

- 1 17 December 2015
- 2 EMA/CHMP/970057/2011, Corr. 1
- 3 Committee for Medicinal Products for Human Use (CHMP)
- 4 Guideline on the clinical development of medicinal
- 5 products intended for the treatment of pain
- 6 2nd Draft

9

10

Draft Agreed by Biostatistics Working Party	December 2012
Draft Agreed by Paediatric Committee	March 2013
Draft Agreed by Central Nervous System Working Party	May 2013
Adoption by CHMP for release for consultation	30 May 2013
Start of public consultation	1 June 2013
End of consultation (deadline for comments)	30 November 2013
Draft Agreed by Central Nervous System Working Party	October 2015
Adoption by CHMP for release for 2 nd consultation	17 December 2015
Start of public consultation	21 December 2015
End of consultation (deadline for comments)	31 March 2016

8 This guideline replaces guidelines CPMP/EWP/252/03 Rev. 1 and CPMP/EWP/612/00

Comments should be provided using this <u>template</u>. The completed comments form should be sent to <u>cnswpsecretariat@ema.europa.eu</u>.

Keywords	pain, neuropathic, nociceptive, chronic, acute, analgesia, mild,
	moderate, guideline, medicinal products

¹ Minor changes to clarify preferred statistical approaches.

an Union

Guideline on the clinical development of medicinal

products intended for the treatment of pain

13 Table of contents

11

14	1. Executive summary	4
15	2. Introduction (background)	4
16	3. Scope	6
17	4. Legal basis	6
18	5. General considerations for clinical development	7
19	5.1. Clinical Pharmacology	
20	5.1.1. Pharmacokinetics	
21	5.1.2. Pharmacodynamics	8
22	5.1.3. Interaction studies	
23	5.2. Clinical Efficacy	8
24	5.2.1. Methods to assess efficacy	8
25	5.2.2. Exploratory studies	9
26	5.2.3. Dose-Response Studies	10
27	5.2.4. Confirmatory efficacy studies (acute and chronic pain)	10
28	5.2.5. Investigation of maintenance of effect and development of tolerance	13
29	6. Specific Considerations for clinical development	13
30	6.1. Acute Pain	14
31	6.2. Chronic Pain	15
32	6.2.1. General considerations	15
33	6.2.2. Nociceptive Pain	16
34	6.2.3. Neuropathic Pain	17
35	6.2.4. Mixed Pain	17
36	6.2.5. Efficacy studies in chronic pain	17
37	6.3. Cancer Pain	
38	6.4. Breakthrough Pain	
39	6.5. Fibromyalgia Syndrome	
40	6.6. Other specific pain syndromes	21
41	7. Clinical safety evaluation	21
42	7.1. General considerations	21
43	7.2. Withdrawal reactions, dependence, abuse and misuse	22
44	8. Studies in special populations	23
45	8.1. Children	23
46	8.2 Flderly	24

47	References	25
48	Abbreviations	27
49		

1. Executive summary

- 52 This Guideline is intended to provide guidance on the clinical development of new medicinal products
- for the treatment of pain. It replaces and updates the separate guidelines on neuropathic
- 54 (CPMP/EWP/252/03) and nociceptive pain (CPMP/EWP/612/00). Pain syndromes have traditionally
- 55 been divided into the aforementioned two categories of neuropathic and nociceptive pain, based on
- 56 what seemed to be a clear mechanistic distinction. Many pain conditions can still be defined in such
- 57 terms but in other cases, for chronic pain in particular, the distinction is not clear and this needs to be
- reflected in diagnostic, therapeutic and regulatory approaches.
- 59 Despite many approved analgesics there is still a clinical need for new medicinal products with
- 60 improved efficacy and a better safety profile, especially in difficult to treat chronic pain conditions for
- which current available treatments offer only modest effectiveness at best.
- 62 The present document should be considered as a general guidance. The main requirements for the
- 63 development of medicinal products for the treatment of pain with regard to study design, patient
- 64 population and outcome measures are described. Specific issues, including difficult to treat chronic
- 65 pain patients and other specific patient groups (children and elderly) are addressed.
- Reflecting the broad discussions about the challenges of long-term clinical pain trials (e.g. high placebo
- 67 response, high drop-out rate), possible study designs in terms of use of placebo, study duration and
- 68 patient population have been reviewed and redefined where necessary. The main scope is to provide
- 69 guidance on the choice of clinical studies that are feasible and likely to produce interpretable results.
- 70 This document should be read in conjunction with other applicable EU and ICH guidelines (see section
- 71 4).

72

51

2. Introduction (background)

- 73 Pain is a major health problem that substantially reduces quality of life. Treatment of pain is a
- 74 challenge in clinical practice as not all patients respond sufficiently to available treatments and the
- 75 burden of adverse reactions may be high. Pain is a complex process involving interactions between
- 76 peripheral and central nervous system pathways with various neurobiological mechanisms being
- 77 involved. Although knowledge about the underlying mechanisms is constantly increasing many features
- 78 are not fully explored. There is a complex interplay between psychological and emotional factors and
- 79 the perception of pain.
- Pain has been viewed as a sensation and a perception and is defined by the International Association
- 81 for the Study of Pain (IASP) as an unpleasant sensory and emotional experience associated with actual
- or potential tissue damage, or described in terms of such damage¹. Pain is always subjective.
- There are many ways to categorise pain². All of them have certain applicabilities and limitations.
- 84 According to its duration pain can be described as acute or chronic. Acute pain is considered adaptive,
- 85 meaning that pain has a warning function. It is of short duration and declines with the healing of the
- underlying injury or disease (e.g. post-surgical pain). However, pain may persist beyond the expected
- 87 healing period and various complex mechanisms (e.g. persistent inflammation, peripheral or central
- 88 sensitization, neuroplastic events) may lead to a transition into chronic pain. Identifying a cut-off point
- 89 for such a transition is challenging however³. Chronic pain is generally regarded as maladaptive with
- 90 lack of survival value to the organism. Psychological, genetic^{4,5,6}, environmental or socioeconomic

- 91 factors may contribute to the risk of developing chronic pain. Chronic pain disorders such as chronic
- 92 low back pain (CLBP) are frequently associated with anxiety, depression, sleep disturbances, fatigue
- 93 and may have an impact on physical and social functioning. According to these considerations,
- 94 attempts to describe acute pain in terms of a defined period of time are not free of limitations.
- 95 However, not all pain conditions fit into the above categories. Cancer pain, where presence of cancer is
- 96 the cause of pain, should be regarded separately, as it has some specific features which are still not
- 97 fully elucidated. Although many cancer patients will develop chronic pain (mostly treatment related),
- 98 cancer pain characteristics are more adaptive than maladaptive (at least in the short to medium term).
- 99 Cancer pain is often indicative of tissue or organ destruction. Breakthrough pain (BTP) is described as
- a transitory exacerbation of pain in patients with otherwise stable opioid controlled pain. Whereas BTP
- in patients with cancer-pain is well-characterised, relatively little is known about the occurrence of
- breakthrough pain in patients with chronic non-cancer pain.
- 103 Pain can be classified as either nociceptive or neuropathic according to suspected underlying
- mechanisms and clinical characteristics. However, in practice this distinction is not always applicable as
- patients may feature mixed pain including both nociceptive and neuropathic pain characteristics^{7,8}. This
- accounts particularly for various chronic pain conditions as CLBP, but also for cancer pain.
- Nociceptive pain arises from actual or threatened damage to non-neural tissue and is due to the
- activation of nociceptors⁹. It can either be of somatic or visceral origin. Activation of nociceptors in
- tissues such as bone, joints, muscle or skin by mechanical, thermal or chemical insults leads to
- somatic pain 10. Superficial somatic pain is sharp and clearly localised (e.g. cuts) while somatic pain
- arising from deeper structures is dull and poorly localised (e.g. musculoskeletal injuries). Visceral pain
- is diffusely localised, associated with strong negative affective feelings and often accompanied by
- autonomic and somatomotor reflexes. It is referred into deep somatic tissues, to the skin and to other
- visceral organs. The referred pain may consist of spontaneous pain and mechanical hyperalgesia.
- 115 Underlying mechanisms are most likely different to those of somatic pain. Visceral nociceptors can be
- activated physiologically by mechanical (e.g. distension) and/or chemical (e.g. ischemia, inflammation)
- stimuli, but frequently no causal correlation can be identified 11,12. In clinical practice, the distinction
- between visceral and somatic pain might not always be clear as several mechanisms can be involved in
- 119 various pain conditions¹³.
- 120 Neuropathic pain is caused by a lesion or disease of the central or peripheral somatosensory system¹⁴
- triggering changes in signal processing in the central nervous system (CNS) with resulting electrical
- 122 hyperexcitability and abnormal impulse generation at ectopic pacemaker sites. Complex mechanisms
- such as peripheral or central sensitization are involved. Central mechanisms may be involved in both
- 124 peripheral and central neuropathic pain, but peripheral mechanisms are not generally involved in
- 125 central neuropathic pain. Neuropathic pain is commonly regarded as a maladaptive functioning of a
- damaged pain processing system, although acute postsurgical pain may also feature neuropathic pain
- 127 characteristics¹⁵. Examples of central neuropathic pain are post-stroke or spinal cord injury neuropathic
- pain, while diabetic peripheral neuropathy (DPNP) or post-herpetic neuralgia (PHN) are common
- peripheral neuropathic pain conditions. Metabolic, traumatic, infectious, toxic, inflammatory and
- 130 various other aetiological factors can be involved. Nerve injuries cause not only negative signs, such as
- 131 hypoaesthesia, numbness or decreased responsiveness to stimuli, but also positive signs, such as
- spontaneous pain or increased response to provocative stimuli¹⁶. Features that are characteristic of,
- but not exclusive to, neuropathic pain include spontaneous burning, electrifying or shooting pain,
- paraesthesia, hyperalgesia and allodynia. Symptoms may be more or less persistent, fluctuating or
- 135 periodic.

