

- 1 25 January 2018
- 2 3 EMA/CHMP/535116/2016
- Committee for Human Medicinal Products (CHMP)
- 4 5

Reflection paper on investigation of pharmacokinetics and 6

- pharmacodynamics in the obese population 7
- Draft 8

Draft agreed by PKWP	25 October 2017
Adopted by CHMP for release for consultation	25 January 2018
Start of public consultation	1 February 2018
End of consultation (deadline for comments)	31 July 2018

9

Comments should be provided using this template. The completed comments form should be sent to PKWP@ema.europa.eu

10

Keywords obese, pharmacokinetics, pharmacodynamics, dosing recommendations

11

12

13	Reflection paper on investigations of pharmacokinetics
14	and pharmacodynamics in the obese population
15	

16 Table of contents

17	1. Introduction	3
18	2. Scientific background: effects of obesity on pharmacokinetics and	_
19	pharmacodynamics	4
20	2.1. Absorption	. 4
21	2.2. Distribution	. 4
22	2.3. Elimination	. 4
23	2.3.1. Metabolism	.5
24	2.3.2. Biliary and renal excretion	.5
25	2.4. Effect of bariatric surgery	.5
26	2.5. Pharmacokinetic/pharmacodynamic (PK/PD) correlation	.6
27	2.6. Conclusions on effects of obesity on PK, PD and PK/PD	.6
28	3. When to investigate effects of obesity	6
29	4. Investigation of the effect of obesity on PK	7
30	4.1. Population pharmacokinetic (PopPK) analysis	.7
31	4.2. Non-compartmental analysis (NCA)	.7
32	4.3. Physiologically based pharmacokinetic (PBPK) modelling	.8
33	5. Presentation and discussion of data	8
34	6. References	8
35	7. Appendix: obesity estimators1	0

36

37 **1. Introduction**

38 Obesity affects a large sub-set of the general population covering all ages and will continue to increase

based on observed trends. The alteration of body composition and physiology as well as steatosis and

40 a chronic state of inflammation (1) can potentially lead to important changes in the disposition of a

41 given drug in obese as compared to non-obese subjects. Thus, the need for adequate pharmacokinetic

- 42 (PK) characterisation in obese subjects should be considered in drug development to ensure their
- 43 effective and safe use in this subgroup and to inform on possible dose adjustments required in these
- patients. Note, the term 'non-obese' includes both normal/lean subjects and underweight subjects.
- 45 The World Health Organisation (WHO) defines overweight and obesity as abnormal or excessive fat
- 46 accumulation that presents a risk to health. Body Mass Index ($BMI = body weight (kg)/height (m)^2$) is
- 47 still the most widely used metric for overweight and obesity gradation in adults and is independent of
- 48 gender. According to the WHO, BMI between 25 and 29.9 kg/m² represents overweight, while obesity
- 49 is defined as BMI \ge 30 kg/m². The WHO further defines different classes of obesity as class I
- 50 (moderately obese) with BMI 30-34.9 kg/m², class II (severely obese) with BMI 35 -39.9 kg/m² and
- 51 class III (very severely obese) with BMI \ge 40 kg/m². In addition to BMI, other body size descriptors
- 52 can also be used to grade patients/subjects with regard to obesity (see appendix).
- 53 While generally the impact of body weight, BMI and Body Surface Area (BSA) on PK is investigated,
- 54 more specific PK investigations targeting obese subjects are usually left unaddressed. This is
- 55 considered a shortcoming that is potentially compounded by obese patients often being poorly
- 56 represented not just in early but also later phase studies. Furthermore, effects may only be possible to
- 57 estimate in a limited obesity range. An exception is studies investigating therapies for populations with
- a particularly high frequency of overweight and obese patients e.g. weight loss, type-2 diabetes, where
- 59 obesity is more common in the clinical studies.
- 60 Obese subjects have larger absolute fat tissue mass but also more lean body mass (LBM) than non-
- obese of the same age, gender and height (2). However, in obesity the ratio of fat mass to total body
- 62 weight is increased, therefore differentiation based on weight only might not be helpful and a dose by
- 63 weight adjustment may be insufficient.
- 64 There is currently no specific Committee for Medicinal Products for Human Use (CHMP) guidance on
- 65 how and when to investigate PK and/or pharmacokinetic/pharmacodynamic (PK/PD) relationships in
- obese subjects. However, a number of CHMP guidelines are relevant in the context of defining
- 67 approaches and strategies that can be used for such investigations (3, 4, 5).
- 68 The specific aims of this reflection paper are to:
- describe how the effects of obesity can be investigated during clinical drug development;
- provide recommendations on when investigations of the effect of obesity on the PK of a drug
 should be considered;
- provide information on specific important considerations for these investigations and
- discuss how to reflect PK findings in weight/size based dosing recommendations.

