

London, 11 October 2006 Doc. Ref. EMEA/CHMP/BWP/271475/2006

1 2

3

# COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE (CHMP)

5 DRAFT

6 7

# GUIDELINE ON POTENCY TESTING OF CELL BASED IMMUNOTHERAPY MEDICINAL PRODUCTS FOR THE TREATMENT OF CANCER

8

| DRAFT AGREED BY BWP                           | 11 October 2006              |
|-----------------------------------------------|------------------------------|
| ADOPTION BY CHMP FOR RELEASE FOR CONSULTATION | 16 November 2006             |
| END OF CONSULTATION (DEADLINE FOR COMMENTS)   | 31 May 2007                  |
| AGREED BY <working party=""></working>        | <month year=""></month>      |
| ADOPTION BY <committee></committee>           | <day month="" year=""></day> |
| DATE FOR COMING INTO EFFECT                   | <day month="" year=""></day> |

9

Comments should be provided using this <u>template</u> to elisa.pedone@emea.eu.int Fax +44 20 7418 8545

10

| KEYWORDS | Immunotherapy; potency testing; cell-based products |
|----------|-----------------------------------------------------|

# GUIDELINE ON POTENCY TESTING OF CELL BASED IMMUNOTHERAPY MEDICINAL PRODUCTS FOR THE TREATMENT OF CANCER

| 13 |     |                           | TABLE OF CONTENTS                                   |   |  |  |
|----|-----|---------------------------|-----------------------------------------------------|---|--|--|
| 14 | 1.  | EXE                       | CUTIVE SUMMARY                                      | 3 |  |  |
| 15 | 2.  | INTRODUCTION (BACKGROUND) |                                                     |   |  |  |
| 16 | 3.  | SCOPE                     |                                                     |   |  |  |
| 17 | 4.  |                           | AL BASIS                                            |   |  |  |
| 18 | 5.  |                           | ECTS TO POTENCY TESTING OF CELL BASED IMMUNOTHERAPY |   |  |  |
| 19 |     | PRO                       | DUCTS                                               | 4 |  |  |
| 20 |     | 5.1                       | IN VIVO (ANIMAL) POTENCY TESTING                    | 4 |  |  |
| 21 |     | 5.2                       | IN VITRO POTENCY TESTING                            |   |  |  |
| 22 |     | 5.3                       | VIABLE CELL COUNT                                   |   |  |  |
| 23 |     | 5.4                       | AUTOLOGOUS CELL BASED PRODUCTS                      |   |  |  |
| 24 |     | 5.5                       | REFERENCE PREPARATION                               |   |  |  |
| 25 |     | 5.6                       | ADJUVANT CONTAINING IMMUNOTHERAPY PRODUCTS          |   |  |  |
| 26 | DEF | FINITIONS                 |                                                     |   |  |  |
| 27 | REF | ERENC                     | ES (SCIENTIFIC AND / OR LEGAL)                      | 8 |  |  |
| 28 |     |                           |                                                     |   |  |  |

11

12

#### 1. EXECUTIVE SUMMARY

28 29

- 30 Licensed biological medicinal products must meet specifications for appearance, identity, purity,
- 31 biological activity and/or quantity of the drug substance. Determining the biological activity of cell
- 32 based immunotherapy products is not easy since the active ingredient is usually composed of whole
- 33 cells and the activity of these products can generally not be attributed to one specific cell
- 34 characteristic. The potency (i.e., the quantitative measure of biological activity) of cell based
- immunotherapy products can be measured using *in vivo* or *in vitro* tests. An appropriately validated
- 36 potency assay should be based on the intended biological effect and ideally related to the clinical
- 37 response. Surrogates for potency may be developed to demonstrate biological activity of the test
- sample. Development and validation of such assays for cell based immunotherapy products need
- 39 special considerations. This document represents CHMP's current thinking on these issues.

