

1 23 January 2026
2 EMA/CVMP/EWP/507106/2023
3 Committee for Veterinary Medicinal Products (CVMP)

4 **Guideline for the evaluation of efficacy of
5 ectoparasiticides - general requirements**
6 Draft

Last revision of the guideline (7AE17a)	September 1994
Draft revised guideline agreed by Efficacy Working Party (EWP-V)	November 2025
Adopted by CVMP for release for consultation	14 January 2026
Start of public consultation	23 January 2026
End of consultation (deadline for comments)	31 May 2026

7
8 This guideline replaces the 'Guideline for demonstration of efficacy of ectoparasiticides' (7AE17a).
9

10
11 Comments should be provided using this [template](#). The completed comments form should be sent to vet-guidelines@ema.europa.eu.

Keywords *Ectoparasiticidal veterinary medicinal products, antiparasitic, antiparasitic resistance, dose determination, dose confirmation, clinical efficacy, local, systemic.*

12 **Guideline for the evaluation of efficacy of**
13 **ectoparasiticides - general requirements**

14 **Table of contents**

15 Executive summary	3
16 1. Introduction (background).....	3
17 2. Scope.....	4
18 3. Legal basis	4
19 4. General requirements.....	5
20 5. Pre-clinical studies	6
21 5.1. Pharmacological activity and mode of action	6
22 5.2. Dose determination studies	6
23 5.3. Dose confirmation studies	7
24 6. Clinical trials.....	8
25 6.1. General principles.....	8
26 6.2. Design and conduct	8
27 7. Demonstration of efficacy.....	9
28 8. Specific requirements.....	10
29 8.1. Products for topical use	10
30 8.2. Insecticide-delivery systems (e.g. collars, ear tags etc.).....	11
31 8.3. Risk of resistance development	11
32 8.4. Combination veterinary medicinal products.....	11
33 8.5. Generic/hybrid veterinary medicinal products – data requirements	12
34 9. General approach to wording of indications in the product information for ectoparasiticidal products.....	13
35 References	15
36	

38 **Executive summary**

39 This guideline provides general guidance on the data requirements, the design and conduct of pre-
40 clinical studies and clinical trials to support efficacy for an ectoparasiticidal veterinary medicinal
41 product. Appropriate methods and approaches to demonstrate efficacy against the target ectoparasites
42 are presented and important aspects to consider when designing and conducting studies, including
43 consideration of the 3Rs principles are outlined. Given the range of ectoparasites encountered in
44 veterinary medicine and the differences in their clinical consequences for animals and risks (including
45 zoonoses) posed to humans, higher levels of efficacy may be needed against certain ectoparasites.
46 More detailed and specific guidance is available in species-specific guidelines.

47 **1. Introduction (background)**

48 This guideline replaces guidance document 7AE17a entitled 'Demonstration of Efficacy of
49 Ectoparasiticides' which was first published in 1994 and aims to provide general guidance on the
50 evaluation of efficacy of ectoparasiticides containing novel or established active ingredients.

51 This updated guideline takes into consideration the experiences gained in the assessment of data
52 submitted in support of applications for ectoparasiticidal veterinary medicinal products since the
53 previous guideline was published. It takes account of current scientific knowledge and regulatory
54 practices and, in particular, data requirements set out in Annex II of Regulation (EU) 2019/6.

55 The terminology used in this updated guideline when describing ectoparasiticidal effects has been
56 adapted to be consistent with Regulation (EU) 2019/6. Thresholds for demonstrating efficacy have
57 been reviewed to ensure consistency with CVMP species-specific guidelines on efficacy requirements
58 for ectoparasiticidal products. For the purpose of this guideline, resistance to ectoparasiticides means
59 the selection of a specific heritable trait (or traits) in an ectoparasite population as a result of exposure
60 of that population to an active substance, resulting in a significant increase in the percentage of the
61 population that will survive to a standard dose of that chemical when used as recommended (CVMP
62 Reflection paper on resistance in ectoparasites (EMA/CVMP/EWP/310225/2014)).

63 In addition, the 3Rs principles (replacement, reduction and refinement) have been taken into account
64 when providing guidance on the design and conduct of efficacy studies.

65 Given the need to reduce the risk of antiparasitic resistance developing, measures to reduce such risks
66 should be considered when designing and conducting pre-clinical efficacy studies and clinical trials (see
67 section 8.3). The efficacy of the proposed dose should be demonstrated in appropriate dose
68 confirmation studies prior to the conduct of clinical trials under field conditions (see sections 5 and 6).

69 Guidance relevant for the demonstration of efficacy for combination products that include at least one
70 active substance with an ectoparasiticidal effect as well as clarifications on the general approach to the
71 demonstration of efficacy of generic/hybrid ectoparasiticidal veterinary medicinal products are also
72 included.

