

- 1 16 October 2025
- 2 EMA/CHMP/BWP/1/2024
- 3 Committee for Medicinal Products for Human Use (CHMP)
- 4 Guideline on quality aspects of phage therapy medicinal
- 5 products
- 6 Draft

Draft agreed by Biologics Working Party	September 2025
Adopted by CHMP for release for consultation	16 October 2025
Start of public consultation	23 October 2025
End of consultation (deadline for comments)	30 April 2026

7 8

Comments should be provided using this EUSurvey <u>form</u>. For any technical issues, please contact the <u>EUSurvey Support</u>.

9

Keywords	Bacteriophages, phage therapy, quality aspects, development and
	manufacture

Table of contents

11

12	Executive summary	3
13	1. Introduction	3
14	2. Scope	3
15	3. Legal basis	4
16	4. Active substance	4
17	4.1. General information	
18	4.2. Manufacturers	4
19	4.3. Manufacturing process and controls	4
20	4.4. Control of materials	5
21	4.5. Process validation and/or evaluation	6
22	4.6. Characterisation	6
23	4.7. Control of active substance	8
24	4.8. Analytical considerations	10
25	4.9. Reference standards or materials	
26	4.10. Stability	10
27	5. Finished product	10
28	5.1. Description and composition of the finished product	10
29	5.2. Pharmaceutical development	10
30	5.3. Manufacture	11
31	5.4. Control of finished product	11
32	5.5. Reference standards or materials	12
33	5.6. Stability	12
34	6. Regulatory considerations	12
35	6.1. Composition of the finished product and post-marketing authorisation change of a	
36	substance	
37	6.2. Use of prior knowledge	12
38	7. Definitions	13
39	8. References	14
		- ·

43 **Executive summary**

- 44 The aim of this guideline is to clarify the regulatory expectations for quality documentation of
- 45 bacteriophage active substances and finished products for human use within marketing authorisation
- 46 applications. It addresses specific aspects regarding the manufacture, control of materials,
- 47 characterisation, specifications, analytical control, reference standards and stability of bacteriophage
- 48 active substances. In addition, guidance is given on the pharmaceutical development, manufacture,
- 49 control and stability of the finished product.

1. Introduction

50

- 51 The number of bacteria resistant to antibiotic treatment is drastically increasing, and these cause life-
- 52 threatening conditions such as pneumonia, urinary tract infections, bacteriemia/sepsis, wound
- 53 infections, infections in cystic fibrosis and medical-device related infections. Antibiotic resistance has
- 54 become a serious problem worldwide contributing to morbidity and mortality and increasing the burden
- for society and hospitalisation costs.
- 56 Bacteriophages (phages) are viruses that exclusively infect bacteria, replicate within them, and often
- 57 cause the lysis of the bacterial cells during the release of progeny phage particles. Phage therapy
- refers to the use of phages for the treatment of bacterial infections, infectious diseases, or for the
- 59 eradication of specific bacteria. Phages are promising agents for the treatment of infections that do not
- 60 respond to conventional treatment options, either as monotherapy or in combination with antibiotics.
- 61 There is an increasing interest in the use of phages for the treatment of infections or infectious
- 62 diseases both from the healthcare providers and pharmaceutical industry, and the number of clinical
- 63 trials is increasing.
- 64 Phage therapy medicinal products (PTMPs) fall under the definition of biological medicinal products as
- defined in the Directive 2001/83/EC. Various guidelines established for biological medicinal products
- are applicable to PTMPs. Nevertheless, phages differ from other biological medicinal products in various
- 67 terms (e.g. high specificity, self-propagation, potential for evolution and risk of horizontal gene
- 68 transfer), and thus, specific considerations need to be taken into account throughout their
- 69 development and lifecycle. This guideline aims to establish regulatory expectations for the
- 70 development, manufacture, characterisation and control of phages active substances and finished
- 71 products intended for the treatment of bacterial infections and infectious diseases in humans.
- 72 The guideline is structured in accordance with the eCTD framework, ensuring concise direction
- 73 regarding the required data and information.

2. Scope

- 75 This guideline establishes quality requirements for the authorisation of PTMPs mainly intended for
- 76 treatment of bacterial infections or infectious diseases in humans. It applies to strictly lytic (virulent)
- 77 bacteriophages, whether naturally occurring or chemically/genetically modified, which are
- 78 manufactured by propagation in bacterial cells. This includes bacteriophages with synthetic genomes
- 79 propagated in bacteria during production.
- 80 Cell-free production systems (such as in vitro transcription-translation systems leading to production of
- 81 viable phage particles) are not specifically addressed; however, relevant principles of the guideline
- 82 apply.