- 136 Various pain conditions do not fit well in the above categories as the underlying mechanisms are more
- 137 complex. Inflammatory pain (e.g. in rheumatoid arthritis) is typically accompanied by an immune
- 138 response and mediated by pro-inflammatory molecules while functional pain (e.g. non-cardiac chest
- 139 pain) has an apparent lack of an identifiable neurological deficit or peripheral abnormality.
- 140 The terms mild, moderate and severe pain are commonly used to describe pain intensity. However, as
- pain is a subjective experience, it is difficult or impossible to measure pain severity objectively. Thus,
- patient self-reported outcome measures such as Visual Analog Scale (VAS) or Numeric Rating Scale
- 143 (NRS) are widely used in clinical and investigational settings to obtain information about the severity of
- pain. However, focusing only on the absolute values might be misleading. Reported pain intensities
- should always be evaluated in the light of the underlying pain condition.
- The aforementioned terms reflect a selection of current conventions which are used in this document.
- With increasing knowledge about the various pathophysiologies of pain, however, other approaches¹⁷
- of classifying different pain conditions or target populations might in future come to the fore with the
- challenge of the development of disease modifying therapies.

3. Scope

150

161

- 151 The scope of the present document is to provide guidance on the clinical development of new medicinal
- products intended for the treatment of nociceptive, neuropathic or mixed pain. Recent experience with
- approval or scientific advice procedures as well as new results in basic science and clinical guidelines
- reflecting current medical practice has been taken into consideration with the revision of the guidance
- document. Requirements with regard to study design, duration, target patient population and outcome
- measures are described.
- 157 The clinical investigation of medicinal products for the treatment of other pain syndromes that have
- major elements other than nociceptive or neuropathic pain (including migraine for which there is a
- 159 separate guideline) are not the focus of this guideline, although some general guidance is given on the
- data requirements to support e.g. claims for fibromyalgia.

4. Legal basis

- 162 This guideline has to be read in conjunction with Directive 2001/83 as amended and other EU and ICH
- 163 guidelines and regulations, especially:
- Note for Guidance on Population Exposure: The Extent of Population Exposure to assess Clinical Safety
- 165 CPMP/ICH/375/95 (ICH E1),
- 166 Note for Guidance on Dose-Response Information to Support Drug Registration CPMP/ICH/378/95
- 167 (ICH E4),
- Note for Guidance on Good Clinical Practice CPMP/ICH/135/95 (ICH E6),
- Note for Guidance on Studies in support of special populations: geriatrics CPMP/ICH/379/99 (ICH E7)
- and the Questions and Answers -EMEA/CHMP/ICH/604661/2009
- Note for Guidance on General Considerations for Clinical Trials CPMP/ICH/291/95 (ICH E8)
- Note for Guidance on Statistical Principles for Clinical Trials CPMP/ICH/363/96 (ICH E9)
- Note for Guidance on Choice of Control Group in Clinical Trials CPMP/ICH/364/96 (ICH E10)

174	Note for	quidance on	clinical	investigation	of medicinal	products	in the	paediatric	population	
-----	----------	-------------	----------	---------------	--------------	----------	--------	------------	------------	--

- 175 CPMP/ICH/2711/99 (ICH E11)
- 176 Guideline on adjustment for baseline covariate EMA/295050/2013 Draft
- 177 Guideline on the choice of the non-inferiority margin CPMP/EWP/2158/99
- 178 Guideline on Missing Data in Confirmatory Clinical Trials EMA/CPMP/EWP/1776/99 Rev. 1
- 179 Pharmacokinetic studies in man EudraLex vol. 3C C3A
- 180 Guideline on the non-clinical investigation of the dependence potential of medicinal products -
- 181 EMEA/CHMP/SWP/94227/2004
- Guideline on the Role of Pharmacokinetics in the Development of Medicinal Products in the Paediatric
- Population EMEA/CHMP/EWP/147013/2004 Corrigendum
- Reflection paper on the extrapolation of results from clinical studies conducted outside the EU to the
- 185 EU population EMEA/CHMP/EWP/692702/2008
- 186 Guideline on the Investigation of Drug Interactions CPMP/EWP/560/95/Rev. 1 Corr
- 187 Guideline on Clinical Development of Fixed Combination Medicinal Products EMA/CHMP/281825/2015
- 188 Guideline on the Pharmacokinetic and Clinical Evaluation of Modified Release Dosage Forms -
- 189 EMA/CHMP/EWP/280/96 Corr1
- 190 Note for Guidance on the Clinical Requirements for locally applied locally acting Products containing
- 191 known Constituents CPMP/EWP/239/95
- 192 Guideline on clinical investigation of medicinal products used in the treatment of osteoarthritis -
- 193 CPMP/EWP/784/97 Rev. 1
- 194 Guideline on Clinical Investigation of Medicinal Products for the Treatment of Migraine
- 195 CPMP/EWP/788/01 Rev. 1

201

196 Guideline on quality of transdermal patches (EMA/CHMP/QWP/608924/2014

197 5. General considerations for clinical development

- 198 The following considerations should be taken into account for the development program for medicinal
- 199 products intended for the treatment of pain.

5.1. Clinical Pharmacology

5.1.1. Pharmacokinetics

- The pharmacokinetic properties of the drug should be investigated in accordance with the relevant
- 203 guidelines. Appropriate studies should be conducted according to the intended indications, treatment
- duration, administration route, delivery system and target population.
- As pain itself can substantially affect drug absorption by effects on gastro-intestinal motility and tissue
- perfusion, there should be sufficient evaluation of pharmacokinetics in the target patient population.

- 207 If strong opioid products are formulated as oral prolonged release products, careful evaluation of the
- 208 potential for dose-dumping (e.g. in connection with alcohol) is of particular importance. Similar effects
- should be investigated with transdermal delivery systems (e.g. exposure to heat).

210 **5.1.2. Pharmacodynamics**

- A clear understanding of the mechanism of action of new agents for the treatment of pain is important
- as it contributes to confidence that positive findings in the efficacy trials are reliable. The development
- and validation of specific pain models and biomarkers characterising the different types of pain and
- 214 exploration of pharmacogenomics aspects to identify patients more likely to respond to agents with
- 215 specific mechanisms of action is encouraged. This applies particularly for chronic pain conditions.
- 216 Any secondary CNS effect of the product (e.g. sedative, anxiolytic or antidepressant effects) that could
- 217 be relevant to the reliable evaluation of efficacy or safety should be identified and its impact should be
- 218 taken into account in the analyses.

5.1.3. Interaction studies

- 220 Both pharmacokinetic and pharmacodynamic interactions should be evaluated in accordance with the
- 221 relevant guidelines. Efficacy and safety implications of concomitant use of drugs likely to be co-
- administered in clinical practice should be evaluated as appropriate. Interactions with alcohol and other
- 223 CNS active compounds may be of relevance.

5.2. Clinical Efficacy

5.2.1. Methods to assess efficacy

226 <u>Pain Measurement:</u>

219

224

- There are a number of scales to assess pain but none of them is completely free of limitations.
- As pain is always subjective, self-assessment scales provide the most valid measure of the experience.
- 229 At present no validated objective measures are available. Pain intensity (PI) is still the key measure of
- efficacy of an analgesic drug and should always be reported. Among the pain rating scales the Visual
- analogue scale (VAS), numeric rating scale (NRS) and verbal rating scale (VRS) have been extensively
- 232 used and validated¹⁸.
- 233 The VAS is a continuous variable on a 10 cm line representing "no pain" to "worst imaginable pain"
- whereas the NRS is a discrete variable describing pain level with numbers from 0 to 10. Due to
- practical aspects the latter is the most commonly used scale. The VRS, consisting of a series of verbal
- pain descriptors, has been shown to lack sensitivity in detection of changes in PI when compared with
- 237 VAS or NRS.
- The main shortcoming of the single-item pain rating scales is that they do not cover the whole range of
- pain qualities. Therefore, in addition multidimensional outcome measures are recommended especially
- for trials in chronic pain. Multidimensional assessment tools have been developed to assess not only
- pain intensity, but also sensory and affective qualities of pain. They may reveal differential effects of
- treatments on different pain components. The McGill Pain Questionnaire (MPQ, SF-MPQ) is the one
- 243 most frequently used in chronic pain and has been demonstrated to be a reliable and valid
- measurement tool. The Neuropathic Pain Scale (NPS) and Neuropathic Pain Symptom Inventory (NPSI)