74 2. Scientific background: effects of obesity on 75 pharmacokinetics and pharmacodynamics

76 **2.1. Absorption**

It is possible that the bioavailability of drugs from the site of administration may be altered in obese
patients. Reduced rate of absorption is reported for the subcutaneous and transdermal routes. This is
plausibly linked to locally reduced blood flow. Increases in perfusion of the gut and accelerated gastric
emptying with subsequent enhancement of drug bioavailability have been reported for the oral route
(6).

82 **2.2. Distribution**

The distribution of drugs is driven by body composition, regional blood flow and binding to tissue andplasma proteins.

85 Obese subjects have a larger absolute lean body weight as well as fat mass. While the lean mass

accounts for 20-40% of the excess of weight, fat mass is significantly enhanced in obese subjects and
the lean mass per kg body weight is reduced (7, 8).

88 The physicochemical properties of a drug (lipophilicity, polarity, molecular size and degree of

89 ionization) influence its distribution into the body. A higher distribution volume in obese subjects is

90 reported for lipophilic drugs such as steroids, benzodiazepines and tricyclic anti-depressants, which can

91 lead to prolonged half-life. Conversely, polar molecules appear to have no marked differences in

92 distribution between obese and non-obese subjects.

93 Under normal body-weight conditions, the blood flow in fat tissue is poor and accounts for only 5% of

the cardiac output compared to 73% in the viscera and 22% in lean tissue. In BMI class III obese

subjects, the blood flow per gram of fat is significantly lower than that observed in class I obese or

96 lean subjects (2). This can alter the distribution to and from a target in fatty tissue (9), but also from

97 the fat compartment in case of e.g. sub-cutaneous administration.

An increased amount of alpha-1-acid-glycoprotein (AAG), linked to a chronic inflammatory state, is

reported in obese individuals. Therefore alteration of protein binding is possible, indicating a particularneed to determine unbound exposure for basic drugs particularly with concentration-dependent protein

101 binding exhibiting high affinity to AAG.

102 **2.3. Elimination**

There are many physio-pathological changes that may impact the elimination of drugs in obesesubjects:

- increased cardiac output and hepatic blood flow;
- fatty infiltrates occurring in the liver (extent is proportional to the degree of obesity);
- low grade inflammation affecting the liver function;
- glomerular hyperfiltration (glomerular filtration rate (GFR) is approximately 60 % higher in obese
 subjects (10)).
- 110 The consequences of these changes on the elimination (metabolism and excretion) of drugs are 111 reviewed below.

112 **2.3.1. Metabolism**

- 113 The effect of obesity on drug metabolism is dependent on:
- which major enzymes are involved in a drug's elimination;
- whether the hepatic extraction ratio is high or low;
- 116 the route of administration.

117 For drugs of high and moderate hepatic extraction, an increase in hepatic blood flow gives rise to

- 118 increased first-pass extraction in the liver as well as increased hepatic clearance. No change is
- 119 expected for drugs with low hepatic extraction.
- 120 Histologically proven liver abnormalities of fatty infiltrations are present in 90% of obese subjects. It is
- estimated that up to 20% of the obese population and up to 50% of morbidly obese patients have
- 122 NASH (non-alcoholic steato-hepatitis), where steatosis is combined with inflammation and fibrosis (9)
- and its incidence correlates with increasing BMI.
- 124 In general, inflammation is known to cause decreased activity of metabolic enzymes resulting from the 125 production of cytokines and the modulation of the transcription factors that control the expression of
- 126 specific CYP forms (11).
- 127 The effect of obesity may vary between enzymes. For example, CYP3A4 is very commonly involved in
- the metabolism of drugs. Weight normalised and absolute CYP3A mediated clearance has been
- 129 observed to be significantly lower in obese patients (12). Effects on other CYP enzymes have also been
- observed, but data are sparse. Available data regarding the impact of obesity on non-CYP enzymes arealso limited.
- Obesity could also influence metabolism through effects on hepatic uptake and efflux transporters (seebelow).