## 40 **2. INTRODUCTION** (background)

- 41 Cell based immunotherapy aims at treating patients by stimulating their immune system using
- 42 autologous or allogeneic cells. Immunotherapy of cancer is based on an immune response targeted
- 43 against tumour-specific/tumour associated antigen(s), leading to destruction of malignant cells. The
- 44 targeting of interactions between the immune system and the tumour constitute a complex approach of
- which the precise mechanism of action is often not fully understood.
- 46 In the scientific literature, cell based immunotherapy products for the treatment of cancer are
- 47 sometimes called cell based tumour vaccines or cancer vaccines.
- 48 Assessment of the biological properties constitutes an essential step in establishing a complete
- 49 characterisation profile of a biological medicinal product. Due to their complexity, cell based
- 50 immunotherapy products cannot be fully characterised like products derived by recombinant DNA
- 51 techniques. Nevertheless, as for any biological medicinal product, the biological activity is an
- 52 important characteristic and needs to be determined for cell based immunotherapy products.
- According to the ICH guideline<sup>1</sup> the biological activity describes the specific ability or capacity of a
- 54 product to achieve a defined biological effect. Potency is the quantitative measure of biological
- 55 activity based on the attribute of the product, which is linked to the relevant biological properties.
- Current guidance on cell therapy based medicinal products is found in CPMP Points to consider (PtC)
- 57 on the manufacture and quality control of human somatic cell therapy medicinal products
- 58 (CPMP/BWP/41450/98). According to this PtC, the final cell therapy product should be subjected to
- 59 quality control and lot release testing as well as to tests to evaluate the shelf-life of the product. This
- 60 should include a potency assay, which should be properly validated. However, specific guidance
- related to the development and validation of such assays is not available.
- 62 This document intends to provide further guidance on specific requirements related to the
- 63 development and validation of potency assays for cell based immunotherapy products. Other existing
- guidelines related to testing may be relevant and should be consulted<sup>1,2</sup>.

#### 3. SCOPE

65

- 66 This guidance document covers cell based immunotherapy products from autologous or allogeneic
- origin, consisting of e.g. whole tumour cells, tumour cell lysates, or dendritic cells, all intended to
- 68 induce tumour-specific cytotoxity although the immunological pathway may differ between products.
- 69 Tumour-specific cells intended for adoptive transfer (i.e. passive immunisation strategies) are also
- 70 included, for example ex-vivo primed T-cells.
- 71 The cells may be chemically treated or genetically modified *in vitro* to immortalize them or to express
- 72 certain gene products like growth factors or tumour antigens. If the medicinal product is to be

EMEA/CHMP/BWP/271475/2006

©EMEA 2006

Page 3/8

73 considered as a gene therapy medicinal product<sup>3</sup>, further guidance can be found in the Note for

Guidance on the Quality, Preclinical and Clinical Aspects of Gene Transfer Medicinal Products<sup>4</sup>.

### 4. LEGAL BASIS

75

- 76 This guideline has to be read in conjunction with the introduction and general principles (4) and Part I:
- 77 Standardised marketing authorisation dossier requirements as well as Part IV: Advanced therapy
- medicinal products of the Annex I to Directive 2001/83/CE as amended.

# 79 5. ASPECTS TO POTENCY TESTING OF CELL BASED IMMUNOTHERAPY PRODUCTS

- 81 Appropriately designed potency assays provide an accurate, reliable and consistent demonstration of
- 82 the biological activity of the active ingredient. Determining the biological activity of cell based
- 83 immunotherapy products is not easy since the active ingredient is usually composed of whole cells and
- 84 the activity of these products can generally not be attributed to one specific cell characteristic. Potency
- assays for immunotherapy products will be based on complex immune mechanisms which are often
- 86 poorly or incompletely understood and which may be complicated by multi-antigen formulations and
- 87 inherent variability of the starting material.
- Nevertheless, to assure a consistent functional activity of the medicinal product in the recipient, the
- 89 potency of the product within justified limits should be demonstrated by a bioassay based on the
- 90 intended biological effect and ideally related to the clinical response. To establish the intended
- 91 biological effect, a proper understanding of the biology of these cells is necessitated. Therefore,
- 92 phenotypic and functional properties of the cells should be extensively characterised. Based on these
- characteristics and the mode of action established in non-clinical studies the concept of the analytical
- 94 assay should be deduced. It is generally acknowledged that cellular immunity plays a key role in the
- 95 immunological destruction of tumours. Therefore, several assays under development have been based
- on this principle. Induction of a non-relevant immune response (e.g. an antibody response that is not
- 97 relevant as regards to the intended biological effect) in animals following administration of the
- 98 medicinal product is generally not accepted as a (surrogate) measurement of potency.
- 99 Ideally, one single properly developed and validated assay is sufficient to cover both characterisation
- issues and batch release testing. However, different kinds of assays may be needed depending on the
- purpose of the assay, e.g. to characterise the active substance, to validate the production process, to
- show batch-to-batch consistency, and to determine the stability during shelf life.
- Preferably, a suitable potency assay should be in place already when material for the first clinical trial
- is produced and it should be validated prior to phase III clinical trials unless otherwise justified. Lot
- release and shelf life specifications for potency should be determined and amended during product
- development, as appropriate. It is strongly recommended that the development of a suitable potency
- assay be started as soon as possible.
- A potency assay is an extremely valuable tool to provide assurance of unaltered biological
- characteristics of the product throughout the development of the product. This is especially important
- when changes to the manufacturing process are introduced after production of material for non-clinical
- studies or pivotal clinical studies.