- 83 Where the introduced genetic manipulation(s) result in the phage being classified as a gene-therapy
- 84 medicinal product, such product is then subject to the EU legislation and guidelines applicable to
- 85 Advanced Therapy Medicinal Products (ATMPs). While the principles of this quality guideline apply,
- specific guidance for such products is not included. Applicants are recommended to seek an opinion
- 87 from the Committee for Advanced Therapies (CAT) in order to confirm the classification of the product
- as early in development as possible.
- 89 Phage-derived products (e.g., lysins or other enzymes), magistral formulae or patient-individualised
- 90 phages not intended to be authorised through MAA procedure are out of scope of the guideline.
- 91 While this guideline is not specifically intended for investigational PTMPs, the principles apply in a
- 92 phase-appropriate manner to products in clinical development.

3. Legal basis

93

99

103

110

114

- 94 This Guideline should be read in conjunction with the introduction and general principles of Annex I to
- 95 Directive 2001/83/EC, as amended, all relevant European guidelines, reflection papers, International
- 96 Conference of Harmonisation (ICH) guidelines applicable to PTMPs and European Pharmacopoeia
- 97 (Ph.Eur.) requirements. References to the relevant guidelines and reflection papers are made within
- 98 the relevant sections of this document and/or are listed in section 8.

4. Active substance

- 100 A PTMP active substance is manufactured in a bacterial production strain by a controlled propagation of
- a phage seed lot derived from a single phage clone, resulting in a genetically and phenotypically
- 102 consistent phage population.

4.1. General information

- 104 Information about the structure, including details on the capsid, tail, and any other components of the
- phage should be presented.
- The general properties of the phage should be clearly outlined, including at a minimum the following:
- taxonomic classification, target bacteria, potency, particle size, genome type and size, as well as
- details of any notable genes present and/or genetic/chemical modifications, if applicable. Additional
- 109 relevant characteristics may also be included to provide a comprehensive overview.

4.2. Manufacturers

- 111 Information on the manufacturers (including bacterial cell bank and phage seed lot manufacturing,
- testing and storage sites) should be provided, including the name, address, and specific responsibilities
- of each manufacturer and production site.

4.3. Manufacturing process and controls

- 115 The batch scale/size (including any proposed range) should be stated. Where applicable, blending of
- batches and/or sub-batches should be described and appropriately justified.
- An overview of the manufacturing process should be presented as a flow diagram, and detailed
- descriptions of each process step should be provided. The production process should yield a phage
- active substance (purified harvest) of consistent quality and stability which is ensured by monitoring of

- 120 relevant process parameters at relevant time points throughout the manufacturing process. Critical
- steps and intermediates should be identified and corresponding control testing with set acceptance
- 122 criteria indicated.
- 123 Any hold times should be defined based on appropriate studies and justified with data demonstrating
- the physicochemical, biological, and microbiological quality of the in-process material under the
- 125 proposed storage conditions.

4.4. Control of materials

127 <u>Bacterial cell banks</u>

- 128 The origin, history, description, and preparation of bacterial cells used for banking should be provided.
- 129 Bacterial cell banks should be established in accordance with the Ph.Eur. general chapter 5.31 and
- principles of the ICH guideline Q5D. The use of a two-tiered seed lot system is strongly recommended.
- 131 The entire bacterial genome (chromosome) and plasmids of the master cell bank (MCB) should be
- sequenced by using suitable technology (e.g., next-generation sequencing, NGS), followed by
- annotation by bioinformatic tools.
- 134 The following quality attributes should be included in the characterisation of the MCB: identity (based
- on the full genome sequencing), purity (absence of detrimental phage particles, microbial purity),
- viability, phage sensitivity, antibiotic susceptibility, and analysis of genes encoding for potential
- detrimental factors (i.e. prophages, antibiotic resistance determinants, toxins, virulence factors). The
- use of bacterial strains whose genome contains sequences coding for detrimental factors should be
- avoided, unless otherwise justified. In such a case, a risk assessment should be provided and steps
- taken to attempt the deletion of the detrimental sequences from the host should be presented. For
- genetically modified bacterial production strains, the modifications must be described, verified, and
- their effects characterised.
- 143 WCB should be tested for identity (by any suitable method), phage sensitivity, purity (absence of
- detrimental phage particles, microbial purity), and viability.
- 145 Phage seed lots
- The phages used to generate a seed lot should be strictly lytic, and the origin, history, and preparation
- of phage seed lots should be thoroughly documented. The use of a two-tiered seed lot system is
- strongly recommended. Phage seed lots should be established in accordance with the Ph.Eur. general
- chapter 5.31 and principles of the ICH guideline Q5D.
- 150 The entire genome of the master phage seed lot should be sequenced by using suitable technology
- 151 (e.g., NGS). The full genome sequencing and genome annotation should be performed once for each
- 152 established master seed lot. In case a working seed lot is established, the genome of the working seed
- 153 lot should also be fully sequenced and compared to the master seed lot's nucleotide sequence, unless
- 154 otherwise justified.
- 155 The established master and working seed lots should be characterised/tested for the following quality
- attributes: identity (full genome sequencing), purity (the absence of phage contaminants, sterility),
- 157 potency, analysis of genes encoding for potential detrimental factors (i.e., antibiotic resistance
- determinants, toxins, lysogeny modules). The use of seed lots containing any detrimental factor
- specified above should be avoided, unless otherwise justified. In such a case, a risk assessment should
- 160 be provided in the characterisation section. For genetically or chemically modified phages, the
- modifications should be fully described, verified, and their effects characterised.