73 As it is desirable that a consistent approach to the wording of indications for comparable products is
74 followed and in order to ensure the efficacy profile that has been demonstrated for the concerned
75 products and their correct use is clear for the prescriber and user, a number of recommendations for
76 appropriate wording of indications is provided. In addition, recommendations are included on the
77 evaluation of the onset of efficacy and the duration of efficacy for the prevention of re-infestations,
78 where needed, to ensure appropriate use.

79 **2. Scope**

80 This guideline is intended to provide general guidance on the demonstration of efficacy of
81 ectoparasiticidal veterinary medicinal products.

82 All ectoparasiticidal veterinary medicinal products, irrespective of their route of administration, and
83 intended to treat or prevent infestations with ectoparasites, whatever their mode of action or the
84 target species, are considered to fall within the scope of this guideline. This includes both locally acting
85 and systemically acting products. Although veterinary medicinal products with a repellent or growth
86 inhibitory effect (Insect Growth Regulators) are not strictly speaking ectoparasiticidal, the general
87 principles set out in this guidance may also be applied to those products. However, this guideline does
88 not give guidance on how to demonstrate efficacy for the prevention of transmission of vector-borne
89 pathogens, as separate guidance is available on that aspect.

90 The principles set out in this guideline describe the general approach to demonstrating efficacy of
91 ectoparasiticidal veterinary medicinal products against all arthropod species that depend upon a host
92 animal to complete their lifecycle i.e., where at least one parasitic stage occurs on the animal or
93 requires feeding on the animal. However, these principles can also be applied to veterinary medicinal
94 products targeting insects such as nuisance or biting flies given that similar methods are used for
95 demonstrating efficacy against those parasites.

96 **3. Legal basis**

97 The guideline should be read in conjunction with the data requirements set out in Regulation (EU)
98 2019/6 and, in particular, Annex II of that Regulation.

99 Ectoparasites are arthropods (invertebrates with a chitinous exoskeleton) that live outside the body of
100 their host. Article 4(13) of Regulation (EU) 2019/6 defines 'antiparasitic' as a substance that kills or
101 interrupts the development of parasites, used for the purpose of treating or preventing an infection,
102 infestation or disease caused or transmitted by parasites, including substances with repelling activity.

103 Consequently, this guideline is applicable to products that have antiparasitic properties (as defined
104 above) against ectoparasites and should be read in conjunction with related CVMP species-specific
105 guidelines which provide more detailed guidance and information and with other relevant guidelines
106 such as:

- 107 - CVMP Guideline on specific efficacy requirements for ectoparasiticides in cattle
108 (EMA/CVMP/625/2003);
- 109 - CVMP Guideline on specific efficacy requirements for ectoparasiticides in sheep
110 (EMA/CVMP/411/2001);
- 111 - CVMP Guideline for the testing and evaluation of the efficacy of antiparasitic substances for the
112 treatment and prevention of tick and flea infestation in dogs and cats (EMEA/CVMP/EWP/005/2000)
113 (including the Q&A document on that guideline, EMA/CVMP/EWP/82829/2009);
- 114 - CVMP Guideline on data requirements for veterinary medicinal products intended to reduce the risk
115 of transmission of vector-borne pathogens in dogs and cats (EMA/CVMP/EWP/278031/2015);
- 116 - CVMP Reflection paper on resistance in ectoparasites (EMA/CVMP/EWP/310225/2014).

117 All animal experiments should be conducted taking into account section I.1.7 of Annex II of Regulation
118 (EU) 2019/6 and the 3Rs principles (replacement, reduction and refinement), notwithstanding the
119 place of conduct of the experiments. Alternatives to *in vivo* test methods should be employed
120 whenever possible.

121 **4. General requirements**

122 The aim of treatment with an ectoparasiticidal veterinary medicine is to eliminate or reduce the
123 number of arthropod parasites or protect animals from them, in order to maintain animal health.

124 Studies for each ectoparasite species and each stage of the life cycle against which efficacy is claimed
125 should be provided. The applicant should justify the type of studies (*in vitro* and *in vivo* pre-clinical
126 studies and clinical trials) for each parasite species and stage.

127 In order to demonstrate the efficacy of an ectoparasitic product, the following stepwise approach
128 supported by pre-clinical and clinical data is recommended:

- 129 – characterisation of the pharmacological activity, including pharmacodynamic effects,
130 pharmacokinetic properties and the mode of action,
- 131 – information concerning development of resistance and related risk in animals,
- 132 – dose determination, including dose interval, duration of treatment and any re-treatment
133 interval(s),
- 134 – dose confirmation, including immediate and persistent efficacy testing, as appropriate,
- 135 – clinical trial(s).

