicinal products (CPMP/EWP/2655/99) and
- 19 its conversion into a full guideline.
- 20 CPMP/EWP/2655/99 was developed at a time when the application of analyses of pharmacokinetic (PK)
- 21 and pharmacodynamic (PD) relationships was gaining importance as a component of antibacterial drug
- 22 development. This Points to consider document lays out some principles for use of analyses of PK/PD
- 23 relationships to identify potentially effective dose regimens and discusses their possible impact on the
- 24 overall clinical data requirements. All of the principles discussed in this document remain applicable to
- 25 current antibacterial development programmes.
- 26 Since adoption of CPMP/EWP/2655/99 in 2000 there have been several important advances in the field
- 27 of PK/PD analyses and recognition of the wider applicability of knowledge of PK/PD relationships
- 28 beyond identification of potentially useful regimens for clinical evaluation. It is proposed to revise the
- 29 existing document to reflect these advances and to provide more detailed guidance on expectations for
- 30 the assessment and analysis of PK/PD and exposure-response relationships (i.e. the application of
- 31 pharmacometrics) in application dossiers.
- 32 The use of techniques such as hollow fibre models has been of particular assistance in identifying
- 33 combination regimens, including doses of beta-lactamase inhibitors required for protection of partner
- 34 beta-lactam agents from hydrolysis. There have also been advances in the use of PK/PD analyses to
- 35 select regimens that may minimise the risk of selecting for resistant organisms. In addition to these
- 36 clinical applications, the selection of interpretive criteria for susceptibility testing is very predominantly
- 37 driven by PK/PD analyses.
- 38 Another important aspect concerns the prospective validation of the correlation between the PK/PD
- 39 relationship and clinical and bacteriological outcomes. CPMP/EWP/2655/99 encourages attempts to
- 40 validate and confirm the PK/PD concept during the clinical development programme. This can be
- 41 accomplished by detailed analyses of exposure-response relationships. Experience gained since 2000
- 42 has demonstrated how knowledge of the exposure-response relationship can provide insight into issues
- 43 such as reasons for failure, adequacy of doses and dose adjustments in specific patient populations.
- 44 Finally, in the case of antibacterial agents that can address an unmet need, in particular with potential
- 45 to be clinically active against multidrug-resistant pathogens, the Addendum to CPMP/EWP/558/95 rev
- 46 2 stresses the undoubted importance of the contribution of PK/PD analyses to substantiate the dose
- 47 and to assist in the overall assessment of the clinical utility of new agents when the efficacy data that
- 48 can be obtained may be very limited.

54

- 49 For all these reasons and to provide a sound basis for the provision of CHMP scientific advice, there is a
- 50 pressing need to revise CPMP/EWP/2655/99 to clarify the EU regulatory expectations with regard to
- 51 the data that should be generated to support robust PK/PD analyses and to evaluate exposure-
- 52 response relationships during clinical studies, including situations in which the pre-licensure clinical
- 53 development programme may be very limited.

2. Problem statement

- 55 The content of CPMP/EWP/2655/99 covers the principles and the general approach to the use of
- analyses of PK/PD relationships in the development of antibacterial agents. The content of this
- 57 document remains correct and wholly applicable. However, this document does not provide detailed

- 58 guidance on the expectations with regard to the data required to support robust conclusions from
- 59 these analyses. In addition, it does not reflect the various uses that have been and may be made of
- 60 detailed PK/PD and exposure-response analyses, including their role in the development programmes
- 61 for antibacterial agents with potential to address unmet needs. It is now apparent that such guidance
- 62 is needed in order to describe and clarify the CHMP's position on various matters.

3. Discussion (on the problem statement)

- Most sponsors involved in developing new antibacterial agents and extending the indications or
- 65 modifying the dose regimens for approved agents have in-house or seek external expertise when
- 66 performing analyses of PK/PD relationships. Nevertheless, there are some crucial aspects of the data,
- analyses and interpretation of the findings that deserve attention in a regulatory guidance document.
- 68 For example, a critically important factor is the probability of target attainment (PTA) that would be
- 69 considered acceptable to support selection of a dose regimen for clinical evaluation. To some extent
- 70 this is a matter of opinion. Also, a given dose may provide very different PTA estimates for individual
- 71 pathogens and sometimes suggest the use of indication-specific regimens.
- Relatively few application dossiers have included detailed and robust analyses of exposure-response
- 73 relationships but, when they have been done, they have been very helpful in providing support for
- 74 dose regimens and in the investigation of possible reasons for variable cure rates in patient subsets.
- 75 These analyses may be of particular use in assessing the appropriateness of dose adjustments (such as
- in renal insufficiency), doses for special populations (including paediatric doses) and the potential
- 77 clinical importance of drug-drug-interactions.