4.5. Process validation and/or evaluation

- 163 Process validation studies should be performed in accordance with the principles of the EMA Guideline
- on process validation for the manufacture of biotechnology-derived active substances and data to be
- provided in the regulatory submission (EMA/CHMP/BWP/187338/2014).
- 166 In line with Ph.Eur. general chapter 5.31, process verification should address the genetic stability of
- the phage during the production in bacterial cell culture. For this purpose, full genome sequencing of
- the active substance should be performed on a suitable number of batches and compared to the
- master seed lot sequence to confirm that the phages are genetically stable during production in
- 170 bacterial cells.

162

171

174

4.6. Characterisation

- 172 Characterisation is essential for gaining a comprehensive understanding of the phage active substance
- and to identify critical quality attributes of the active substance.

Elucidation of structure and other characteristics

- 175 A range of state-of-the-art analytical techniques should be employed to obtain a thorough
- understanding of the structure, biological activity, purity, and other characteristics of the phage active
- 177 substance. Characterisation should be performed using appropriate and sufficiently sensitive methods,
- with a clear description of the methods employed.
- 179 The characterisation studies should be conducted throughout the development process at the active
- 180 substance level.
- 181 Batches used for characterisation studies should be clearly identified (development, pilot, full scale)
- and should be representative of the batches used in pivotal clinical studies and of the batches
- manufactured by the proposed commercial process.
- 184 The following characterisation studies are expected to be performed as a general approach.
- 185 Phage structure
- 186 It is recommended to determine the phage morphology (e.g. by electron microscopy), especially if
- 187 bioinformatic analysis of the genome is not sufficient for phage classification.
- 188 Plaque phenotype
- An image of the plaques should be provided, accompanied by a description of their size and
- morphology, including characteristics such as clarity (e.g., clear or turbid/cloudy) and the presence or
- absence of halos. The host bacteria on which plaque morphology has been determined should be
- 192 stated.
- 193 <u>Genome characterisation</u>
- 194 It is acceptable to perform the whole genome sequencing and detailed genomic analysis at the level of
- master seed lot. Provided that genetic stability of a phage is demonstrated during process validation
- 196 the full genome characterisation does not need to be repeated at the active substance level (since the
- 197 master seed lot is considered representative of the active substance in terms of the nucleic acid
- 198 sequence). The detailed analysis of the results should be presented either in the characterisation or
- starting materials section with appropriate cross-reference.