- 245 have been specifically developed and validated for the evaluation of neuropathic pain²¹ and are
- recommended for the evaluation of treatment effects on neuropathic symptoms. In general, validated
- 247 disease-specific pain measurement tools are preferred.
- 248 Measurement of physical functioning:
- As chronic pain interferes with daily activities additional patient reported outcome measures (PROs) of
- 250 physical functioning are recommended²² as secondary endpoints. They typically assess multiple
- aspects of function, including activities of daily living. Disease specific measures (e.g. Oswestry
- 252 Disability Index for low back pain) have not been developed for many chronic pain conditions and the
- results are not applicable to other pain conditions. More general Health-related quality of life (HRQOL)
- tools are assessing the patient's perception of the impact of disease and treatment on daily life,
- 255 physical, psychological and social functioning and well-being. The Multidimensional Pain Inventory
- 256 (MPI) and the Brief Pain Inventory (BPI) both provide reliable and valid measures in diverse chronic
- pain conditions. The SF-36 Health Survey is the most commonly used generic measure of HRQOL and
- 258 has been used in numerous clinical trials of diverse medical and psychiatric disorders.
- 259 <u>Measurement of emotional functioning:</u>
- 260 Co-morbid anxiety and depression are common in chronic pain patients. Mood changes, anxiety and
- sleep disturbance may change pain perception and might affect efficacy assessments. Furthermore,
- 262 pharmacodynamic effects of the investigational treatment may influence these comorbidities. The
- 263 impact on the observed measures of pain should be evaluated where appropriate. Thus, a basal
- psychological and psychosocial evaluation with appropriate measures (e.g. BDI, POMS, HADS, MOS-
- 265 SS) is strongly recommended for chronic pain trials.
- 266 <u>Measurement of Global Improvement and satisfaction with treatment:</u>
- The Clinical Global Impression of Change (CGI-C)²³ reported by the patient or determined by the
- 268 physician are useful supportive general indicators of the overall perceived benefit of treatment in
- 269 chronic pain trials²⁴.

5.2.2. Exploratory studies

- 271 In the early stages of drug development, models in healthy subjects with a controlled pain stimulus
- 272 can be useful to test therapeutic activity. However, intensity and duration of the pain stimulus is
- limited for ethical reasons. As pain is a highly activating stimulus, sedating and respiratory depressing
- 274 effects of CNS active drugs are frequently less pronounced in patients. To prevent healthy subjects
- from over-sedation or respiratory depression an opioid antagonist may be used in early studies of
- 276 opioids.

- 277 Exploratory clinical trials in patients are normally required. It is acceptable for the inclusion and
- 278 exclusion criteria to specify a more limited patient population in terms of patient characteristics that
- 279 might be predictive of the detection of a treatment effect.
- A randomised parallel group design is generally preferred but requires a relatively large sample size.
- For exploratory purposes other designs that are likely to require fewer patients to achieve the trial's
- 282 objectives are acceptable. Cross-over designs with appropriate precautions to minimise carry over
- 283 effects may be appropriate in chronic or regular recurrent pain of consistent severity. Also, randomised
- withdrawal studies may be a possible approach in chronic pain, except where withdrawal symptoms

285 (e.g. opioids) might confound evaluation. Enriched enrolment strategies are also acceptable at this stage.

5.2.3. Dose-Response Studies

- 288 It is necessary to characterize the dose-response and/or exposure-response profile of a new medicinal
- 289 product. Studies should be designed to inform the appropriate starting dose and titration schedule, and
- 290 to provide information on time to onset of effect, time to peak-effect and duration of effect. Depending
- on the active substance, identification of the highest tolerated dose might not always be possible as it
- may depend on pain intensity and/or duration of treatment (e.g. with opioids). Ceiling effects should
- 293 be evaluated.

287

304

- 294 Flexible dosing trials are insufficient to provide data on dose-response. However, conventional fixed
- dose-response studies are not always feasible. Especially in the treatment of chronic pain with strong
- 296 opioids, the dose has to be titrated to clinical response and may vary widely according to pain intensity
- and the development of tolerance.
- 298 Pivotal clinical trials might incorporate more than one fixed dosage arm to provide additional dose-
- 299 response information provided that an acceptable number of patients are treated with the proposed
- 300 dosage for an appropriate duration.
- For medicinal products established in other therapeutic areas (e.g. epilepsy, depression) the dose-
- 302 response for a pain indication may be substantially different. Thus, separate dose finding studies are
- required unless otherwise clearly justified, considering pharmacodynamic, efficacy and safety aspects.

5.2.4. Confirmatory efficacy studies (acute and chronic pain)

305 <u>Choice of comparator (monotherapy trials)</u>

- 306 In general a randomised controlled parallel group trial is the most appropriate design for confirmatory
- 307 evidence of efficacy in pain trials. Due to a high and variable placebo response rate in pain trials,
- 308 placebo controlled superiority trials are in principle necessary. In most situations it is advisable also to
- 309 include an active comparator of known effectiveness to give context to the measured differences from
- 310 placebo and to facilitate an evaluation of the clinical relevance of those differences. It is not usually
- 311 necessary formally to demonstrate non-inferiority to the active comparator but estimates of treatment
- 312 effect differences between active comparator and new medicinal product, as well as active comparator
- and placebo, should be reported with confidence intervals. The choice of an active comparator as well
- as its dose should be adequately justified according to the target indications, severity of pain and
- 315 conventions of clinical practice. Posology, mode of action, time to onset of efficacy, duration of action
- and safety aspects should be taken into account.
- 317 Trials aiming to show superior efficacy to an active comparator are acceptable but even in this case it
- 318 may be preferable to include a placebo arm in order to evaluate the absolute efficacy and safety profile
- of the new agent.

320 Add-on treatments and combination treatments

- In cases where conventional treatment is insufficient it may be sensible to develop add-on therapies.
- This reflects the polypharmacy common in the clinical management of pain. The mechanism of action
- of the new drug should be complementary to the agent to which it is added. Patients should be
- 324 randomised to receive either active test treatment or placebo in addition to a stable optimised dose

- regimen of open label background therapy. Indications supported by these trials will in general be
- 326 limited to the tested add-on regimen unless extrapolation to other background therapies can be clearly
- 327 justified.
- 328 The development of fixed combination products for the treatment of pain should be conducted in
- 329 accordance with the relevant guidelines. The benefits of the combination over the single active
- 330 substances and optimal dose regimen should be clearly demonstrated, considering both efficacy and
- 331 safety.
- 332 <u>Trial population</u>
- 333 Studying a diverse array of patients in pain trials can be problematic; such heterogeneity tends to
- reduce the trial's chance of success. Efficacy should in general therefore be studied in a trial population
- that is homogenous with respect to diagnosis and pain intensity, representing a sub-set of the full
- 336 range of patients for whom the treatment is expected to be indicated. The trial results may then be
- as extrapolated as appropriate to a wider population (see section 6). If more than a single pain model
- and/or major category of pain severity are included, it is generally advised to power the trials to show
- 339 statistically significant efficacy for each of these major subgroups. In particular, efficacy in severe pain
- 340 is likely to require confirmation independent from data in less severe pain. Randomisation should be
- 341 stratified accordingly. Patients with significant pain disorders other than the target disease or with
- disorders that could interfere with pain assessments should be excluded. Likewise, patients with
- anxiety or depression should in general be excluded if the tested drug is expected to have a significant
- 344 effect on these conditions. However, the inclusion and exclusion criteria should not be so restrictive
- that the applicability of the trial results to a wider patient population for which the drug is intended
- 346 might be problematic. Stratification according to baseline disease and patient characteristics, including
- previous treatments, should be considered where necessary.
- 348 Strategies such as unbalanced randomisation to maximise the number of patients enrolled in the test
- treatment arm may be acceptable provided the study remains adequately powered.
- 350 Rescue medication
- 351 Adequate rescue medication of known effectiveness in the studied pain model should always be
- available to patients in pain trials. It is essential that the protocol standardization does not result in
- patients experiencing excessive pain without access to pain relieving treatment.
- 354 The choice of the drug, dose and details of the method of administration of rescue medication should
- 355 be adequately justified and clearly pre-specified according to the target indications, severity of pain
- and conventions of clinical practice. Rescue medication should have an appropriate speed of onset and
- duration of effect. The use of more than one type of rescue medication is discouraged.
- 358 The study report should clearly outline the administered rescue medication and the impact on the trial
- results should be explored as appropriate in the analyses of efficacy and safety.
- 360 Need for rescue medication as indicator of treatment failure may be defined as a trial endpoint in some
- 361 study designs (e.g. dose requirement, time to rescue or time to non-trial analgesia as appropriate).
- 362 Because of the complex interplay between pain scores, randomized trial medication and rescue
- medication, the question(s) of scientific interest of pain trials need to be carefully and clearly defined.
- 364 <u>Concomitant therapy</u>
- 365 Treatments that might modulate the perception of pain or patients' response to pain, either directly or
- by interacting with the investigational products should generally be avoided during the trial. This