136 In principle, pre-clinical studies should establish the required dose and dosing interval of the active
137 substance(s) against the intended target parasite(s) and clinical trials should confirm under field
138 conditions the results of the pre-clinical studies.

139 It is recommended that pre-clinical efficacy studies (including dose determination and dose
140 confirmation studies) follow the requirements for Good Clinical Practice (GCP) and/or Good Laboratory
141 Practice (GLP), as appropriate (depending on the nature of the studies). In case GCP and/or GLP is not
142 applied (e.g. absence of certified GLP status), traceability, accuracy, integrity and correctness of data
143 should be ensured, and the use of such data in pivotal studies should be justified. Clinical trials shall be
144 carried out taking due account of the VICH Guidelines on Good Clinical Practice (GCP).

145 Where relevant and depending upon the route of administration and site of effect (local or systemic),
146 the influence of climatic conditions such as ambient temperature and rainfall on the efficacy of the
147 product should be evaluated. Where applicable, the influence of water temperature on efficacy of the
148 product should be evaluated (e.g. veterinary medicinal products intended for use in finfish).

149 It may be the case that resistance in certain ectoparasites varies between geographical locations. If
150 that is the case, such variation in resistance to the test substance should be taken into account when
151 investigating efficacy and selecting the location of clinical trials. Efficacy should in principle be tested in
152 susceptible ectoparasites. In situations where there is a significant risk that study animals harbour
153 resistant parasites, the susceptibility of the field isolates should be tested, so that efficacy results can
154 be appropriately interpreted. The number of studies and extent of the data required will usually be
155 dependent upon the results of preliminary *in vitro* studies investigating antiparasitic effects of the
156 active substance(s) against the target ectoparasite(s) and the potential spectrum of activity and the
157 dose and duration of exposure required to achieve the desired effect.

158 **5. Pre-clinical studies**

159 **5.1. Pharmacological activity and mode of action**

160 The pharmacodynamic effect of the active substance(s) on the target ectoparasite(s) should be
161 adequately described in terms of the exposure required (amount and duration), speed of onset and
162 duration of effect. The mode of action of the active substance(s) (repellent, killing, anti-feeding,
163 growth regulating etc.) and the life-cycle stage(s) of an ectoparasite against which an antiparasitic
164 effect is intended (ova, larva, adult etc.) should be described and supported by appropriate data.
165 Approximate effective concentrations which may be derived from *in vitro* studies should be identified
166 and may be used as a basis to investigate possible dose rates.

167 For those products with a systemic mechanism of action or where systemic absorption of the active
168 substance(s) of a locally-applied product is expected, the pharmacokinetic profile of the active
169 substance(s) in the target animal species should be described. In such cases, pharmacokinetic data
170 should be used to support the selection of an appropriate dosage regimen and/or support extrapolation
171 of efficacy data between different formulations or routes of administration.

172 **5.2. Dose determination studies**

173 The purpose of dose determination studies is to establish the effective dose, dosing interval, treatment
174 duration and any re-treatment interval(s) to ensure an adequate level of efficacy against the targeted
175 ectoparasite(s). Preferably, the final formulation should be used. Where justified, a non-final
176 formulation may be used in investigational studies. In such cases, the relevance of the findings from
177 studies conducted with a non-final formulation would need to be justified.

178 The ectoparasite species and their stage(s) of life cycle used in dose determination studies should be
179 appropriately selected to ensure their relevance for the proposed indications for the product. Naturally
180 infested (by transmission through close contact with infested animals) or, where feasible, artificially
181 infested animals can be used.

182 Ideally, four groups, each consisting of a sufficient number of animals to allow appropriate statistical
183 analysis, should be administered 0.5, 1 and 2 times the anticipated recommended dose, with one
184 group untreated or administered placebo/vehicle. Unless there are specific welfare concerns associated
185 with infestation by the target ectoparasite(s), an untreated control group should be included and
186 delayed treatment of the untreated control group should be considered once sufficient time has lapsed
187 to allow comparison between a treated and an untreated group.

188 Each group should harbour or be uniformly infested with adequate numbers of each species of
189 ectoparasites. Single or mixed infestation may be used; however, having regard to the 3Rs principles
190 and to reduce the number of studies and therefore study animals, it is recommended to investigate
191 mixed infestations where possible for products targeting more than one ectoparasite, providing the
192 individual ectoparasites can be suitably differentiated and the welfare of study animals is not
193 compromised.

194 Study animals in each of the dose groups should be managed under similar experimental conditions
195 and husbandry practices should be described. Appropriate welfare of study animals should be ensured.

196 The route and method of administration should be the same as that proposed in the application. The
197 timing and number of ectoparasite counts should be justified, considering the biology of the
198 ectoparasite(s) and the anticipated duration of treatment effect and any treatment interval(s).