- 200 The entire genome of the phage should be sequenced by appropriate high-throughput sequencing
- 201 technology such as next-generation sequencing. Bioinformatic tools should be employed to predict
- 202 Open Reading Frames (ORFs) and other genetic elements, as far as possible. A detailed genome map
- should be provided, which includes information about the genome size, type, and GC content, along
- with the function of each identified ORF.
- A comparative genomic analysis should be carried out to classify the phage within its taxonomic group.
- The percentage of genetic identity (degree of similarity) to the closest relative(s) should be reported,
- and coverage indicated.
- 208 The genome should also be analysed for the presence of genetic sequences coding for detrimental
- 209 factors (antibiotic resistance determinants, toxins, or lysogeny modules). In case the genomic analysis
- 210 reveals the presence of genes encoding for detrimental factors, a thorough evaluation should be
- 211 performed to confirm that these factors do not pose a risk to patients. The absence of lysogeny should
- be demonstrated. In the case of genetically modified phages the presence and integrity for
- 213 recombinant sequences should be verified.
- 214 Host range
- The determination of the host range of a phage implies the study of its ability to form plaques on a set
- of bacterial pathogens. In addition to the bacterial strain used for production, the host range study
- 217 should encompass a diverse range of bacteria, including multiple strains of the target species as well
- as closely related species. Strains representing clinically relevant isolates and growth forms (e.g.,
- 219 planktonic, biofilm-forming strains) of the bacterial strains intended to be treated should be included in
- 220 the study. If the PTMP is intended for use in specifical geographic locations with distinct host
- subpopulations, host strains should be ideally selected from those geographical regions. The number
- and variety of the bacterial strains/species included in the study should be justified.
- 223 Various assays may be employed for host range studies such as spot testing or plaque assay. The
- determination of host range may be supported by available knowledge on the receptor usage.
- 225 Potency
- The biological activity of the phage consists in its ability to propagate in bacteria, to lyse the bacterial
- 227 pathogen and subsequently to release the newly formed phage particles from the bacterial cell,
- 228 constituting the phage lytic activity. This activity should be measured by determination of the
- 229 infectious phage titre by a double layer plaque assay or any other suitable method in a defined
- bacterial strain (see Ph.Eur. general chapter 2.7.38).
- 231 If the mechanism of action involves activity towards bacterial biofilms, this should be investigated and
- 232 data presented.
- 233 <u>Transducing capacity</u>
- 234 Some phages can package host bacterial DNA into their capsid instead of or alongside their own DNA
- and transfer it into a receiving cell in a process known as transduction. This transducing capacity may
- enable the transfer of detrimental factors from the producer cells to the patient's strain. Specialised
- transduction where only the host DNA flanking the prophage are packaged, occurs exclusively in
- 238 temperate phages and is not a concern for phages demonstrated to be strictly lytic. However,
- 239 generalised transduction involves the random packaging of host DNA during the phage's DNA
- packaging process and can occur with exclusively lytic phages. Therefore, the capacity of the phages to
- mediate generalised transduction should be addressed in the regulatory filing.

242 **Impurities**

243

250

Product-related impurities

- 244 Product-related impurities refer to variants of the desired product that differ in properties such as
- activity, efficacy and safety, compared to the intended therapeutic product. For phages, these
- 246 impurities may include for example phage aggregates or non-infective phage particles
- The propensity of phage active substance to aggregate should be thoroughly evaluated using
- 248 appropriate (orthogonal) methods such as high-pressure liquid chromatography, dynamic light
- 249 scattering, or analytical ultracentrifugation.

Process-related impurities

- 251 Process-related impurities are those derived from manufacturing process. These impurities may
- originate from cell substrates (residual host cell proteins, host cell DNA, pyrogens), cell culture (e.g.,
- 253 media components or other reagents) or downstream purification processing (e.g., residual reagents,
- column leachables, DNAse). All the bacterial derived impurities should be discussed and evaluated with
- regards to the production strain and proposed route of administration.
- 256 The manufacturing process should be evaluated for the capacity to remove process-related impurities.
- 257 Further considerations should be considered for the following process-related impurities:
- 258 Pyrogens
- 259 The manufacturing process should be evaluated for the capacity to remove pyrogenic impurities (see
- 260 Ph.Eur. general chapter 5.1.13). Cross-reference to process validation data (impurity clearance) is
- 261 acceptable.
- 262 <u>Host cell proteins</u>
- 263 The residual host-cell proteins should be quantified. Where the genome analysis of the bacterial strain,
- or other relevant information indicates potential for production of toxins or other virulence factors that
- 265 may pose safety risk to patients, the presence and quantity of these should be investigated by suitable
- 266 methods to establish an adequate control strategy.
- 267 Host cell DNA

274

275

- The residual host cell DNA should be quantified using a suitable method.
- 269 <u>Induced prophages</u>
- 270 In exceptional cases where it is not feasible to use bacterial host cells devoid of prophage sequences,
- the use of such production cells may be permitted based on a thorough justification and risk
- assessment. In such cases, the prophage should be fully characterised, including full genome
- sequencing and an assessment of its potential to impact on product quality and safety.