- includes not only medicinal products (including over the counter and alternative therapies), but also
- 368 nondrug therapies such as physical techniques, transcutaneous electrical nerve stimulation (TENS),
- 369 surgery or psychological / behavioural support. Study designs should include appropriate washout
- 370 periods of sufficient duration. Where unavoidable, concomitant treatments should be standardised and
- 371 should remain stable for a defined period before and during the trial. Stratification for important
- 372 concomitant therapies should be considered where necessary. The potential impact of the concomitant
- therapies on clinical efficacy measures must be evaluated.
- 374 <u>Timing of pain assessment</u>
- 375 This depends on the pain condition under investigation and should be justified and standardised across
- the confirmatory trials. Assessments have to be adapted to the time course of pain (e.g. intermittent
- or paroxysmal, essentially constant with varying levels of intensity or single episode). In most patients
- pain levels vary throughout the day, so that in chronic pain conditions twice daily (morning / evening)
- assessments are recommended. Nocturnal pain should be reported where relevant.
- 380 Depending on the clinical situation, pain measurements should be performed not only at rest but also
- 381 on movement or after applying an appropriate stimulus. Pain on movement is very important for
- function, whereas pain at rest correlates more with comfort. Worst pain and average pain during a
- defined time interval should be reported as appropriate, ensuring that the difference is clear to the
- 384 patient.
- 385 The use of well-designed diaries for patient reported pain scores, for long-term trials, is highly
- 386 recommended. The use of electronic devices is encouraged. Recall periods should be kept sufficiently
- 387 short to ensure reliable recording of pain severity. Factors that might affect recall of pain and diary
- 388 protocol adherence should be anticipated (e.g. timely completion of diary entries).
- 389 <u>Defining primary efficacy measures and questions of scientific interest</u>
- 390 Precise descriptions of the questions of scientific interest should follow from the trial objectives and
- 391 should in turn inform the trial design and statistical analysis. The manner in which the treatment
- 392 effect will be measured and quantified should be clearly specified, in particular with respect to post-
- 393 <u>randomisation events such as use of rescue medication.</u>
- 394 The exact way in which the primary efficacy measure is derived from the reported pain scores will
- depend on the clinical setting and must be justified and clearly pre-specified in the protocol. Mean
- differences of pain intensity (PID) at specific time points, or in long-term studies the weekly averages
- 397 of the daily measurement compared to baseline, are commonly used for analysis. Alternative
- 398 approaches are based on the analysis of the area under the time-analgesic effect curve for pain
- intensity (SPID) or pain relief (TOTPAR). These summary measures reflect the cumulative response to
- 400 the intervention, but do not provide information regarding onset or peak of analgesic effect.
- 401 Following directly from the specified scientific question of interest, the statistical analysis plan should
- 402 clearly define how key factors that are expected to have an effect on pain measures (other than
- 403 treatment allocation) are to be accounted for in the analyses. This includes in particular the use of
- 404 rescue medication, which will typically be different in the active and placebo groups. Measures of the
- 405 temporal aspects of the treatment of pain, such as time to onset of meaningful pain relief and its
- duration, may be considered as secondary outcome measures.
- 407 Responder analyses

- 408 Responder analyses summarise the outcome for each subject as a success or a failure (responder or
- 409 non-responder). Responder criteria should be pre-defined for the primary efficacy measure according
- 410 to a difference that is considered clinically meaningful to patients with the investigated pain condition.
- 411 It is important to note that this will depend on pain condition and symptom severity. For example
- complete pain relief might be a reasonable treatment objective for headache, whereas a 30 or 50
- 413 percent reduction in pain intensity compared to baseline might be appropriate in other pain conditions.
- Patients who discontinue the trial prematurely or who require more than a pre-specified amount of
- 415 rescue medication should generally be defined as non-responders. It is also recommended to pre-
- specify responder analyses for key secondary efficacy measures and global measures.

5.2.5. Investigation of maintenance of effect and development of tolerance

- 418 During the development of new medicinal products for the treatment of pain, it is necessary to
- 419 establish the extent to which efficacy is maintained over time, including how dose requirements may
- 420 change due to the development of tolerance.
- The development of tolerance (i.e. the need for increasing doses to maintain a constant response) can
- 422 normally be characterised in uncontrolled long term trials in which dose is titrated according to clinical
- 423 response. If the data are suggestive of the development of tolerance, this may need to be studied
- further depending on what is known about the class of drug and its mechanism of action.
- 425 Maintenance of efficacy should preferably be evaluated in a randomized withdrawal trial design, in
- 426 patients who responded satisfactorily to treatment e.g. in pivotal efficacy studies. Following a stable
- open label treatment of at least 6 months, patients are randomised to receive either active or placebo.
- 428 The relapse of symptoms according to pre-specified criteria is the trial endpoint and patients can then
- 429 re-start active treatment. Time to symptom relapse and proportion of relapsed patients at a pre-
- specified time post randomization are appropriate efficacy endpoints. Other study designs might be
- 431 acceptable if adequately justified.
- The requirement to establish maintenance of efficacy of a new medicine should not be restricted to
- 433 medicinal products intended primarily for long term use but should also take into account the likelihood
- of prolonged and repeated use of medicinal products that are primarily intended for short term use.
- 435 Withdrawal reactions, dependence, abuse and misuse are considered in the safety section (7.2).

6. Specific Considerations for clinical development

- 437 Confirmatory efficacy studies should be performed in essentially homogeneous patient populations
- exhibiting a particular type of pain (of predominantly nociceptive, neuropathic or mixed origin) with the
- intention to extrapolate the results to a wider population. The respective underlying diseases of the
- 440 trial population are called "pain models" in the following sections. Pain models should reflect pain
- origin, pain intensity and duration of the anticipated clinical use and claimed indication of the new
- 442 product. As pain scores always represent subjective categories of pain severity with a high inter-
- individual variability, the underlying medical condition is an essential consideration in selecting a pain
- 444 model.

436

- The ideal strategy is the development of a general analgesic which is effective in the whole range of
- pain conditions. However, taking into account the increasing knowledge about different mechanisms
- underlying different pain conditions, this aim is not likely to be achievable for all analgesic substances.
- There might be selective efficacy according to the mechanism of action. In these cases the clinical

- 449 confirmative development program should depend on the intended use of the medicinal product and
- 450 the indications sought. The wording of the indications should be in accordance with common
- 451 conventions in clinical practice.
- 452 The limitations of the established classification acute and chronic pain present significant challenges in
- 453 designing development programs for medicinal products in the treatment of pain, especially chronic
- 454 pain. As described previously, acute adaptive pain conditions in need of adequate pharmacological
- 455 treatment may also be of extended duration. Distinguishing these patients from maladaptive chronic
- pain, in whom the underlying pathophysiology is different, can be difficult and is currently uncommon 456
- 457 in general clinical practice.
- 458 Recommendations on how to address these challenges are outlined in the following chapters.
- 459 Alternative approaches are applicable if adequately justified.

6.1. Acute Pain

- 461 Acute pain is in general of nociceptive origin. The efficacy profile of a new product should normally be
- 462 established in separate studies for both somatic and visceral nociceptive pain. The clinical trial
- 463 requirements depend on the mechanism of action and the intended patient population. Study duration
- 464 may vary from hours to weeks in acute pain trials, depending on the pain model or clinical situation
- 465 being studied.

460

472

487

- 466 The full range of pain intensities for which the product is intended to be indicated (i.e. mild, moderate,
- 467 severe) should be studied in the confirmatory clinical trials.
- 468 The following general principles can be stated for the data requirements to support different types of
- 469 indications in acute pain:
- 470 If only a single pain model is studied the approvable indication will in principle be limited to the
- 471 specific condition studied unless extrapolation to other conditions can be clearly justified.
- To justify a general indication for the treatment of acute pain, efficacy needs to be demonstrated 473 independently in models of both somatic and visceral pain, or in models of somatic pain and mixed
- 474 somatic/visceral pain.
- 475 If models of just somatic or just visceral pain are studied, the indication will normally be restricted 476 accordingly.
- 477 The extent to which efficacy data can be extrapolated across pain models will depend on the known
- 478 properties of the drugs and others in its class. For a NSAID or opioid without substantially new
- 479 characteristics, one study in each of two different models could suffice, provided the results are
- 480 persuasive. For a new agent with a novel mechanism of action a larger number of clinical efficacy
- 481 studies covering a wider range of pain models may be required. The adequacy of the evidence of
- 482 efficacy will ultimately depend on how compelling the results are when the trials are completed; it is
- 483 not possible to specify in this guideline the numbers of trials that might be required.
- 484 Examples of acceptable pain models are given in Table 1. Patient populations with other acute pain
- 485 conditions may be acceptable if adequately characterised and justified, either as pivotal evidence of
- 486 efficacy or as supportive evidence.

Table 1: Examples of pain models appropriate to be used in efficacy studies in acute pain

		(in general NRS \leq 6, VAS \leq 60 mm)	(in general NRS ≥4, VAS ≥ 40 mm)
del	Somatic pain	Tooth extraction Minor cutaneous surgery	Surgical removal of impacted 8th teeth Major orthopedic surgery Major skeletal trauma Dressing changes in burns pain
Pain Model	Visceral pain	Primary dysmenorrhea	Acute pancreatitis Renal / biliary colic
Pai	Both somatic and visceral pain	Minimally invasive (laparoscopic) abdominal/gynecological surgery	Abdominal / thoracic surgery

For locally acting products trials should include pain models representing the intended use of the product (e.g. ankle sprains as a model for an NSAID containing cream or gel).

In dysmenorrhea, in which pain is regularly recurrent and of predictable intensity, a crossover design with at least 4 treatment periods is recommended; parallel designs are also acceptable.

For trials in which the medicinal product is administered by an invasive procedure (e.g. spinal or epidural injection), a placebo group may not be appropriate due to ethical concerns.

In studies evaluating efficacy in acute pain following surgery or trauma, patients are likely to have concomitant sedative medication. Appropriate tools (e.g. RASS or Ramsay score) should be used to determine the degree of patient sedation and its impact on the treatment effect should be taken into account in the analyses.