199 In principle, dose determination studies should be conducted for each target animal species and for
200 each species of the intended target ectoparasites. However, in keeping with the 3Rs principles and in
201 order to minimise the number of studies and study animals, applicants may consider identifying the
202 least susceptible species of target ectoparasite(s) (preferably by means of *in vitro* laboratory
203 susceptibility data supported by *in vivo* data if the *in vitro* method has been validated and results are
204 correlated with *in vivo* efficacy data) and focus dose determination studies on the least susceptible
205 ectoparasite(s).

206 For products intended for topical use without systemic action (i.e. exhibiting a repellent or killing
207 effect), *in vitro* tests investigating effective doses and/or concentrations against the proposed target
208 ectoparasites may be utilised in support of the selection of a suitable range of doses or concentrations
209 of the active substance.

210 In order to ensure acceptability of findings from dose determination studies, it is recommended that:

- 211 - the formulation used is the final (or near final) formulation or has been demonstrated to be
212 equivalent to the formulation intended for marketing,
- 213 - the product is applied according to the proposed method and route of administration,
- 214 - adequate infestation of target ectoparasite species has been established,
- 215 - the number of study animals is adequate,
- 216 - approach to identification and counting (including timing of counting) of ectoparasites is
217 appropriately justified.
- 218 - The difference in counts between treated and untreated animals must be statistically significant
219 at a level of 5% ($p \leq 0.05$).

220 **5.3. Dose confirmation studies**

221 At least two dose confirmation studies are recommended to demonstrate the efficacy of a new product
222 against each of the proposed ectoparasite species and stage(s) of development. Further details on the
223 design of such studies are provided in section 6 below.

224 Where applicable, at least one study using naturally infested animals is required. In order to
225 adequately reflect differences in husbandry practices and climatic conditions, unless otherwise justified,
226 dose confirmation studies should be performed in different geographical and climatic regions.

227 Where laboratory isolates are used to artificially infest study animals, it is recommended to use
228 laboratory isolates that have been genetically enriched from more recent field isolates (about every 6
229 years) and ensure that laboratory isolates are sufficiently representative of current field isolates in the
230 EU in terms of vigour of infestation and resistance profile. For animal welfare reasons, ectoparasites
231 used should be free of vector-borne pathogens (e.g. transmission of the cestode *Dipylidium caninum*
232 by *Ctenocephalides felis* fleas).

233 In order to ensure acceptability of findings from dose confirmation studies, it is recommended that:

- 234 - the formulation used is the final formulation intended for marketing, or has been demonstrated
235 to be equivalent to the formulation intended for marketing,
- 236 - the recommended dose and method of administration is used,
- 237 - statistically adequate numbers of treated and control animals are included and justification for
238 treatment group sizes is provided,

239 - approach to identification and counting (including timing of counting) of ectoparasites is
240 appropriately justified.

241 When efficacy is to be investigated for parasites in which strains resistant to another substance have
242 emerged and the product is likely to be used in animals exposed to resistant strains, a controlled trial
243 that includes animals exposed to resistant strains of the target ectoparasite(s) will be necessary to
244 demonstrate adequate efficacy, if the new active substance has:

245 - a similar mode of action to that of the existing ectoparasiticide against which resistance has
246 developed,
247 - a close chemical analogy to that of the existing ectoparasiticide.

248 **6. Clinical trials**

249 **6.1. General principles**

250 Clinical trials are intended to examine under field conditions the efficacy and safety of the product
251 under normal conditions of animal husbandry or as part of normal veterinary practice. The design and
252 conduct of clinical trials should take into account the principles of replacement, reduction and
253 refinement and should also ensure appropriate animal welfare in terms of avoiding causing pain,
254 suffering or distress to study animals by the procedures used in the clinical trials.

255 Clinical trials should be conducted in at least two different geographic and climatic regions, which can
256 be considered representative of the European Union. This approach is recommended to ensure that the
257 findings reported are suitably representative of the target species, husbandry practices,
258 environmental/climatic conditions and possible variations in susceptibility in the region(s) where the
259 product is intended for use. The prevalence of the target ectoparasite species must be described. The
260 final formulation intended for marketing should be used at the recommended dose and route. Any
261 deviation should be justified by the applicant.

262 **6.2. Design and conduct**

263 The design and conduct of clinical trials should take into account guidance available in the CVMP
264 Guideline on statistical principles for clinical trials for veterinary medicinal products
265 (EMA/CVMP/EWP/81976/2010). Data from a sufficient number of treated and control animals exposed
266 to adequate infestation(s) with the target ectoparasite(s) are required. Untreated control groups
267 should be used provided there are no serious welfare implications of the disease. Where an untreated
268 control group is not justified because of animal welfare reasons, a positive control using an established
269 product may be included. When a non-inferiority evaluation is planned it should be ensured that the
270 infestation rate is large enough in the test and the positive control group to obtain sufficient assay
271 sensitivity.