114

- Potency of cell based immunotherapy products can be measured in a number of different assays
- including *in vivo* and *in vitro* test systems.

#### 5.1 In vivo (animal) potency testing

- The development of a relevant biological in vivo potency assays for cell based immunotherapy
- products may be hampered by the lack of a relevant animal model due to the inherent immunological
- differences between man and animals. However, relevant animal models should be fully explored. For
- example, animals which are transgenic for human major histocompatibility antigens can be used to EMEA/CHMP/BWP/271475/2006

©EMEA 2006 Page 4/8

- present human antigens to the immune system of these animals. Also, immuno-compromised animals
- 120 (e.g. athymic mice) could be used to determine the functional response of adoptively transferred
- human T cells as the measurement of potency.
- In addition to the lack of suitable (transgenic) animal models, it is acknowledged that such assays very
- often suffer from wide inherent biological variability. *In vivo* potency testing may also be particularly
- lengthy to perform and as such may not be practical for lot release. Nevertheless, they could
- effectively be applied as a product characterisation tool, e.g. after introduction of a process change or
- any other change that may impact the quality of the medicinal product.
- 127 As for any animal based potency assay, suitable conditions for conducting *in vivo* animal testing
- should be set after appropriate validation. Some principles outlined in current available guidance for
- biological assays of prophylactic vaccines and their statistical analysis may be useful (e.g. Ph.Eur. 2.7
- 130 & 5.3.6).

## 131 5.2 In vitro potency testing

- With *in vitro* assays, a biochemical or physiological response can be measured at the cellular level.
- Such assays may be suitable to assess the biological activity on a routine basis, i.e. for monitoring
- product consistency in batch release testing. Measurable parameters are, for example, in vitro lysis of
- target cells by tumour-specific (CD8) T-cells, in-vitro cytokine production by specific cells, e.g.
- lymphocytes in response to the product, and co-stimulatory capacity of dendritic cells (DCs).
- Surrogates for potency may be developed to demonstrate biological activity of the test sample
- provided that a correlation between the surrogate and the intended biological activity has been
- demonstrated. Surrogate analysis may comprise different kind of tests including determination of cell
- surface markers, activation markers, secretion of factors, expression of a single gene product or
- protein expression pattern. The possibilities of using combinations of certain parameters (e.g. viability,
- cell surface marker expression) could be envisaged.
- 143 If the mechanism of action of the medicinal product can be clearly attributed to specific cell surface
- antigens (tumour-specific antigens, tumour-associated antigens), the potency assay could be based on
- quantification of these antigens by suitable methods (e.g. Flow Cytometry Analysis). However, special
- 146 consideration should be given to the validation of non-standard methods if used for batch release
- 147 testing.

155

#### 148 5.3 Viable cell count

- One of the requirements included in Directive 2003/63/EC (Annex I, part IV) is that human somatic
- cell therapy medicinal products are made of a defined number (pool) of viable cells. Cell viability is
- an important parameter of product integrity and may be used as an in-process control after
- manipulation of certain cell characteristics e.g. up-regulation of cell surface expression of specific
- antigens after cytokine treatment. Cell viability should not be used on its own as a potency indicator
- and it is only meaningful when used to express an intended biological effect.