If a new active substance intended for use in acute pain can potentially also be used for longer term treatment, data on the development of tolerance and maintenance of efficacy are required. If the mechanism of action is fully or partly novel, long-term trial(s) in an appropriate pain model will be necessary. If the mechanism of action is well characterized (e.g. conventional NSAIDs or mu agonist opioids) extrapolation of data from products in the same class can be accepted on a case by case basis. In the case of new formulations of existing active substances, additional data on tolerance and maintenance of efficacy could potentially be required if these are not already well characterised.

6.2. Chronic Pain

6.2.1. General considerations

Chronic pain disorders may be of nociceptive or neuropathic origin and many patients featuring both components may be described as having chronic mixed pain. These conditions often are difficult to treat and the response to available pain treatments is highly variable. Multiple and complex mechanisms are frequently involved, such as psychological or socioeconomic factors. Associated disorders such as depression, anxiety and sleep disturbances may have an additional impact.

Better characterisation of the mechanisms predominant in each individual patient and the tailoring of specific therapies accordingly, could in principle result in greater therapeutic success than has been achieved to date in the treatment of chronic pain. Thus, the development of new medicinal products may increasingly be targeted at particular subgroups of patients for whom the mechanism of action of the new medicine is most suited.

- At present the contribution of nociceptive and neuropathic components in patients with chronic pain is
- 519 not routinely evaluated in general clinical practice. "Chronic mixed pain" is therefore currently not
- encouraged as a target indication as its relevance to many prescribers is not entirely clear. "Chronic
- pain" is the preferred target indication. Disease specific indications may also be possible where
- 522 appropriate.

530

531

532

533

534

535

536

537

538

539

540

541

- 523 It is recognized that in the past the term "chronic pain" included conditions we now recognize as
- 524 chronic mixed pain, as well as long-standing nociceptive pain (somatic and visceral), neuropathic pain
- 525 conditions, and to a certain extent cancer pain.
- 526 The clinical development programme should be tailored to the intended use and target indications of
- the new medicinal product. The following general principles can be stated for the data requirements to
- 528 support different types of indications in chronic pain:
 - If an appropriate single pain model is studied the indication will normally be limited to the specific condition studied (e.g. CLBP). If the condition is one in which pain is typically mixed it will be necessary to demonstrate an effect on both nociceptive and neuropathic components (refer also to section 6.2.5 and 5.2.1).
 - If models of just neuropathic pain are studied, the indication will be restricted accordingly.
 - To justify a general indication for the treatment of chronic pain, compelling evidence of efficacy in both neuropathic and nociceptive pain components has to be provided. The adequacy of the evidence will ultimately depend on the complete development program and on how compelling the results are in the end. The extent to which efficacy data can be extrapolated across pain models will depend on the known properties of the drug and others in its class and needs to be considered on a case by case basis. Examples for suitable pain models in the different categories of pain of long duration are discussed in the following.

6.2.2. Nociceptive Pain

- Long-standing nociceptive pain conditions such as osteoarthritis of the hip and/or knee do not always
- feature maladaptive characteristics. Over time, however, inflammatory processes and central
- sensitization may lead to a smooth transition into chronic pain with nociceptive and neuropathic pain
- 545 characteristics. In clinical practice it is difficult to characterise these different pathophysiological
- aspects in individual patients. Thus, unless maladaptive characteristics are clearly shown, these pain
- models are not regarded as appropriate to support a chronic pain indication.
- Patients with long-standing nociceptive pain without prominent maladaptive features do however form
- an appropriate patient population for trials to characterise maintenance of efficacy for medicinal
- products intended primarily for the treatment of acute pain. Such trials could support SPC advice on
- the recommended duration of treatment but could not support a claim for chronic pain.
- When designing trials in patients with osteoarthritis of the knee or hip, the fluctuating and flaring
- character of the disease and associated symptoms needs to be taken into account in order to avoid an
- overestimation of the treatment effect (regression to the mean). The recommendations of the
- 555 Guideline on clinical investigation of medicinal products used in the treatment of osteoarthritis
- 556 CPMP/EWP/784/97 Rev. 1 should be taken into account.

6.2.3. Neuropathic Pain

557

565

566

567

568

569

570

- Neuropathic pain is frequently resistant to treatment and if an effect is observed it may be transient.
- Non-steroidal anti-inflammatory drugs are generally ineffective. A number of medicinal products with
- 560 approved indications as anticonvulsants and antidepressants (tricyclics) are also established
- treatments for neuropathic pain but have variable efficacy. Other available treatments include SSRIs,
- 562 SNRIs, and locally applied capsaicin.
- The following general principles can be stated for the data requirements to support different types in indications in neuropathic pain:
 - If only a single pain model is studied the approvable indication will normally be limited to the specific condition studied (e.g. Trigeminal neuralgia).
 - To justify a general indication for the treatment of neuropathic pain, efficacy needs to be demonstrated independently in models of both central and peripheral neuropathic pain.
 - If models of just central neuropathic pain or of just peripheral neuropathic pain are studied, the indication will normally be restricted accordingly.
- 571 Suitable central neuropathic models include spinal cord injury and post-stroke pain. Suitable peripheral
- 572 neuropathic models include post herpetic neuralgia, diabetic painful neuropathy and trigeminal
- 573 neuralgia. Patient populations with other neuropathic pain conditions may be acceptable if adequately
- 574 characterised and justified.
- 575 Demonstration of efficacy in chronic mixed pain models with predominantly neuropathic symptoms
- 576 could provide supportive evidence (e.g. some cancer pain, predominantly neuropathic CLBP). The
- 577 neuropathic component should be reliably documented (refer to section 6.2.5).
- 578 Treatments intended to have an effect on stimulus evoked pain (allodynia or hyperalgesia) should be
- 579 studied in a suitably defined target population. Depending on the mechanism of action of the new
- treatment and the anticipated claims this could be either in a specific trial or within a larger more
- general trial population. In the latter case stratification according to stimulus evoked pain should be
- 582 considered.

583

591

594

6.2.4. Mixed Pain

- Mixed pain is common and CLBP is the example most commonly encountered in clinical practice. CLBP
- refractory to currently available treatments is a substantial healthcare problem and may therefore be
- 586 considered as an appropriate specific target population. Multiple and complex factors are typically
- involved in the evolution of mixed pain, which in the case of CLBP generally starts as a primarily
- 588 nociceptive pain condition with or without nerve compression in addition. Due to maladaptive
- 589 processes further neuropathic characteristics develop over time. As the typical chronic mixed pain
- 590 picture develops, the underlying structural damage correlates poorly with the pain experience.

6.2.5. Efficacy studies in chronic pain

- 592 Efficacy studies in chronic pain should be performed according to the general considerations for
- 593 confirmatory trials (see section 5.2.4).

Patient population

It is generally recommended to include patients with at least moderate to severe pain (typically VAS ≥ 40 mm or NRS ≥ 4), as a high and variable placebo response (see section 5.2) can be expected in patients with more mild chronic pain. If the expected safety profile of the drug is benign, patients with mild to moderate chronic pain could be a legitimate therapeutic target for a new or existing product, but trial design would require careful consideration. It is generally advised that patients with mild to moderate pain should be studied separately from those with moderate to severe pain, with appropriately tailored evaluation tools, active comparator etc. If both categories were to be included in a single trial, pre-specification of subgroup analyses by severity would be required.

The washout of prior non-trial medications may raise particular issues in chronic pain trials. A potential effect not only on pain perception but also on mood may need to be considered when withdrawing treatments such as tricyclics or anticonvulsants. Patients with severe chronic pain are likely to be receiving partially effective analgesic treatment before entering a clinical trial and withdrawing that treatment before commencing randomised trial medication can be problematic. In such cases a prestudy wash-out period in order to assess pain intensity without treatment might not be feasible. Baseline pain scores might not therefore be a reliable way of selecting patients with more severe pain and more complex methods for categorising patients according to pain severity may be required.

Patients included in chronic pain trials should generally have exhibited symptoms for more than 3 months with no substantial recent change in pain severity. Clinical evaluation inclusion criteria in chronic pain trials should include the duration of pain, stability of symptoms before enrolment and pain medication history. All of these aspects should be documented for each patient. Patients' pain at baseline should be categorised according to relative contributions of nociceptive and neuropathic components, including their duration. Screening tools serve to identify patients with a significant neuropathic pain component (e.g. Pain DETECT, LANSS- Pain Scale, NPQ, DN4)²¹. A survey of the distribution of pain (e.g. patient pain drawing) is encouraged where relevant in order to assess the spread of pain outside the area of neurological damage (perhaps as an indicator of central sensitisation). The peripheral or central origin of neuropathic pain should be characterised as far as possible as well as associated negative and positive phenomena (sensory findings).

Any previous exposure and response to analgesic agents or to pharmacological interventions that could modulate chronic pain perception (e.g. opioids or anticonvulsants) should be recorded and discussed. If the trial includes both prior responders and non-responders to standard treatments appropriate predefined subgroup analyses should be provided.

Efficacy endpoints

Primary endpoints should be derived from measurements with either a uni- or a multidimensional assessment tool validated for the respective pain model (i.e. NPS, NPSI for neuropathic pain). The chosen endpoint should be appropriate with regard to the pain characteristics (e.g. consistent, flaring or paroxysmal pain). Irrespective of which type of rating scale is chosen as primary endpoint, the observed effects on uni- and multidimensional scales should be consistent. If, for neuropathic pain, a multidimensional scale is not specified as a primary or co-primary efficacy endpoint, it should be specified as a key secondary endpoint.

Assessment of physical and emotional functioning and global improvement should be performed as described in section 5.2.1.