272 In exceptional cases, where scientifically and clinically justified, studies may be performed without the
273 use of control animals (e.g. in the case of animals infected with *Sarcopeltis scabiei*).

274 Where applicable, groups of treated and control animals should be established by randomisation to
275 groups. Ectoparasite-related conditions and/or diseases in study animals should be described before
276 initiation of treatment and any change in clinical symptoms and/or diseases should be monitored
277 during the study period and reported. A statistical analysis of the results of each clinical trial to
278 evaluate the overall efficacy of the product should be conducted for each arthropod species against
279 which efficacy is claimed. As clinical trials should evaluate both efficacy and target animal safety, study
280 animals should be observed and clinically examined at appropriate intervals during and after

281 treatment, to evaluate safety of the veterinary medicinal product. All adverse events should be
282 recorded.

283 **7. Demonstration of efficacy**

284 The efficacy of the product should be evaluated using appropriately controlled tests. The guidance
285 included in this section is applicable to both pre-clinical studies and clinical trials, as appropriate.

286 Efficacy should be determined by identifying and counting of ectoparasites on the animal, or, where
287 this is not possible, by estimation. The choice of sampling times should be justified and take account of
288 any seasonal or daily effect on maximum infestation levels, and predilection sites of the arthropods. All
289 procedures must be described and validated. Scientific literature, ideally from peer-reviewed journals,
290 reflecting current scientific knowledge may be used to support the chosen methods. The investigator(s)
291 should use the same validated methods and techniques throughout the trial and be suitably trained to
292 avoid variability and/or bias in assessment and reporting.

293 Approach to the controlled test:

294 1. The efficacy of an ectoparasiticide can be determined by comparing the number of ectoparasites
295 on the control animals with the number of ectoparasites on the treated animals after a suitable
296 post-treatment interval.

297 2. The population of infested animals should be randomly assigned to at least two groups. The
298 method of randomisation and assignment to groups must be described and justified. One group
299 serves as a control group while the other group(s) is treated with the test product. After suitable
300 time interval(s), ectoparasites should be recovered, identified and quantified with an appropriate
301 method.

302 3. When a controlled clinical trial against temporarily infesting ectoparasite species is to be
303 conducted in pasture animals, the population of animals should be randomly assigned to two
304 groups and placed on similar pastures. Groups of animals should be maintained under such
305 conditions to guarantee comparable parasite exposure and loads but exclude interference
306 between treated animals and controls. Before start of treatment, it must be ensured that the
307 ectoparasite burden is comparable in both control and treatment groups.

308 4. Abbott's formula should preferably be used to determine efficacy of the product expressed as a
309 relative reduction in parasite counts compared to an untreated control group. The percentage
310 efficacy for each species of ectoparasite is determined by comparing the treated group and
311 control group as follows:

$$312 \text{Efficacy (\%)} = 100 \times (m_c - m_t) / m_c$$

313 Where m_c = mean number of ectoparasites in the control group,

314 m_t = mean number of ectoparasites in the treated group.

315 5. Calculation of efficacy should generally be based on arithmetic mean ectoparasite counts
316 irrespective of whether the count data are skewed or not, since efficacy estimates based on
317 geometric means tends to be biased upwards and might potentially mask individual treatment
318 failures. However, efficacy calculation based on geometric mean counts may also be reported. If
319 geometric (i.e. logarithmic) means or other suitably transformed means are used, the
320 transformation must be justified and arithmetic means also presented. Reference should be
321 made to species-specific guidelines where available and more detailed information on acceptable
322 approaches to calculation of efficacy is provided.

323 6. Results must be statistically analysed and, where possible, confidence limits of the means should
324 be given. The statistical method used must be justified.

325 7. The difference in counts between treated and untreated animals must be statistically significant
326 at a level of 5% ($p \leq 0.05$).

327 In general, for most ectoparasites, an overall efficacy of more than 90% is required, but higher
328 thresholds for efficacy may be required depending on the parasite species. For example, efficacy
329 should be at least 95% for *Ctenocephalides canis* and *felis*, approximately 100% for all lice and
330 *Sarcopetes scabiei* and *Psoroptes ovis* infestations.

331 However, for some ectoparasites lower efficacy thresholds may be permitted, for example, for diptera
332 species (e.g. *Musca* spp. and *Hydrotea* spp.) and larval arthropods, efficacy should be at least 80%
333 and preferably more than 90%. Where indicated and justified, clinical parameters may be used to
334 support efficacy of the product (e.g. *Demodex canis* infestations).