63

87

- 78 There is now sufficient experience in these fields to support provision of more definitive guidance on
- 79 methodologies, interpretation and scope of use of PK/PD and exposure-response analyses as integral
- 80 parts of the development programme. CHMP advice is frequently sought on these matters and
- 81 establishing a clear position in a guideline would be helpful to both sponsors and regulators.
- 82 It should be noted that PK/PD analyses are at the cornerstone of setting interpretive criteria for
- 83 susceptibility testing, which is currently undertaken by EUCAST. However, the very same data needed
- 84 to support analyses to identify clinical doses are used to form the basis of analyses to support setting
- 85 interpretive criteria. EUCAST has already published guidance regarding their expectations for PK/PD
- analyses and these recommendations will be taken into account.

4. Recommendation

- The CHMP recommends that the existing *Points to Consider* document (CPMP/EWP/2655/99) should be
- 89 revised and converted into a full CHMP guideline to incorporate guidance on the following matters:
- 90 i. In-vitro and in-vivo (animal) models
- 91 The neutropenic mouse thigh (NMT) model is the standard/reference model for determining both the
- 92 PK/PD driver and the magnitude of the PK/PD driver. Guidance is needed on the use of other models
- and how their use could be justified based on how the model translates to clinical efficacy.
- 94 For example, to discuss the acceptability of the NMT, other animal models or in vitro hollow fibre
- models to establish the PK/PD targets for application to specific or across several different infection
- 96 types. Also, to consider the value of a model that mimics the clinical indication, such as a pneumonia
- 97 model when selecting regimens to treat lung infections.

- 98 Acceptability of PK/PD data from immunocompetent models requires discussion, including justifying
- 99 their use based on a strong rationale that they would predict efficacy in man (e.g. as applied to
- 100 evaluations of fluoroquinolones against pneumococci).
- 101 ii. Efficacy targets
- The selection of targets and application of indication-specific efficacy targets should be addressed,
- including (as a minimum) the following matters:
- To consider when it may be appropriate to estimate PTA to achieve stasis (e.g. perhaps for infections
- 105 with low bacterial burden and those treated in part by surgical intervention)
- 106 To consider the adequacy of 1-log kill as opposed to the very stringent 2-log kill target.
- 107 iii. Extrapolating PK/PD from one pathogen to another
- To develop expectations for provision of PK/PD analyses for the key pathogens involved in the clinical
- indication(s) to be sought. For example, for indications in which many individual species within a large
- grouping (e.g. Enterobacteriaceae) are relevant, to clarify expectations for PK/PD (e.g. confining to a
- 111 few representative species).
- 112 iv. Human PK data for use in Monte-Carlo simulations (MCS)
- There is a need to discuss the use of patient PK data in the model and/or to consider applying inflated
- 114 variance to healthy volunteer PK data if no PK data from relevant patient populations are available
- when first selecting a possible dose regimen. For example, when using MCS to identify doses for
- treating infections that most often occur in ICU (and especially ventilated) patients.
- 117 v. PTA rates

131

- Dose regimens for which MCS predict less than 90% PTA for one or more of the most important target
- 119 pathogens are sometimes proposed by sponsors. On occasion this is due to safety concerns at higher
- doses. There is a need to discuss the preferred PTA rates and the issues that may arise when the dose
- proposed for an indication may not be optimal for all infections.
- 122 vi. Exposure-response analyses
- 123 Analysing clinical and bacteriological outcomes by MIC or by dose are not usually helpful in confirming
- the suitability of the selected dose regimen. There is a need to discuss the value (including the various
- ways in which the analyses can be used) and feasibility (including the collection of adequate PK and
- 126 clinical status data) of incorporating analyses of exposure-response relationships into clinical studies.
- 127 In particular, to discuss the importance of these analyses in very limited clinical development
- 128 programmes (such as may apply to new agents that can address unmet need) and to assist in
- 129 identifying relationships between exposure and standard as well as exploratory outcome measures
- 130 (e.g. faster resolution of signs and symptoms or effects on laboratory biomarkers).

5. Proposed timetable

- 132 Adoption of Concept Paper by IDWP/CHMP by Q1 2014.
- 133 First draft revision agreed by IDWP and released for consultation by Q4 2014.
- 134 Finalisation during Q2-Q3 2015.