Where applicable, other secondary efficacy measures may include evaluation of stimulus evoked pain (allodynia or hyperalgesia) with standardised quantitative sensory testing by calibrated devices.

- 638 Electrophysiological variables may be useful to clarify the aetiology of neuropathic pain but do not
- 639 correlate sufficiently with symptoms to be considered as surrogate efficacy endpoints.

640 Considerations of pivotal efficacy trial design

- In general a randomised controlled parallel group trial is the most appropriate design for confirmatory
- evidence of efficacy in pain trials.
- A sustained therapeutic effect in chronic pain should in general be demonstrated in pivotal efficacy
- trials with a treatment period of at least 12 weeks²⁵, excluding titration period.
- Study medication should in general be titrated to (optimal) effect according to a clearly pre-specified
- algorithm in line with the expected clinical use of the product.
- In the past, the results of studies in conditions such as CLBP have often been inconclusive. It is
- recognised that there are a number of substantial challenges in chronic pain trials that can ultimately
- lead to study failure. These include prolonged titration periods, the need for large number of patients,
- 650 heterogeneity of patient characteristics and co-morbidities, high drop-out rates and high so-called
- 651 placebo response rates. All efforts should be made to obtain a robust double-blind setting but this will
- not always be possible, especially for chronic pain trials²⁶.
- 653 Placebo response is taken to mean a systematic tendency for efficacy measures to show an
- 654 improvement from baseline to endpoint of the trial irrespective of treatment allocation, and may
- 655 involve a variety of factors such as the "clinical trial effect", baseline score inflation and regression to
- the mean. Measures should be taken to minimise this placebo response in chronic pain trials. Run in
- 657 periods should ensure a high standard of non-pharmacological management (e.g. psychological and
- 658 behavioural support) and reasonably stable symptom severity for an appropriate duration prior to
- 659 randomization. Patients' expectations of improvement should not be over-inflated, and measures
- should be taken to minimise pain score inflation at baseline and factors that might introduce rater bias.
- To address the aforementioned challenges, more innovative approaches may be acceptable, especially
- 662 for studies including patients with severe and difficult to treat chronic pain. The design of these trials is
- a complex and rapidly developing area. Depending on formulation, method of application and clinical
- situation non-standard designs may be more appropriate (e.g. non feasibility of placebo group in
- cancer pain, ref. section 6.3) and should be justified appropriately. In such cases it is recommended
- to seek scientific advice from National Competent Authorities and/or CHMP.

Long term efficacy data

667

672

- 668 In addition, for the evaluation of dose requirements over time and the demonstration of long term
- 669 maintenance of efficacy in chronic pain, in principle robust results from one well designed trial can be
- sufficient, provided that the included patient population is representative. A randomised withdrawal
- study is normally the preferred design (see section 5.2.5.).

6.3. Cancer Pain

- Pain due to malignant diseases is often, but not exclusively, indicative of tissue or organ destruction
- and frequently features both nociceptive and neuropathic pain components i.e. mixed pain. Although
- due to its duration and severity arguably a form of chronic pain, cancer pain is still largely an adaptive
- process to the underlying disease and thus should be regarded separately. Cancer pain can serve as a
- 677 model to determine analgesic efficacy in long-standing severe pain with a comprehensible underlying
- 678 pathology. Stratification according to the nature of the pain in terms of bony and/or visceral

679 metastases and neuropathic features may help to characterize the efficacy profile on nociceptive and 680 neuropathic pain components.

Opioid naïve patients are not suitable for trials in cancer pain as this would increase concerns over placebo response, assay sensitivity and the relevance of the data to a severe pain indication. In patients requiring opioids there can be reasonable confidence that a relatively ineffective treatment would be seen to be inferior to an appropriate active comparator on the basis of pain scores, rescue medication requirements or both.

Monotherapy trials in long-standing severe pain for which effective treatments exist require very careful design. For ethical reasons, a placebo group is problematic as reliance on rescue medication as the only analgesic is not acceptable. Efficacy can in principle be demonstrated in a two arm long term parallel group non-inferiority trial with an active comparator (e.g. prolonged release morphine). However, non-inferiority trials with only an active comparator are inherently susceptible to concerns over assay sensitivity. Including two doses of trial medication could in principle provide information on assay sensitivity if superiority of high dose over low dose is shown but this would not be suitable for drugs such as opioids that are individually titrated to clinical response and excessive reliance on rescue medication could again be an ethical problem.

Imbalances between treatment groups in the use of rescue medication can make the results for pain scores difficult to interpret. The treatment objective in these patients could therefore be to achieve the best possible analgesia supported by rescue medication. Assessment should then focus on the consumption of rescue medication. The endpoint of a trial such as this needs to be very carefully considered and defined. The largest treatment differences considered not clinically relevant in the studied patient population should be pre specified in order to define non-inferiority margins. The proportions of patients who report inadequate analgesia from the trial medication (including withdrawals for that reason) could be a useful secondary efficacy measure of clinical relevance.

Cancer pain patients achieving inadequate pain relief with an optimised dose regimen of opioids might be a suitable patient population for placebo controlled add-on trials.

In cancer pain normally the benefit risk (e.g. in terms of abuse or addiction) evaluation of the potential treatment takes into account the severity of the underlying disease.

6.4. Breakthrough Pain

Breakthrough pain is a term usually associated with management of cancer pain. As a general principle robust results of at least two well-designed efficacy studies are required to justify a breakthrough pain indication. A single pivotal trial specifically in the treatment of breakthrough pain, supported by extrapolation of data from trials in other pain models could also suffice in principle. It should be ensured that maintenance opioid medication for the treatment of the underlying pain condition is optimised in order to keep baseline pain relatively stable and tolerable. Frequency, duration and cause of BTP episodes should be characterised.

Cross over designs where each patient serves as his own control may be applicable when analgesic requirements are reasonably stable. All efforts should be made to exclude carry over or accumulative effects taking into account PK/PD of the test drug and the maintenance therapy. The primary efficacy endpoints should focus on timely aspects of pain intensity and relief.

719 Maintenance of efficacy needs to be shown and development of tolerance adequately characterized. In

the case of breakthrough pain clinical data from more general pain models will be appropriate for this

721 purpose.

720

722

6.5. Fibromyalgia Syndrome

- 723 The Fibromyalgia Syndrome (FMS) may be categorized with the soft tissue pain syndromes of unknown
- aetiology. The predominant symptom is chronic widespread pain with tenderness and low pain
- 725 tolerance. FMS patients exhibit a wide spectrum of symptom severity with a variety of comorbid
- 726 conditions such as chronic sleep disorders, fatigue, cognitive dysfunctions and mood disturbances.
- 727 Associations with conditions such as irritable bowel syndrome or irritable bladder syndrome are
- described. The pathophysiology of FMS is not well characterised. It may be largely a functional (or
- 729 "dysfunctional") disorder in many patients but there is some evidence for alterations in pain and
- sensory processing in the CNS in FMS.
- 731 The established diagnostic criteria for FMS (American College of Rheumatology Fibromyalgia Diagnostic
- 732 Criteria (ACR FDC) including Widespread Pain Index (WPI) and Symptom Severity Scale (SSS)) do not
- emphasise pain intensity exclusively. Thus, a simple demonstration of an effect on pain scores is not
- 734 considered sufficient to support a specific indication for the treatment of FMS. It would be expected
- that effects on other domains of FMS including functional improvement would be of clear clinical
- 736 significance, and the applicability of the results to the broad population meeting the standard
- 737 diagnostic criteria would need to be justified. Maintenance of efficacy with long term treatment would
- need to be demonstrated.
- 739 Regional differences in medical and social culture largely preclude extrapolation of data from non-EU
- 740 studies.

748

749

FMS is not an appropriate pain model for a clinical data package to support a general pain indication.

742 6.6. Other specific pain syndromes

- More complex pain syndromes (e.g. Complex Regional Pain Syndrome) with incomplete understanding
- of the underlying pathophysiological abnormalities and lack of objective diagnostic criteria are beyond
- the scope of this document although many of the general principles will apply. It is strongly
- recommended that specific trial considerations should be discussed in scientific advice with National
- 747 Competent Authorities and/or the EMA.

7. Clinical safety evaluation

7.1. General considerations

- The monitoring of adverse events (AEs) related to the studied drug should be conducted according to
- 751 ICH/EU E1A and other relevant guidelines using a systematic and planned methodology. Any
- 752 subgroups of patients (for demographic or clinical factors) at increased risk of AEs should be identified.
- The effects of concomitant medications on safety measures should be evaluated as appropriate.
- 754 For drugs intended for long-term treatment safety data are required in a sufficient number of the
- 755 target population from clinical studies of at least 12 months duration. Long term data may also be
- required for drugs intended for repeated use in acute pain or for which off label long term use is
- 757 plausible.

- Potential safety issues relating to the delivery system (e.g. transdermal, intranasal, buccal) should be evaluated and reported in accordance with the relevant guidelines.
- For drugs with CNS effects special attention should be paid to undesirable effects such as alertness and cognition, and the potential effects on patients' ability to drive and use machines.
- 762 For new medicinal products of an established class the main class related safety concerns should be
- 763 thoroughly analysed, in particular those AEs that limit tolerability such as constipation for opioids or
- 764 dyspepsia for NSAIDs.