335 For parasites that only complete part of their life cycle on the animal, treatment should be directed
336 towards elimination of parasitic stages. In the case of the latter, treatment should at least result in
337 resolution of clinical signs or the significant reduction of nuisance. This can be achieved by reducing
338 parasite burdens on the animal to clinically irrelevant levels, by preventing active stages from settling
339 on the host by repelling.

340 Reference should be made to species-specific guidelines to confirm the efficacy thresholds required for
341 the various ectoparasites and stages associated with the effect being claimed (killing, repellent etc.).

342 **8. Specific requirements**

343 **8.1. Products for topical use**

344 Products for topical use include shampoos, aerosols, spot-ons, pour-ons or dust formulations, ear tags,
345 collars, clips, dipping or spray-race formulations, etc.

346 While the general requirements described above also apply to products for topical use, it is necessary
347 to take into account interactions between treatment and regional climatic, environmental and
348 husbandry conditions as well as animal characteristics during the course of the clinical trial(s). In
349 particular, the applicant should consider the need for additional studies evaluating the effect (if any)
350 of:

- 351 a) rainfall (may be mimicked) at various intervals before, during and after treatment,
- 352 b) sunshine and hot weather under monitored conditions during and after treatment,
- 353 c) dilution (e.g. with dipping),
- 354 d) washing or bathing during the treatment period,
- 355 e) hair length and thickness of coat,
- 356 f) dirtiness of the animal's coat and dirtying of preparations (e.g. of dipping formulations) during
357 the treatment,
- 358 g) self-grooming or mutual grooming of treated animals (i.e. unintended removal following
359 application),
- 360 h) different body sizes of target animals treated with a standard dose formulation,
- 361 i) effects on the quality of fleece or hide and impact on tanning or processing.

362 The duration of follow-up in the clinical trial(s) should be adequate to monitor for adverse effects of the
363 product. Where secondary pharmacodynamic effects are seen, a study on the dose/effect relationship
364 may be required.

365 **8.2. Insecticide-delivery systems (e.g. collars, ear tags etc.)**

366 If the product is intended to be effective against arthropods with seasonal activity, then the clinical
367 trial(s) must be conducted over the entire season. Evaluation will be based on demonstrating an
368 acceptable level of efficacy against the targeted ectoparasite(s) for the duration to be claimed by
369 comparison with control animals, where relevant. Controls and treated animals should occupy separate
370 lots within the same area throughout the trial. Groups of animals should be maintained under such
371 conditions to guarantee comparable parasite loads but exclude interference between treatments and
372 controls.

373 **8.3. Risk of resistance development**

374 For antiparasitic veterinary medicinal products, information on current prevalence of resistance (if
375 applicable) and on the potential emergence of resistance of clinical relevance for the claimed
376 indication(s) in the target species shall be provided. Where possible, information on the resistance
377 mechanism(s), the molecular genetic basis of resistance, and the rate of transfer of resistance
378 determinants shall be provided in the application dossier for ectoparasiticidal veterinary medicinal
379 products. Measures to limit resistance development shall be proposed.

380 It may be the case that ectoparasitic resistance varies between geographical locations. When known,
381 the resistance profile of ectoparasites should be described and the location of studies and strains of
382 ectoparasites investigated should take account of resistance profiles to ensure that study findings are
383 representative for the ectoparasites in the EU.

384 Suspected cases of lack of efficacy observed in the pre-clinical studies or clinical trials should be
385 appropriately discussed.

386 Further, in order to ensure that studies are appropriately conducted to minimise the risk of resistance
387 development, the bodyweight of animals to be administered the investigational product should be
388 determined as accurately as possible and the dose accurately measured in order to avoid possible
389 under-dosing.

390 **8.4. Combination veterinary medicinal products**

391 It is not uncommon for active substances with ectoparasiticidal properties to be combined in a
392 veterinary medicinal product in order to extend the spectrum of activity compared to each individual
393 active substance. However, it is of utmost importance that each active substance to be included in a
394 fixed combination veterinary medicinal product has a documented contribution within the combination.
395 Superfluous administration of a substance in a fixed combination product is considered inappropriate,
396 even if the substance is considered as safe on the basis of target animal tolerance data and when used
397 as indicated. This is of particular importance in terms of ensuring that risks for development of
398 antiparasitic resistance are minimised when more than one active substance is administered in
399 combination. Reference should be made to the CVMP Guideline on pharmaceutical fixed combination
400 products (EMA/CVMP/83804/2005) for more detailed guidance.