4.7. Control of active substance

Active substance specification

- A relevant release and shelf-life specification should be established and justified in accordance with the
- 277 Ph.Eur. general chapter 5.31. Specifications should consider relevant quality attributes identified in
- 278 characterization studies. The acceptance criteria should be established and justified based on clinical

- data, safety margins derived from toxicological and clinical studies, and manufacturing process
- 280 capacity.
- 281 Identity
- The identity test should exhibit high specificity, ensuring the ability to differentiate between different
- phages (e.g. phages produced within the same manufacturing facility). qPCR, genomic fingerprinting or
- other state-of-the-art methods may be used for confirming the identity of the active substance.
- 285 Potency
- Potency refers to the infectious titre of the phage and is commonly determined using a plaque assay,
- 287 which is also used to assess phage quantity. Potency is typically expressed in plaque forming units
- 288 (PFU) per mL. Further guidance on phage potency testing is provided in Ph.Eur. general chapter
- 289 2.7.38ⁱⁱ.
- 290 Aggregation
- 291 Phage aggregation can lead to the decrease of the infectious titre. If relevant, phage aggregation
- should be determined by appropriate methods based on the results of the characterisation studies.
- 293 Residual Host cell proteins
- 294 Residual host cell proteins should normally be included in the active substance specification and
- controlled by a method capable of detecting a wide range of proteins and considering the
- recommendations given in general chapter 2.6.34. In certain cases, it may be acceptable not to test
- routinely the residual level of HCP. In such cases, a risk analysis should be provided to demonstrate
- 298 the low risk for the patient with regards to the route of administration. In addition, clearance studies
- 299 should demonstrate that the manufacturing process effectively removes residual HCP to levels deemed
- 300 acceptable for the intended use.
- 301 Residual Host cell DNA
- 302 Residual host cell DNA should normally be included in the active substance specification. However, the
- testing requirement may be waived if process validation studies (e.g., spiking studies, clearance
- 304 capacity of the purification steps), based on sufficient number of batches, provide sufficient evidence
- that the manufacturing process consistently and effectively ensures the removal of residual host cell
- 306 DNA to levels deemed acceptable for the intended use.
- 307 Pyrogenicity
- 308 Pyrogenicity should be determined, unless otherwise justified. It should be controlled according to the
- requirements of the General chapter Ph.Eur. 5.1.13.
- 310 <u>Microbiological quality</u>
- 311 In case the active substance is claimed to be sterile, the active substance should be tested for sterility
- 312 (Ph.Eur. 2.6.1). Otherwise, microbial quality should be controlled by a suitable method.
- 313 Residual reagents
- Residual reagents (e.g. DNAse) derived from the manufacturing process which might pose safety
- concerns should be controlled based on a safety risk-assessment and impurity clearance studies.
- 316 <u>Induced prophage</u>
- 317 In exceptional cases where it is not feasible to use bacterial host cells devoid of prophage sequences,
- the use of such production cells may be permitted based on a thorough justification and risk

assessment. The absence of expression of prophages should be verified in the active substance or its

320 content determined and proposed limit justified from a safety point of view.

4.8. Analytical considerations

- 322 Analytical procedures should be described for each active substance. In case the same procedure is
- 323 applied to more than one active substance, cross-reference could be made. Analytical procedures must
- 324 be developed and validated according to ICH Q14 and ICH Q2 guidelines, and validation summaries
- 325 should be provided. In certain cases, based on scientific justification and risk-based evaluation,
- 326 platform analytical procedures could be considered.

4.9. Reference standards or materials

- 328 Reference standards for PTMPs are mainly used for method validation and system suitability testing of
- 329 potency determination by the plaque assay. Reference standards can also be used for release testing if
- appropriate/relevant. Regardless of the specific use, reference standards should be established in line
- 331 with relevant ICH guidelines, should be well-characterised with respect to their identity, purity,
- 332 biological activity, and other relevant characteristics, and their stability should be appropriately
- 333 monitored.

321

327

334

344

352

4.10. Stability

- The stability of the phage active substance can be impacted e.g. by temperature, pH or agitation.
- Relevant ICH stability guidelines should be followed to establish the shelf life of the active substance.
- 337 Stability indicating parameters should be identified in characterisation studies but should include at
- 338 least appearance, potency, microbiological quality, and pH. There are no specific requirements relating
- 339 to container closure system. Relevant EMA and ICH Guidelines should be considered.

5. Finished product

- The finished product can contain one active substance (i.e. single phage) or a combination of active
- 342 substances (i.e. several different phages). A finished product that consists of more than one phage is
- referred to as a multiphage product or a phage cocktail.

5.1. Description and composition of the finished product

- 345 The qualitative and quantitative composition of the finished product should be indicated. The
- composition should be stated listing all components, their amount and function, and a reference to
- their quality standards (e.g. compendial monographs or manufacturer's specifications). The
- composition should be stated on a per-unit base. The content of each phage is typically expressed in
- 349 PFU/mL. The container closure system used for the dosage form should be outlined. Solvents for
- reconstitution, diluents for dilution before administration and medical devices used for administration
- 351 (e.g. inhaler) should be indicated, if applicable.