- 765 Cardiovascular and gastrointestinal adverse outcome analyses should be pre-defined in NSAID trials.
- 766 Detailed data should be given on risk of bleeding in various types of surgeries when justified.
- For centrally acting analgesics such as opioids special attention should be given to respiratory effects,
- 768 drug tolerance and dependence. Analysis of respiratory depression should take into consideration the
- amount of sedative medication received by the patient, as well as the alertness of patients measured
- by appropriate tools. Respiratory effects may be particularly hazardous at night (especially if a
- nocturnal hypnotic is taken concomitantly) and tests in the awake patient might not be sufficient.
- 772 Polysomnography data might be of considerable value. Possible bias introduced by differences in
- 773 concomitant medications (including rescue medication) should be recognised and controlled as far as
- possible in control and active groups.
- Any potential detrimental effects of the investigational drug on specific diseases associated with
- neuropathic pain (e.g., diabetes and glycemic control) should be actively investigated as appropriate.

7.2. Withdrawal reactions, dependence, abuse and misuse

- When pharmacological treatment is stopped, rebound and/or withdrawal phenomena / discontinuation syndromes may occur. Trials should be designed in such a way, that these phenomena can be studied as appropriate to the mechanism of action and knowledge of other drugs in the same class. In some of
- 781 the short-term and long-term clinical trials, treatment should be stopped abruptly or gradually as
- appropriate the known pharmacology, and patients followed for a suitable duration to record rebound
- and/or withdrawal phenomena. Randomised withdrawal with full blinding is preferable where feasible.
- 784 Currently the definitions of abuse, dependence and misuse are not standardised or systematically
- employed²⁷. Misuse refers to use of a drug for its intended therapeutic effect but in an inappropriate
- way, while abuse refers to use for non-therapeutic purposes, in the case of opioids to obtain
- psychotropic effects. Physical dependence is a physiological response to a drug associated with the
- development of tolerance and withdrawal symptoms due to rapid reduction in exposure while
- psychological dependence focuses on elements like compulsion, impaired control or craving.
- Animal studies will be needed to investigate the possibility of dependence in new classes of compounds
- or when there is an indication that dependence may occur (CHMP/SWP/94227/2004). Requirements for
- clinical data regarding the potential for misuse, abuse and dependence ²⁸ will depend on the non-
- clinical results as well as the mechanism of action and knowledge of other drugs in the same class.
- A number of screening tools have been developed to monitor possible abuse and misuse mainly of
- opioids²⁹. All of them have certain applicability and limitations but none of them is adequately validated
- 796 to be applied universally. Thus, the selected measure should be justified according to the drug
- substance and the clinical situation. In long-term trials with opioids in addition to urine drug screens

- (UDS) measures like e.g. ABC (Addiction Behaviour Checklist), COMM (Current Opioid Misuse Measure) have been used.
- In principle the development of abuse deterrent formulations is encouraged; however a specific SmPC claim regarding abuse potential is unlikely to be acceptable.

8. Studies in special populations

8.1. Children

- The clinical trial program should follow the principles of ICH E11 Note for guidance on clinical investigation of medicinal products in the paediatric population. If the mechanism of action is well characterized (e.g. conventional NSAIDs or µ agonist opioids) extrapolation of efficacy and safety data from products in the same class is likely to be acceptable on a case by case basis subject to PK / PD
- 808 considerations. For novel compounds additional clinical data will normally be required.
- As for adults, randomised placebo-controlled trials are considered the gold standard for evaluating the
- efficacy and safety of analgesic drugs (with the exception of chronic severe pain). However, such trials pose significant ethical and practical problems, especially in young children and infants. Alternative
- designs such as rescue-analgesic trials in which patients have rapid access to analgesia, either patient-
- controlled or nurse-controlled (PCA, NCA), may be considered. In these trials differences in analgesic
- use between treatment groups could be a primary measure of efficacy and pain scores a secondary
- 815 endpoint.

802

- 816 Children experience pain in the same situations as adults but younger children in particular may be
- unable to express their pain in a way that is easy to assess. Specific tools have been developed to
- evaluate pain intensity in children and should be used in clinical trials. Any tool should be validated for
- the clinical situation, age, developmental status, language and culture in which it is used. Self-report
- tools are generally preferred to observer-rated tools and should be applied based on individual's ability
- 821 to use self-report tools. Behavioural Observational Scales for pain assessment are recommended in
- younger children or those who are unable or unwilling to report their pain (e.g. FLACC or CHEOPS for
- procedural or postsurgical pain)^{30,31,32,33}. There are specific validated scales for term and preterm
- neonates (e.g. CRIES, NFCS or PIPP).
- 825 Postsurgical pain or painful medical procedures such as immunization, venepuncture or debridement of
- 826 skin in severe burns are suitable models for the study of analgesics intended for the treatment and/or
- prevention of nociceptive pain in children. It may also be necessary to measure anxiety in the
- 828 assessment of procedural pain.
- 829 If efficacy for acute nociceptive pain in children as described above is shown to be in line with that
- shown for adults, it may be possible to extrapolate adult data on maintenance of efficacy and
- 831 development of tolerance to the paediatric population.
- There is very little information with regard to the prevalence of neuropathic pain in children. While the
- 833 underlying diseases in which neuropathic pain occurs in adults are infrequently or never encountered in
- paediatric practice, there are some conditions leading to neuropathic pain specifically in paediatric
- patients (e.g. hereditary neurodegenerative disorders). It is not expected that there is a difference in
- 836 mechanism of neuropathic pain between adults and adolescents but greater neuronal plasticity during
- 837 early development of the nervous system can profoundly modify the consequences of nerve damage
- and neuropathic pain^{34,35}. Trials to investigate neuropathic pain in children may not be feasible due to

- 839 the limited population, but also because diagnostic tools for the assessment of neuropathic pain are
- not validated in children. PK modelling is likely to fulfil regulatory requirements in most cases although
- investigations in models common to both adults and children are encouraged where possible in order
- to better understand how efficacy data can be extrapolated from adults to children.
- 843 If it is considered necessary to perform separate paediatric trials in chronic pain a 12 week duration of
- randomised treatment is likely to be sufficient. When assessing chronic pain, it is important to include
- tools that assess not only pain intensity but also effects on functionality, emotion and quality of life.
- The general principles are the same as for adults, although measures should be modified as
- 847 appropriate.

- 848 Safety data have to be provided in accordance with ICH E11 and other relevant guidance. If the safety
- profile indicates an effect on cognitive function (e.g. sedation, concentration disturbances) long-term
- safety data on cognitive function and neurodevelopment may be required.
- 851 For all CNS active agents administered in term and preterm neonates a long term neurodevelopmental
- follow-up to 2 years of age is requested as a standard requirement.

8.2. Elderly

- 854 Chronic pain is a significant problem for older people, with detrimental effects on physical and
- 855 emotional functioning and quality of life. It is one of the most prevalent conditions found in elderly
- patients³⁶ and may contribute substantially to poor nutrition and frailty. Musculoskeletal diseases are
- among the most frequent causes and also cancer is largely a disease of older persons. Furthermore,
- 858 older people make up the largest group of surgical patients. The possible effects of the neurobiology of
- aging on pain sensitivity are, however not fully elucidated.
- 860 Age-related changes and increased frailty may lead to a less predictable drug response with increased
- drug sensitivity and potential harmful drug effects. Multimorbidity and polypharmacy may increase the
- 862 risk for drug-drug and drug-disease interactions. Therefore, defining a safe dose range for the elderly
- 863 is a main concern. Age-related PK data especially with respect to renal and liver impairment may
- support the choice of the dose and should be provided. The need for specific PK or drug-drug
- 865 interaction studies in elderly patients should be based on the knowledge of the product characteristics
- and the expected clinical use in this population. For sedative/hypnotic agents or drugs with important
- CNS effects separate dose response studies are recommended in the elderly (ICH E7).
- 868 The influence of behavioural and psychological factors, and co-morbid depression and/or anxiety, may
- 869 differ in the elderly in comparison with younger patients. Dementia may affect pain processing,
- 870 responses to pain, and the ability to measure pain.
- Particular attention should be given to the safety profile in elderly subjects. Due to comorbidities and
- 872 concomitant treatments they are generally more susceptible to the major undesirable effects of
- 873 standard treatments including opioids, NSAIDs, antidepressants and antiepileptic drugs. Careful
- attention should be paid to CNS adverse events such as sedation, dizziness, confusion or hallucinations
- contributing to an increased risk of falls in frail elderly. Likewise older people may be more susceptible
- to cardiovascular AEs such as hypotension or QT interval prolongation (e.g. with opioids)³⁷.
- The investigational program should include a sufficient number of elderly patients, particularly the very
- elderly (>75 years old) as they represent a large target population in both acute and chronic pain. For
- 879 known drug classes, subgroup analyses of the whole elderly population in the overall database are in
- general sufficient.

- 881 In clinical trials special care should be paid to age related visual, auditory or cognitive impairments as
- these can hinder completion of assessment protocols and tolerance of long assessment sessions may
- 883 be low. When assessing pain intensity VAS score may not be the best choice as increasing age has
- been associated with a higher frequency of incomplete or unscorable responses. NRS, VDS (verbal
- descriptor scales) and the MPQ have been reported to be appropriate measurement tools in the
- 886 elderly³⁸. Tools should enable evaluation of therapeutic effect in cognitively impaired patients,
- including effects on functionality, emotional state and quality of life. It may be useful to measure the
- 888 effect of treatment on mobility and on frailty scales.