401 In order to ensure appropriate use of fixed combination ectoparasiticidal veterinary medicinal products,
402 the existence and risk of infestation with species of ectoparasites targeted by the active substances
403 included in the combination products should be confirmed, that is, ensure that all active substances are

404 necessary at the time of administration. Consequently, the SPCs for combination ectoparasiticidal
405 products should be clear that the product should only be used when all active substances are indicated
406 at the same time.

407 **8.5. Generic/hybrid veterinary medicinal products – data requirements**

408 Ectoparasiticides can act systemically or locally.

409 For systemically acting ectoparasiticidal products, it is possible to demonstrate bioequivalence of the
410 candidate and reference products by means of conducting bioavailability studies. For those candidate
411 veterinary medicinal products, bioavailability studies demonstrating bioequivalence with the reference
412 veterinary medicinal product or a justification as to why such studies were not performed (see CVMP
413 Guideline on the conduct of bioequivalence studies for veterinary medicinal products,
414 EMA/CVMP/016/2000) need to be provided.

415 For locally acting ectoparasiticidal products, bioavailability studies cannot be used to demonstrate
416 bioequivalence of the candidate and reference products. For those candidate ectoparasiticidal
417 veterinary medicinal products with local activity only and where the same indications compared to the
418 reference product are proposed, the overarching principle is that the candidate product should be
419 therapeutically equivalent to the reference product. To prove therapeutic equivalence and to allow a
420 reduced number of studies and also to avoid unnecessary use of animals in experiments, at least the
421 following data package should be provided:

- 422 • The efficacy of the candidate product should be confirmed under laboratory conditions in at
423 least one controlled dose confirmation study for each of the species (stages) of ectoparasites
424 and in each of the proposed target animal species using ectoparasites that are sufficiently
425 representative of the current field situation.
- 426 • If only one dose confirmation study is conducted (per species of target ectoparasite and per
427 target animal species), indications cannot be more favourable (for example, longer persistent
428 efficacy claim) than those of the reference product. In case more favourable indications are
429 proposed, adequate pre-clinical and clinical data need to be provided.
- 430 • The option to confirm efficacy of a topically applied ectoparasiticide with local activity by using
431 at least one controlled pre-clinical study with the least susceptible ectoparasite species
432 determined *in vitro* can be accepted only if both a validated *in vitro* method exists for the
433 ectoparasite, and a clear correlation between *in vivo* and *in vitro* results is available.
- 434 • In general, local tolerance data should be provided according to the requirements of the VICH
435 Guideline on target animal safety for veterinary pharmaceutical products
436 (EMEA/CVMP/VICH/393388/2006).

437 Efficacy and tolerance studies may not be necessary if the following conditions are fulfilled: the
438 candidate product has the same pharmaceutical form and contains qualitatively and quantitatively the
439 same active substance(s), the excipients of the candidate product are qualitatively and quantitatively
440 the same or very similar compared to the reference product, and the physicochemical properties (e.g.
441 crystalline form, particle size distribution, viscosity, relative density, dissolution profile, release profile)
442 of the candidate product are the same or similar to those of the reference product.

443 If there is a difference in the qualitative or quantitative composition of the excipients which may affect
444 absorption or the release profile, the rate and extent of distribution and persistence of the active
445 substance, efficacy and tolerance studies may be necessary.

446 **Resistance**

447 For generic veterinary medicinal products containing an ectoparasiticidal substance, information about
448 the level of resistance, as known from bibliographical data, shall be provided; however, generation of
449 new study data is not required.

450 For hybrid veterinary medicinal products, the risk of development of resistance shall be addressed, if
451 applicable (e.g. for changes in indications or inclusion of new target animal species).

452 **9. General approach to wording of indications in the product
453 information for ectoparasiticidal products**

454 In order to ensure that it is clear to prescribers and users of ectoparasiticidal veterinary medicinal
455 products, precisely which ectoparasite(s) (including development stages) the product has been
456 demonstrated to be efficacious against, a consistent approach to the wording of indications should be
457 utilised in the product information.

458 It is generally expected that the following information is clearly set out in the indication(s):

- 459 - The species of ectoparasite(s) (including development stages, if appropriate) against which an
460 acceptable level of efficacy has been demonstrated in accordance with guideline requirements.
- 461 - Information on the time to onset of efficacy e.g. treatment claims supported by demonstrating
462 immediate efficacy (i.e. efficacy against existing infestations).
- 463 - Information on the duration of efficacy i.e. claims supported by demonstrating persistent
464 efficacy thereby preventing re-infestation.
- 465 - For fixed combination products, to ensure that treated animals harbour, or are at risk from,
466 infestation of mixed ectoparasites necessitating the administration of all active substances
467 included in the fixed combination product, the following wording should be used:

468 *"For <target animal species> with, or at risk from mixed infestations by <ectoparasites targeted by
469 the combination of active substances>. The veterinary medicinal product is only indicated when use
470 against <appropriate arrangement of ectoparasite groups or species> is indicated at the same time."*

471 When the fixed combination product is a combination of an ectoparasiticide with an endoparasiticide,
472 the same requirements to ensuring the need for each of the active substances at the time of
473 administration applies and reference to the wording recommended in the CVMP Guideline on the
474 summary of product characteristics for antiparasitic veterinary medicinal products
475 (EMA/CVMP/EWP/170208/2005) should be made.

