

- London, 19 July 2012
- 2 EMA/CHMP/BPWP/153137/2011
- 3 Committee for Medicinal Products for Human Use (CHMP)
- Reflection paper on Immune Tolerance Induction in 4
- haemophilia A patients with inhibitors 5
- Draft 6

7

8

9

Draft Agreed by Blood Products Working Party	November 2011
Draft Agreed by Paediatric Committee	February 2012
Adopted by Committee for Medicinal Products for Human Use for release for consultation	19 July 2012
Start of public consultation	30 July 2012
End of consultation (deadline for comments)	31 October 2012
Agreed by Blood Products Working Party	
Adopted by Committee for Medicinal Products for Human Use	

Comments should be provided using this template. The completed comments form should be sent to BPWPSecretariat@ema.europa.eu

Keywords	Immune Tolerance Induction, inhibitors, Haemophilia A
Reywords	Tillinune Tolerance Thuuction, Illinbitors, naemopilila A

Reflection paper on Immune Tolerance Induction in haemophilia A patients with inhibitors

12

13

Table of contents

1. Introduction	3
2. Discussion	3
4. References	
	2. Discussion

18

1. Introduction

- 20 In haemophilia A patients, replacement therapy with factor VIII products has become state of the art.
- 21 However, a serious complication in the treatment of haemophilia A is the development of neutralizing
- 22 antibodies against FVIII, causing therapy resistance and increased risk of bleeding. Up to 30% of
- 23 patients with severe haemophilia A develop antibodies against factor VIII treatment. Several factors
- 24 (e.g. genetic and environmental) are discussed as possible contributors to inhibitor development. At
- 25 present, multiple therapeutic options to overcome the immune response to FVIII concentrates and to
- 26 control bleeding situations are implemented in specialised haemophilia centres.

2. Discussion

Clinical aspects

- 29 Treatment of patients with inhibitory antibodies has to focus on bleeding prevention and inhibitor
- 30 eradication:

19

27

28

- 31 Bleeding prevention might be achieved by high amounts of factor VIII or by bypassing agents such as
- 32 recombinant factor VIIa or activated prothrombin complex concentrate.
- 33 Eradication of the inhibitor might be subject to immune tolerance induction (ITI) or immune-
- 34 suppression. Immune tolerance induction involves repetitive higher or lower doses of factor VIII.
- 35 Immune-suppression includes chemotherapeutics, corticosteroids and monoclonal antibodies.
- 36 The immune tolerance induction concept was first reported more than 30 years ago by Brackmann and
- 37 Gormsen, Lancet 1977. They showed that high daily doses of factor VIII gradually eliminated the
- 38 immune response and the production of anti-FVIII antibodies. The basic principle still applies: repeated
- 39 intravenous infusion of factor VIII until inhibitors are no longer detectable and the recovery and half-
- 40 life of FVIII are restored. However, up to now, the exact mechanism of immune tolerance induction
- 41 remains unclear. Immune tolerance induction has been shown to induce tolerance in most patients
- 42 who develop neutralising factor VIII antibodies nevertheless, different treatment protocols and co-
- 43 medication options are used. Immune tolerance induction protocols cover high-dose and low-dose
- regimens. High-dose protocols recommend the administration of 100-300 IU/kg of factor VIII daily as
- 45 one or two doses. Low-dose protocols use 25-50 IU/kg every day or three times/week. Concomitant
- treatment with bypassing agents may be used to prevent or treat bleeds.
- 47 Although several publications are reporting high success rates of about 70% inhibitor eradication
- 48 following various immune tolerance induction protocols, those reports reflect heterogeneous data-
- 49 collections: Patient inclusion criteria in terms of age, type of inhibitor response, various definitions of
- 50 immune tolerance induction success etc. might have an impact on study outcome. Multiple risk factors
- 51 have been identified that may affect the success rate of immune tolerance induction, e.g. genetic
- 52 factors, treatment history, infections, period between inhibitor occurrence and start of immune
- 53 tolerance induction, duration and interruption of immune tolerance induction, and type of factor VIII
- 54 product.
- 55 A similar situation is reflected within Registry data: a high range of individually justified dosages and
- 56 therapy durations has been collected. Success of immune tolerance induction depends on the
- 57 characteristics of the concerned patient and the experience of the haemophilia centre. All these data
- support the assumption that inhibitor eradication is a therapeutic approach that has to be tailored for
- the individual patient.