5.2. Pharmaceutical development

- 353 The formulation development including the choice and quantity of excipients used should be detailed
- 354 with respect to their impact on the phage active substance critical quality attributes (e.g. phage
- activity). Comparability of product formulations employed during clinical studies with the commercial
- formulation should be demonstrated, or differences discussed where relevant.

- 357 The quality target product profile of the product should be presented and critical quality attributes
- indicated. The critical process parameters should be identified. Differences in the manufacturing
- processes during process development should be indicated.
- 360 If the product to be administered consists of a mixture of phage active substances, justification for
- 361 combining phage active substances should be provided. This includes the cases where different phages
- are mixed at the time of administration as recommended by the SmPC. If relevant, requirements of
- 363 combination packs need to be considered. Any recommendation as regards the maximum number of
- 364 phages to be combined should be justified and limited, if necessary. The potential interactions
- between phages mixed in the product to be administered should be discussed. In-use stability should
- 366 be established, if relevant.
- 367 If the phage finished product requires additional preparation (e.g. reconstitution, dilution, mixing with
- other phages) before administration, the used materials (e.g. solvents, diluents, bags and sets of
- 369 administration) should be identified, and the method of preparation summarised. Compatibility studies
- 370 should be performed and the in-use stability data provided to confirm the maintenance of the product
- 371 quality profile.
- 372 There are no additional requirements relating to container closure system. Relevant EMA and ICH
- 373 Guidelines should be considered.
- 374 If a medical device is intended to be used for the administration, the recommendations of the Guideline
- 375 on quality documentation for medicinal products when used with a medical device,
- 376 (EMA/CHMP/QWP/BWP/259165/2019), and other relevant EMA guidance documents should be applied.
- 377 The pharmaceutical development should also include usability studies to ensure appropriate use of the
- 378 finished product at the time of administration.

379 **5.3. Manufacture**

- 380 The manufacturing process should be appropriately described and validated. Refer to relevant active
- 381 substance section of this guideline.
- 382 Hold Times

388

- 383 Any hold times should be defined based on appropriate studies and justified with data demonstrating
- the physicochemical, biological, and microbiological quality of the in-process material under the
- proposed storage conditions. For example, in the manufacture of multiphage products, the mixtures of
- drug substances which have not yet undergone final processing should be considered finished product
- intermediates and controlled using in-process testing against predefined criteria.

5.4. Control of finished product

- 389 A relevant release and shelf-life specification should be established and justified in accordance with the
- 390 Ph.Eur. general chapter 5.31. The specification should comprise the critical quality attributes of the
- 391 finished product, analytical procedures employed for determination of these attributes and acceptance
- 392 criteria and/or limits. The proposed acceptance criteria should be justified based on clinical data, safety
- margins derived from toxicological and clinical studies, and manufacturing process capability.
- Tests for appearance, potency, identity and microbiological quality are mandatory. Depending on the
- 395 route of administration, pharmaceutical form and other characteristics of the finished product,
- 396 additional tests (e.g. pH, osmolality, visible and subvisible particles, extractable volume, uniformity of
- dosage units, moisture content) may also be relevant for inclusion in the specification. If aggregation
- 398 has been detected, it should be addressed in the specification, unless justification is provided for its
- 399 exclusion. Reference is made to active substance specification where appropriate.

- 400 For multiphage products, potency should be determined for each individual phage component (i.e.
- active substance), unless otherwise justified. For this, separate plaque-based assays should be
- 402 performed using bacterial strains not susceptible to any other phages in the combination. Further
- quidance on phage potency testing is provided in Ph.Eur. general chapter 2.7.38ⁱⁱⁱ.
- 404 Microbiological quality should be determined depending on the route of the administration of the
- 405 finished product. Analytical methods should be described, and corresponding summary of validation
- 406 studies should be provided. If appropriate, reference could be made to relevant active substance
- 407 sections.

408

418

419

433

5.5. Reference standards or materials

- 409 For reference standards or materials, refer to relevant section in the active substance part of this
- 410 guideline.

411 **5.6. Stability**

- 412 Finished product stability can be impacted e.g. by temperature, pH and agitation. Relevant ICH
- 413 stability guidelines should be followed. The guidance for potency testing of multiphage products
- applies also to stability studies (i.e. infectious titer of each phage should be determined).
- 415 If a medical device is intended to be used for the administration, the recommendations of the Guideline
- on quality documentation for medicinal products when used with a medical device,
- 417 (EMA/CHMP/QWP/BWP/259165/2019) should be applied.