References

- 890 1 Loeser J.D. Treede R-D. The Kyoto protocol of IASP basic pain terminology: topical review: Pain 137
- 891 (2008), 473-7
- 2 Doleys DM. Pain: Dynamics and Complexities. Oxford University Press Inc 2014, ISBN 978-0-19-
- 893 933153-6

- 3 Gerbershagen H.J. Transition from acute to chronic postsurgical pain. Physiology, risk factors and
- 895 prevention. Schmerz, 2013; 27: 81-95
- 4 Woolf CJ Overcoming obstacles to developing new analgesics. Nature Medicine 2010, 16(11): 1241-7
- 5 Lacroix-Fralish, M.L. & Mogil, J.S. Progress in genetic studies of pain and analgesia. Annu. Rev.
- 898 Pharmacol. Toxicol. 2009; 49, 97-121
- 899 6 Vehof J., Zavos, H.M.S., Lachance G., Hammond C.J., Williams F.M.K. Shared genetic factors
- 900 underlie chronic pain syndromes. Pain 155, 2014,: 1562-1568
- 901 7 WHO scoping document 2012
- 902 8 Cherney N.I., Thaler H.T., Friedlander-Klar H., Lapin J., Foley K.M., Houde R., Portenoy R.K. Opioid
- responsiveness of cancer pain syndromes caused by neuropathic or nociceptive mechanisms: a
- combined analysis of controlled, single-dose studies. Neurology 1994; 44 (5): 857-61
- 905 9 Loeser J.D. Treede R-D. The Kyoto protocol of IASP basic pain terminology: topical review: Pain 137
- 906 (2008), 473-7
- 907 10 Häuser W. Türp J.C. et al. « functional somatic pain syndromes. Nomenclature Schmerz 2004,
- 908 18(2): 98-103
- 909 11 Jänig W. Neurobiology of visceral pain. Schmerz, 2014; 28: 233-51.
- 910 12 Sengupta J.N. Visceral pain: the neurophysiological mechanism. Handbook of experimental
- 911 pharmacology, 2009, 194: 31-74
- 912 13 McMahon S.B. Roberts B. et al. Are there fundamental differences in the peripheral mechanisms of
- of visceral and somatic pain? Behavioral and brain sciences 1997, 20(3): 381-91.
- 914 14 Loeser J.D. Treede R-D. The Kyoto protocol of IASP basic pain terminology: topical review: Pain 137
- 915 (2008), 473-7
- 916 15 Gerbershagen H.J. Transition from acute to chronic postsurgical pain. Physiology, risk factors and
- 917 prevention. Schmerz, 2013; 27: 81-95

- 918 16 Koltzenburg M, McMahon S, Tracey I, Turk DC (ed.) Wall and Melzack's Textbook of Pain. 6th
- edition, Saunders, imprint of Elsevier Ltd., ISBN 978-0-7020-4059-7
- 920 17 Fillingim RB et al. The ACTTION-American Pain Society Pain Taxonomy (AAPT): an Evidence-Based
- 921 and Multi- dimensional Approach to Classifying Chronic Pain Conditions. The Journal of Pain, 2014; Vol.
- 922 15 No 3, 241-9
- 923 18 Koltzenburg M, McMahon S, Tracey I, Turk DC (ed.) Wall and Melzack's Textbook of Pain. 6th
- 924 edition, Saunders, imprint of Elsevier Ltd., ISBN 978-0-7020-4059-7
- 925 19 McGlothlin AE and Lewis RJ. Minimal Clinically Important Difference. Defining what really matters to
- 926 patients. JAMA 2014 Vol 312, No 13; 1342-3
- 927 20 Dworkin et al. Interpreting the Clinical Importance of Treatment Outcomes in Chronic Pain Clinical
- 928 Trials: IMMPACT Recommendations. J. Pain, Vol 9 No 2 2008, 105-121
- 929 21 Haanpää et al. NeuPSIG guidelines on neuropathic pain assessment. Pain 2011; 152: 14-27
- 930 22 Dworkin RH et al. Core outcome measures for chronic pain clinical trials: IMMPACT
- 931 recommendations. PAIN 2005; 113:9-19
- 932 23 Dworkin RH et al. Core outcome measures for chronic pain clinical trials: IMMPACT
- 933 recommendations. PAIN 2005; 113:9-19
- 24 Haanpää et al. NeuPSIG guidelines on neuropathic pain assessment. Pain 2011; 152: 14-27
- 935 25 Dworkin RH et al. Considerations for improving assay sensitivity in chronic pain clinical trials:
- 936 IMMPACT recommendations. PAIN 153 (2012)1148-58
- 937 26 Dworkin RH et al. Research design considerations for confirmatory chronic pain clinical trials:
- 938 IMMPACT recommendations. PAIN 149 (2010) 177-193
- 939 27 Smith SM et al. Classification and definition of misuse, abuse, and related events in clinical
- trials: ACTTION systematic review and recommendations. PAIN 2013; 154: 2287-96
- 28 Comer SD et al. Core outcome measures for opioid abuse liability laboratory assessment studies in
- 942 humans: IMMPACT recommendations. PAIN 2012; 153: 2315-24
- 29 Solanki DR et al. Monitoring Opioid Adherence in Chronic Pain Patients: Assessment of Risk of
- 944 Substance Misuse. Pain Physician 2011; 14: E119-31
- 945 30 McGrath PJ et al. Core Otcome Domains and measures for Pediatric Acute and Chronic/Recurrent
- 946 Pain Clinical Trials: PedIMMPACT Recommendations. J Pain 2008; Vol 9, No 9: 771-83
- 947 31 Melzack Textbook of Pain
- 948 32 Baeyer CL et al. Systematic review of observational (behavioural) measures of pain for children
- 949 and adolescents aged 3-18 years. PAIN 2007; 127: 140-50
- 950 33 Stinson JN et al. Systematic review of the psychometric properties, interpretability and feasibility of
- 951 self-report pain intensity measures for use in clinical trials in children and adolescents. PAIN 2006;
- 952 125: 143-57
- 953 34 Walco GA et al. Neuropathic Pain in Children: Special Considerations. Mayo Clin Proc 2010;
- 954 (85)(3):S33-41
- 955 35 Howard, RF et al. Neuropathic pain in children. Arch Dis Child 2014; 99: 84-9

- 956 36 Van Ojik AL et al. Treatment of Chronic Pain in Older People. Drugs Aging 2012: 29 (8); 615-25
- 957 37 Van Ojik AL et al. Treatment of Chronic Pain in Older People. Drugs Aging 2012: 29 (8); 615-25
- 958 38 Koltzenburg M, McMahon S, Tracey I, Turk DC (ed.) Wall and Melzack's Textbook of Pain. 6th
- 959 edition, Saunders, imprint of Elsevier Ltd., ISBN 978-0-7020-4059-7

Abbreviations

0/1	ABC	Addiction Behaviour Checklist
9n I	ABL.	Addiction Benaviour Unecklist

- 962 ACR FDC American College of Rheumatology Fibromyalgia Diagnostic Criteria
- 963 AE Adverse Event
- 964 BDI Beck Depression Inventory
- 965 CHEOPS Children's Hospital of Eastern Ontario Pain Scale
- 966 CLBP Chronic Low Back Pain
- 967 CNS Central Nervous System
- 968 CGI Clinical Global Impression
- 969 COMM Current Opioid Misuse Measure
- 970 CPSP Chronic Postsurgical Pain
- 971 CRIES Crying, Requires oxygen, Increased vital signs, Expression and Sleepless
- 972 CRPS Complex Regional pain Syndrome
- 973 DN4 Douleur Neuropathique en 4 Questions
- 974 DPNP Diabetic Peripheral Neuropathic Pain
- 975 FLACC Face, Legs, Activity, Cry, Consolability
- 976 FMS Fibromyalgia Syndrome
- 977 HADS Hospital Anxiety and Depression Scale
- 978 IASP International Association for the Study of Pain
- 979 i.v. Intravenous
- 980 LANSS Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) Pain Scale
- 981 MCID Minimal clinically important difference
- 982 MPQ McGill Pain Questionnaire
- 983 MOS-SS Medical Outcomes Study Sleep Scale
- 984 NPQ Neuropathic Pain Questionnaire
- 985 NSAID Non-Steroidal Anti-Inflammatory Drugs
- 986 NeuPSIG Special Interest Group on Neuropathic Pain of the IASP

987	NFCS	Neonatal Facial Coding System
988	NRS	Numerical Rating Scale
989	ODI	Owestry-Disability-Index
990	PCA	Patient Controlled Analgesia
991	PD	Pharmacodynamics
992	PHN	Post-Herpetic Neuralgia
993	PI	Pain Intensity
994	PIPP	Premature Infant Pain Profile
995	PK	Pharmacokinetics
996	POMS	Profile of Mood States
997	PRO	Patient Reported Outcome
998	RASS score	Richmond Agitation Sedation Scale
999	RDQ	Roland-Morris-Disability Questionnaire
1000	SF-MPQ	Short Form McGill Pain Questionnaire
1001	SPID	Sum of Pain Intensity Difference
1002	SNRI	Selective Serotonin-Noradrenalin-Reuptake Inhibitor
1003	SSRI	Selective Serotonin Reuptake Inhibitor
1004	SSS	Symptom Severity Scale
1005	TENS	Transcutaneous Electrical Nerve Stimulation
1006	TDDS	Transdermal drug delivery systems
1007	UDS	Urine drug screen
1008	VAS	Visual Analogue Scale
1009	WPI	Widespread Pain Index