- 60 The principal results of the International Immune Tolerance Study were published in Blood in 2012.
- 61 This prospective, randomized trial in immune tolerance induction comparing high- and low-dose
- 62 regimen (200 IU/kg/day versus 50 IU/kg three times per week) was initiated in 2002 and prematurely
- 63 closed in late 2009 due to a higher rate of intercurrent bleeding in the low dose arm. Overall success
- rates did not differ between the treatment arms. Subjects on high-dose treatment achieved a negative
- 65 inhibitor titer and normal FVIII recovery more rapidly than subjects on low dose.
- Taking the current clinical experience into account, basic scientific aspects remain open. However,
- 67 studies on single products cannot be expected to answer the still unsolved general questions, for
- 68 example:

76

- Are products containing von Willebrand factor more effective than highly purified products for immune tolerance induction?
- Is there a difference in efficacy when comparing recombinant and plasma-derived products?
- 72 Which patients will have a benefit from which immune tolerance induction protocol?
- Do high or lower dose regimens have a favorable benefit/risk profile for ITI treatment?
- 74 In summary, the optimal inhibitor eradication strategy has not been established since the management
- of neutralizing anti-factor VIII antibodies continues to evolve.

Regulatory aspects

- 77 Historically, many plasma-derived factor VIII concentrates are only authorised nationally. These
- 78 products may already have a wording regarding "treatment of inhibitor patients" included in the SmPC.
- 79 It could be anticipated that the clinical data base supporting this indication claim might be
- 80 heterogeneous and based rather on individual case reports than on GCP compliant clinical trials. It can
- 81 be assumed that all plasma-derived and recombinant FVIII products which have a marketing
- 82 authorisation and are manufactured by well-known processes are used for immune tolerance induction.
- There is no experience so far for the new upcoming products (e.g. modified proteins with long-acting
- 84 performance).
- 85 The previous guidelines on the Clinical Investigation of Human Plasma-Derived/Recombinant Factor
- VIII and IX Products stated that "any request for an indication of induction of immune tolerance in
- 87 haemophilia A patients with inhibitors should be accompanied by clinical data". Revision of these
- 88 guidelines led to deletion of this statement since the wording was considered vague. It has been
- 89 decided that immune tolerance induction in haemophilia A patients with inhibitors should be addressed
- 90 in a separate document. Remaining open scientific questions cannot be solved by clinical data provided
- 91 for a single product. Clear cut guidance on clinical trials to be performed to endorse an indication claim
- 92 for immune tolerance induction cannot be given at present due to the complexity of unresolved
- 93 scientific questions, the challenging nature of the management of inhibitor patients, the rarity of the
- ondition, and the difficulty to undertake controlled trials.
- 95 However, management of inhibitor patients as well as inclusion of immune tolerance induction
- 96 experience with a specific product may be reflected in the SmPC. General guidance regarding
- 97 treatment of bleeding episodes and prophylaxis in inhibitor patients is already included in section 4.2
- and 4.4 of the core SmPC. It is now proposed that immune tolerance induction experience with a
- 99 specific product may be included in section 5.1 of its SmPC with the following statement:
- 100 "Data on Immune Tolerance Induction (ITI) have been collected in patients with haemophilia A who
- have developed inhibitors to FVIII." This may be followed by a short description of the number of
- patients studied, how the data were obtained (e.g. clinical study, registry data), and whether the data

- show that immune tolerance has been achieved using the product. Success rates from this data, or
- 104 information on how immune tolerance was induced should not be included unless this information is
- 105 robust as such information may not be meaningful in view of the many variables that can influence the
- 106 observed rate.