476 For products with a killing or repelling effect, it is considered appropriate that the product information
477 suitably identifies the time point for onset of such an effect (immediate efficacy) following
478 administration of the product as well as the duration of such an effect (persistent efficacy) for which an
479 acceptable level of efficacy against each of the targeted ectoparasites has been demonstrated in
480 accordance with guideline requirements. Imprecise claims such as 'for up to X weeks' should be
481 avoided.

482 The time-point for the assessment of immediate efficacy after prior infestation with ectoparasites is
483 usually up to 24 or 48 hours post-treatment, depending on the parasite, method of exposure and the
484 effect assessed (acaricidal/insecticidal/repellent). In contrast, the first time-point for assessing efficacy
485 in preventing re-infestation after treatment is usually 7 days but may be longer depending upon the
486 expected duration of persistent efficacy.

487 The duration of persistent efficacy is defined as the interval between treatment and the last time-point
488 at which efficacy has been appropriately demonstrated.

489 Information on the time to onset of ectoparasiticidal effect and duration of persistent efficacy is
490 important for various parasites (ticks, fleas, sandflies, mosquitoes etc.) and in particular for parasites
491 which may transmit vector borne pathogens including zoonotic pathogens.

492 Therefore, the first and last time point of efficacy should both be included in the indications for use as
493 follows:

494 *Prevention of re-infestations with <ectoparasite name, ectoparasite species> through a <type of
495 effect> **from X days to** X weeks after treatment.*

496
497 or
498

499 *Persistent <type of effect> activity **from X days to** X weeks after treatment for <ectoparasite name,
500 ectoparasite species>.*

501 **References**

502 The following legislation and guidelines are relevant to this guideline:

- 503 1. Regulation (EU) 2019/6 of the European Parliament and of the Council on veterinary medicinal
504 products repealing Directive 2001/82/EC.
- 505 2. Directive 2010/63/EU of the European Parliament and of the Council on the protection of animals
506 used for scientific purposes.
- 507 3. CVMP Guideline on the principles of regulatory acceptance of 3Rs (replacement, reduction,
508 refinement) testing approaches (EMA/CHMP/CVMP/JEG-3Rs/450091/2012).
- 509 4. CVMP Guidelines on specific efficacy requirements for ectoparasiticides in cattle
510 (EMEA/CVMP/625/03).
- 511 5. CVMP Guidelines on specific efficacy requirements for ectoparasiticides in sheep
512 (EMA/CVMP/411/01).
- 513 6. CVMP Guideline for the testing and evaluation of the efficacy of antiparasitic substances for the
514 treatment and prevention of tick and flea infestation in dogs and cats
515 (EMEA/CVMP/EWP/005/2000).
- 516 7. Questions and answers on the CVMP guideline on the testing and evaluation of the efficacy of
517 antiparasitic substances for the treatment and prevention of tick and flea infestations in dogs and
518 cats (EMA/CVMP/EWP/82829/2009).
- 519 8. CVMP Guideline on data requirements for veterinary medicinal products intended to reduce the
520 risk of transmission of vector-borne pathogens in dogs and cats (EMA/CVMP/EWP/278031/2015).
- 521 9. CVMP Guideline on the summary of product characteristics for antiparasitic veterinary medicinal
522 products (EMA/CVMP/EWP/170208/2005).
- 523 10. CVMP Questions and answers on the Guideline on the summary of product characteristics for
524 antiparasitic veterinary medicinal products (EMA/CVMP/EWP/799840/2022).
- 525 11. CVMP Reflection paper on resistance in ectoparasites (EMA/CVMP/EWP/310225/2014).
- 526 12. CVMP Guideline on statistical principles for clinical trials for veterinary medicinal products
527 (pharmaceuticals) (EMA/CVMP/EWP/81976/2010).
- 528 13. CVMP Guideline on pharmaceutical fixed combination products (EMA/CVMP/83804/2005).
- 529 14. VICH Topic GL9 – Guideline on Good Clinical Practices (CVMP/VICH/595/98).
- 530 15. CVMP Guideline on the conduct of bioequivalence studies for veterinary medicinal products
531 (EMA/CVMP/016/2000).
- 532 16. Corrigendum to European Commission Notice: Guidance to Applicants – Veterinary Medicinal
533 Products (C/2024/90009).