6. Resource requirements for preparation

- 136 The resources needed for this addendum relate to IDWP members who will develop the draft
- addendum and proceed to develop a final version after the consultation period.

7. Impact assessment (anticipated)

- 139 The most important impact is expected to be on clinical development programmes for antibacterial
- 140 agents.

135

138

141

8. Interested parties

- 142 The International Society of Anti-infective Pharmacology (ISAP)
- 143 EFPIA

9. References to literature, guidelines, etc.

- 1. CPMP/EWP/2655/99

2. CPMP/EWP/558/95 rev 2 and Addendum

3. Ambrose PG, Bhavnani SM, Rubino CM et al. Pharmacokinetics—pharmacodynamics of antimicrobial therapy: it's not just for mice anymore. *Clin Infect Dis* 2007; 44: 79–86.

4. Mouton JW, Ambrose PG, Canton R et al. Conserving antibiotics for the future: new ways to use old and new drugs from a pharmacokinetic and pharmacodynamic perspective. *Drug Resist Updat* 2011; 14:107–117.

5. Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. *J Antimicrob Chemother* 2005; 55: 601–607.

6. Mouton JW, Punt N, Vinks AA. Concentration—effect relationship of ceftazidime explains why the time above the MIC is 40 percent for a static effect *in vivo*. *Antimicrob Agents Chemother* 2007; 51: 3449–3451.

7. Mouton JW, Punt N, Vinks AA. A retrospective analysis using Monte Carlo simulation to evaluate recommended ceftazidime dosing regimens in healthy volunteers, patients with cystic fibrosis, and patients in the intensive care unit. *Clin Ther* 2005; 27: 762–772.

8. Kashuba AD, Nafziger AN, Drusano GL, Bertino JS Jr. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram negative bacteria. *Antimicrob Agents Chemother* 1999; 43: 623–629.

9. Highet VS, Forrest A, Ballow CH, Schentag JJ. Antibiotic dosing issues in lower respiratory tract infection: population-derived area under inhibitory curve is predictive of efficacy. *J Antimicrob Chemother* 1999; 43 (suppl A): 55–63.

10. Meagher AK, Passarell JA, Cirincione BB et al. Exposure—response analyses of tigecycline efficacy in patients with complicated skin and skin-structure infections. *Antimicrob Agents Chemother* 2007; 51: 1939–1945.

11. Ambrose PG, Grasela DM, Grasela TH, Passarell J, Mayer HB, Pierce PF. Pharmacodynamics of fluoroquinolones against *Streptococcus pneumoniae* in patients with community-acquired respiratory tract infections. *Antimicrob Agents Chemother* 2001; 45: 2793–2797.

12. Bhavnani SM, Passarell JA, Owen JS, Loutit JS, Porter SB, Ambrose PG. Pharmacokinetic—pharmacodynamic relationships describing the efficacy of oritavancin in patients with *Staphylococcus aureus* bacteremia. *Antimicrob Agents Chemother* 2006; 50: 994–1000.

13. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. *Clin Infect Dis* 1998; 26: 1–10.

14. Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of blactams, glycopeptides, and linezolid. *Infect Dis Clin North Am* 2003; 17: 479–501.

15. Tam VH, Kabbara S, Vo G, Schilling AN, Coyle EA. Comparative pharmacodynamics of gentamicin against *Staphylococcus aureus* and *Pseudomonas aeruginosa*. *Antimicrob Agents Chemother* 2006; 50: 2626–2631.

16. MacGowan AP, Noel AR, Tomaselli S, Elliott HC, Bowker KE. Pharmacodynamics of telavancin studied in an in vitro pharmacokinetic model of infection. *Antimicrob Agents Chemother* 2011; 55: 867–873.

17. Tam VH, Louie A, Deziel MR, Liu W, Drusano GL. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counter select resistance. *Antimicrob Agents Chemother* 2007; 51: 744–747.

205 206

207 208 209

209 210

210 211 212

213214215

216217218

- 18. Goessens WH, Mouton JW, Ten Kate MT, Bijl AJ, Ott A, Bakker-Woudenberg IA. Role of ceftazidime dose regimen on the selection of resistant *Enterobacter cloacae* in the intestinal flora of rats treated for an experimental pulmonary infection. *J Antimicrob Chemother* 2007; 59: 507–516.
- 19. Firsov AA, Vostrov SN, Lubenko IY, Drlica K, Portnoy YA, Zinner SH. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against *Staphylococcus aureus*. *Antimicrob Agents Chemother* 2003; 47: 1604–1613.
- 20. Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. *J Antimicrob Chemother* 2009; 64: 142–150.