### 5.4 Autologous cell based products

- 156 For cell based immunotherapy products comprised of autologous cells, sample and time constraints
- may hamper complete batch control testing at release. In addition, there may be an inherent variability
- within the sourced autologous cell population, which cannot be fully rectified by the manufacturing
- process. In this case the use of variable cell populations may be clinically justified. This variability in
- 160 cell characteristics could pose difficulties in validation of the potency assay and in assigning
- acceptance limits for potency.
- Nevertheless, whenever a manipulation generates a more homogeneous subpopulation, the
- development of an appropriate (surrogate) potency assay should be fully explored, which could

EMEA/CHMP/BWP/271475/2006 ©EMEA 2006 Page 5/8

- effectively be applied either as a characterisation tool or batch release test, or both. In this situation,
- the absence of a suitable potency assay is not accepted without proper justification, as this will pose
- difficulties in demonstrating production consistency of autologous cell preparations after changes in
- manufacture or product composition have been implemented.

## 5.5 Reference preparation

168

176

184

- In general, potency assays on biological medicinal products rely heavily on the use of reference
- preparations with an established potency. Most likely, no international reference preparation will be
- available for highly specific cell based immunotherapy products and it may be difficult to generate
- such preparations for autologous products. 'In-house' reference materials should be characterised in
- terms of their composition, purity and biological activity as thoroughly as possible by physical-
- chemical-biological methods. The in-house reference material should preferably be clinically qualified
- or shown to be comparable to materials shown to be efficacious in clinical trials.

## 5.6 Adjuvant containing immunotherapy products

- 177 There may be cases, where immunotherapy products will require an adjuvant to raise their low
- immunogenicity. However, it should be kept in mind that these adjuvants may exert activities that may
- interfere with the intended potency assay. For example, Mycobacterium bovis (bacillus Calmette-
- 180 Guerin BCG)<sup>5</sup> is a commonly used adjuvant but one of the BCG activities is associated with
- activation of monocytes/macrophages<sup>6</sup>. When the adjuvant may interfere with the specific biological
- activity of the product measured in the potency assay, special consideration should be given to this
- issue during assay development.

EMEA/CHMP/BWP/271475/2006

©EMEA 2006 Page 6/8

## 184 **DEFINITIONS**

- 185 **Biological activity:**
- 186 The specific ability or capacity of the product to achieve a defined biological effect.
- 187 **Potency:**
- 188 The measure of the biological activity using a suitably quantitative biological assay (also called
- potency assay or bioassay), based on the attribute of the product, which is linked to the relevant
- 190 biological properties.

EMEA/CHMP/BWP/271475/2006 ©EMEA 2006 Page 7/8

### 191 **REFERENCES** (scientific and / or legal)

<sup>&</sup>lt;sup>1</sup> ICH Topic Q6B, Step 4 Note for Guidance on Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products. CPMP/ICH/365/96 - Adopted March 99.

<sup>&</sup>lt;sup>2</sup> ICH Topic Q5C, Step 4 Note for Guidance on Quality of Biotechnological Products: Stability Testing of Biotechnological/Biological Products. CHMP/ICH/138/95 – Adopted Dec. 95.

<sup>&</sup>lt;sup>3</sup> EU Commission Directive 2003/63/EC, Annex I, Part IV: Advanced Therapy Medicinal Products

<sup>&</sup>lt;sup>4</sup> EMEA/CHMP Note for Guidance on the Quality, Preclinical and Clinical Aspects of Gene Transfer Medicinal Products. CPMP/BWP/3088/99

<sup>&</sup>lt;sup>5</sup> Mesa C., Fernandez L. Challenges facing adjuvants for cancer immunotherapy. Immunology and Cell Biology 82 (2004): 644-650

<sup>&</sup>lt;sup>6</sup> Suttmann H., Jacobsen M., Reiss K., Jocham D., Bohle A,. Brandau S. Mechanisms of bacillus Calmette-Guerin mediated natural killer cell activation. J Urol. Oct 174 (2004): 1490-1495