107

125

3. Conclusion

- 108 Treatment of patients with inhibitory antibodies covers bleeding prevention and inhibitor eradication.
- 109 Bleeding prevention might be successfully achieved by high amounts of factor VIII or by bypassing
- agents. Eradication of the inhibitor might be subject to several approaches of immune-modulation.
- 111 Successful eradication of inhibitors in haemophilia patients through immune tolerance induction
- 112 remains an individually tailored therapy which has been subject to reports and discussion over the last
- 113 30 years. Longstanding clinical experience shows that immune tolerance induction significantly
- 114 contributes to therapeutic success. However, commonly agreed eligibility criteria for concerned
- 115 patients, treatment regimens regarding dosage and duration as well as success criteria for reproducible
- documentation of efficacy have not been developed so far. Therefore, clear cut recommendations on
- 117 the clinical trial concept for an individual product in order to achieve an indication claim for immune
- 118 tolerance induction cannot be given at present. Clinical research to investigate the key clinical
- 119 questions is encouraged and can be supported by European Scientific Advice. In the meantime,
- management of inhibitor patients can be reflected in Section 5.1 of the SmPC supported by clinical
- 121 data. It can be assumed that there is clinical experience with immune tolerance induction for most of
- 122 the plasma-derived and recombinant FVIII products. However, there is no ITI experience with the
- 123 long-acting modified products, and therefore, regulatory decision on reflection of immune tolerance
- induction in the product information for those products can only be done on a case by case basis.

References

- 126 Astermark J. Immune tolerance induction in patients with haemophilia A. ThrombRes 2011
- 127 Jan; 127S1: S6-S9.
- 128 Callaghan MU, Rajpurkar M, Chitlur M, Warrier I, Lusher J. Immune tolerance induction in 31 children
- with haemophilia A: is ITI less successful in African Americans? Haemophilia 2011 May; 17(3): 483-9.
- 130 Ettingshausen CE, Kreuz W. Early long-term FEIBA prophylaxis in haemophilia A patients with inhibitor
- after failing immune tolerance induction: A prospective clinical case series. Haemophilia 2010
- 132 Jan; 16(1): 90-100.
- Gouw SC, ter Avest PC, van Helden PM, Voorberg J, van den Berg HM. Discordant antibody response in
- monozygotic twins with severe haemophilia A caused by intensive treatment. Haemophilia 2009
- 135 May; 15(3): 712-7.
- 136 Gringeri A, Musso R, Mazzucconi MG, Piseddu G, Schiavoni M, Pihnoloni P, Manucci PM. Immune
- tolerance induction with high purity von Willebrand factor/VIII complex concentrate in haemophilia A
- patients with inhibitors at high risk of a poor response. Haemophilia 2007 Jul; 13(4)373-9
- 139 Stiefel M, Pinkwart C, Haase R., Merkel N, Forsberg D, Mauz-Körholz C. Immune tolerance induction
- 140 with high-dose FVIII and pulsed intravenous immunoglobulin. Haemostaseologie 2010
- 141 Nov; 30Suppl1: S119-21
- 142 Streif W Escuriola Ettingshausen C, Linde R, Kropshofer G, Zimmerhackl LB, Kreuz W. Inhibitor
- 143 treatment by rituximab in congenital haemophilia A- Two case reports. Haemostaseologie 2009
- 144 May; 29(2): 151-4.

- 145 Ter Avest PC, Fischer K, Gouw SC, Van Dijk K, Mauser-Bunschoten EP. Successful low-dose immune
- tolerance induction in severe haemophilia A with inhibitors below 40 Bethesda Units. Haemophilia 2010
- 147 May; 16(102): 71-9.
- 148 Thom K, Male C, Falger J, Pabinger I. Spontanous disappearance of high titre factor VIII inhibitor 15
- years after unsuccessful ITI. Haemostaseologie 2009 May; 29(2): 149-50.
- Hay RM, DiMichele DM. The principal results of the International Immune Tolerance Study: a
- randomized dose comparison. Blood 2012; 119:1335-1344.
- 152 Report of 2006 EMA expert meeting on Factor VIII products and inhibitor development:
- http://www.ema.europa.eu/docs/en_GB/document_library/Report/2009/11/WC500015512.pdf