6. Regulatory considerations

6.1. Composition of the finished product and post-marketing authorisation

420 change of active substance

- 421 Phages for human use are subject to requirements applicable to human biological medicinal products
- and governed by Directive 2001/83/EC and Regulation 1234/2008. As such, changes in the active
- 423 substance and a flexible composition of the medicinal product are not contemplated in Directive
- 424 2001/83/EC. A change in the composition of an authorised medicinal product, as regards the active
- 425 substance, requires a submission of an extension of the marketing authorisations stated in the Annex I
- 426 to the Variations Regulation. Such change should be supported by quality data, but also if necessary
- 427 non-clinical and clinical data demonstrating that the safety and efficacy of a replacement phage active
- substance are not significantly different from the previous one. Such change and those issues are
- 429 beyond the scope of this quality guideline. Any requests for a marketing authorisation extension will
- 430 therefore be assessed on a case-by-case basis and in light of the specific requirements for Phage
- Therapy Medicinal Products, applicants are recommended to seek scientific advice to address the
- 432 specific concerns and regulatory pathways for the respective product.

6.2. Use of prior knowledge

- 434 Prior knowledge (as per ICH Q11 guideline) can be used to support a new marketing authorisation or a
- line extension. Nevertheless, a product-specific dossier is still required, meaning the lead documents
- 436 need to be product-specific. Prior knowledge can be used throughout the dossier to support for
- 437 example reduced or focused process development and/or validation activities, method validation or
- 438 container closure usage.

- The supportive data should always be provided along with sound justifications for its relevance to allow
- for proper assessment of the proposed strategy. It should be noted that there are several factors that
- are considered important concerning the value of the supportive data. These include, but are not
- limited to, the number of licensed or developed products that can be considered representative, the in-
- depth understanding of parameters that are product-dependent vs. product-independent, and
- conclusive risk assessments in case product-specific data is reduced or omitted due to prior knowledge.
- Therefore, it will be a case-by-case decision whether the proposed approach is considered acceptable.
- 446 Generally, it is highly recommended to obtain scientific advice to address the specific concerns and
- regulatory pathways for the respective products.

7. Definitions

- 449 Bacterial biofilm A complex structured community of bacteria living within a complex extracellular
- 450 matrix that can protect them from environmental damage and external agents.
- 451 Bacteriophage (phage) Virus that infects bacteria and depends on the bacterial host for replication.
- 452 Phage consists of a genome comprised of single or double stranded DNA or RNA, encapsulated in a
- 453 protein capsid.

- 454 Bacteriophage active substance Phages manufactured in a bacterial production strain by a controlled
- 455 propagation of a phage seed lot derived from a single phage clone, resulting in a genetically and
- 456 phenotypically homogeneous population. Corresponds to purified harvest in Ph. Eur. 5.31 terminology.
- 457 Cell-free transcription-translation system An in vitro process that mimics the natural gene expression
- 458 in a cell, but without a need for living cells.
- 459 Generalised transduction A process where a random portion of bacterial DNA is encapsulated by a
- bacteriophage and transferred to another bacterium.
- 461 Host range A taxonomic diversity of bacterial hosts a bacteriophage can successfully infect.
- Induced prophage A temperate bacteriophage that has been reactivated from its latent (prophage)
- state to enter the lytic cycle.
- 464 Lytic bacteriophage Bacteriophage which is only able to sustain replicative cycles ending in bacterial
- 465 lysis. Only such strictly lytic bacteriophages are considered suitable for use in phage therapy.
- 466 Multiphage product (also called phage cocktail) Qualitatively and quantitatively characterised
- 467 combination of monophage components.
- Naturally occurring phage: Bacteriophage isolated from the environment, whose specificity or biological
- 469 activity may be enhanced through directed evolution or phage adaptation, without chemical
- 470 modification or genetic engineering.
- 471 Phage see bacteriophage
- 472 Phage cocktail see multiphage finished product.
- 473 Phage seed lot A collection of bacteriophages derived from a single clonal lineage, whose
- 474 characteristics and composition are defined and consistent, stored in appropriate containers under
- 475 controlled conditions. Each container contains an aliquot from a single, well-defined pool of
- 476 bacteriophages.

- 477 Phage therapy Use of bacteriophage products mainly for treatment of bacterial infection(s) or
- 478 infectious disease(s). Efficacy of treatment is linked to the lytic activity of bacteriophages that confers
- 479 bactericidal activity on those bacteriophages with specificity for the bacterial strain concerned.
- 480 Phage therapy medicinal product (PTMP) Preparation of phages used to treat or prevent human or
- 481 veterinary bacterial infections. A PTMP can contain one phage, or a combination of phages, combined
- 482 with excipients.
- 483 Specialised transduction A process where a region of the host DNA that flanks the prophage is
- 484 encapsulated by a bacteriophage and is transferred to another bacterium. This type of transduction
- 485 occurs only in temperate phages.
- 486 Temperate bacteriophages Bacteriophages which are dually able to sustain dormancy (typically by
- integration into the bacterial chromosome; lysogeny) as well as lytic replication in host bacteria,
- 488 depending on e.g. environmental conditions.
- 489 Transduction A phenomenon in which bacterial DNA is transferred from one bacterial cell to another
- 490 by phage particle.

491

8. References

- 492 Commission Regulation (EC) No 1234/2008 of 24 November 2008 concerning the examination of
- 493 variations to the terms of marketing authorisations for medicinal products for human use and
- 494 veterinary medicinal products (Text with EEA relevance). Available at: https://eur-lex.europa.eu/legal-
- 495 content/EN/TXT/?uri=CELEX%3A32008R1234&gid=1749632821034
- 496 Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the
- 497 "Community code relating to medicinal products for human use", as amended. Available at:
- 498 https://eur-lex.europa.eu/eli/dir/2001/83/oj/eng
- 499 EMA Guideline on process validation for the manufacture of biotechnology-derived active substances
- and data to be provided in the regulatory submission (EMA/CHMP/QWP/BWP/259165/2019). Available
- at: https://www.ema.europa.eu/en/process-validation-manufacture-biotechnology-derived-active-
- 502 substances-data-be-provided-regulatory-submission-scientific-guideline
- 503 EMA BWP Questions and answers for biological medicinal products. Available at:
- 504 https://www.ema.europa.eu/en/human-regulatory-overview/research-and-development/scientific-
- 505 <u>guidelines/biological-guidelines/questions-answers-biological-medicinal-products</u>
- 506 EMA Toolbox guidance on scientific elements and regulatory tools to support quality data packages for
- 507 PRIME and certain marketing authorisation applications targeting an unmet medical need Scientific
- guideline. Available at: https://www.ema.europa.eu/en/toolbox-guidance-scientific-elements-and-
- 509 <u>regulatory-tools-support-quality-data-packages-prime-and-certain-marketing-authorisation-</u>
- 510 <u>applications-targeting-unmet-medical-need-scientific-guideline</u>
- 511 European Parliament legislative resolution of 10 April 2024 on the proposal for a directive of the
- 512 European Parliament and of the Council on the Union code relating to medicinal products for human
- 513 use, and repealing Directive 2001/83/EC and Directive 2009/35/EC (COM(2023)0192 C9-0143/2023
- 514 2023/0132(COD)). Available at: https://eur-lex.europa.eu/legal-
- 515 <u>content/EN/TXT/?uri=CELEX%3A52024AP0220&qid=1749633055575</u>
- 516 ICH Q2 Validation of analytical procedures. ICH Q3A-Q3E Guidelines on Impurities.
- 517 ICH Q5D Derivation and characterisation of cell substrates used for production of
- 518 biotechnological/biological products.

020	manaracaning process.
521 522	ICH Q6B Specifications: Test procedures and acceptance criteria for biotechnological/biological products.
523	ICH Q8 Guideline on Pharmaceutical development.
524	ICH Q9 Guideline on Quality risk management.
525	ICH Q10 Guideline on Pharmaceutical quality system.
526 527	ICH Q11 Guideline on Development and manufacture of drug substances (chemical entities and biotechnological/biological entities).
528	ICH Q12 Lifecycle management.
529	ICH Q14 Analytical procedure development.
530	Ph.Eur. General chapter on "Sterility" (2.6.1).
531	Ph.Eur. General chapter on "Pyrogenicity" (5.1.13).
532	Ph.Eur. General chapter on "Bacteriophage potency determination" (2.7.38 $^{\rm iv}$).
533	Ph. Eur. General chapter on "Phage therapy medicinal products (5.31)
534	
535	
536	
	Ph. Eur. general chapter 2.7.38 is in preparation. The draft has been made available for public comments in Pharmeuro

ICH Q5E Comparability of biotechnological/biological products subject to changes in their

519

520

manufacturing process.

ора Online, issue 37.2

Ph. Eur. general chapter 2.7.38 is in preparation. The draft has been made available for public comments in Pharmeuropa

Online, issue 37.2

iii Ph. Eur. general chapter 2.7.38 is in preparation. The draft has been made available for public comments in Pharmeuropa

Online, issue 37.2

Ph. Eur. general chapter 2.7.38 is in preparation. The draft has been made available for public comments in Pharmeuropa Online, issue 37.2