134 **2.3.2. Biliary and renal excretion**

- 135 BMI class III obesity is associated with a state of glomerular hyperfiltration, irrespective of the
- presence of hypertension, due to an increase of renal blood flow (10). The influence of obesity on renal
- 137 transporters involved in reabsorption and tubular secretion and on the hepatic uptake and efflux
- 138 transporters is presently not well known.
- 139 Obesity may also affect biliary and renal secretion though effects on renal and hepatic uptake and
- efflux transporters. Based on presently available data, it has been suggested that uptake transporters
 are downregulated while efflux transporters may be upregulated (13). More investigations are needed
 in these areas.

143 **2.4. Effect of bariatric surgery**

- Bariatric surgery, with gastric bypass as the most commonly used procedure, is used to manage
 obesity by altering the anatomy of the gastrointestinal tract. Significant changes in the absorption and
- metabolism of drugs have been observed after bariatric surgery (14, 15). The properties of the drug,
- 147 the type of surgical procedure and the time after surgery may impact on whether an increase or
- decrease in exposure will manifest itself. Where relevant, the potential alterations of absorption linked
- 149 to gastric intervention should be investigated.

150 2.5. Pharmacokinetic/pharmacodynamic (PK/PD) correlation

151 Besides the PK differences between normal weight and obese patients reported above, PD changes

may also occur in obese patients. A decreased sensitivity for effects on certain receptors, especially

acetylcholine, and increased psychomotor response to benzodiazepines has been reported (16). The

154 cytokine tumour necrosis factor alpha (TNFa) is reported to be produced in excessive amounts, which

155 further perpetuates insulin resistance (17). In addition adipose tissue has greater intrinsic insulin

156 cleaving activity. However, currently available data regarding the impact of obesity on PK/PD is limited.

157 2.6. Conclusions on effects of obesity on PK, PD and PK/PD

158 The knowledge on the effects of obesity on PK and PD processes is limited, but emerging. The

applicant is recommended to investigate the scientific literature for information on effects of obesity on

160 PK processes and on potential differences in PK/PD in obese subjects, to enable consideration of such

161 data when deciding on the need for investigations in obese patients.

162 **3. When to investigate effects of obesity**

163 The need for adequate PK characterisation in obese subjects should be considered in drug development

to ensure their effective and safe use in this subgroup. Since the PK/PD relationship may be different in

obese subjects comparatively to normal weight subjects, it is encouraged that through the whole

166 development program the population in the trials should be representative for the population to be 167 treated including in terms of aspects such as obesity.

168 Some examples of where evaluation of PK in obese patients, and thus inclusion of a sufficient number 169 of obese patients of different BMI classes in the clinical studies, is particularly recommended are:

- 170 1. obese patients are a reasonably large part of the target patient population;
- there are reasons to believe based on the scientific literature that obesity may lead to a marked
 effect on drug elimination and/or distribution or on the PK/PD relationship;
- 173 3. body weight has a large effect on PK based on population pharmacokinetic (Pop-PK) analysis;
- 174 4. body weight based dosing is applied;
- 175 5. the drug has a relatively narrow therapeutic range.
- 176 If obese patients are a reasonably large proportion of the patient population and there is reason to

expect an effect on PK, the need for early investigations of the effect of obesity on PK should beconsidered to aid dose-finding in this population.

179 If obese subjects are a significant proportion of the population and dosing is body weight based, the 180 suitability of the dose recommendation in obese patients (preferably for different BMI classes of

suitability of the dose recommendation in obese patients (preferably for different BMI classes of
obesity) needs to be addressed and whether the descriptor used for dosing is optimal in all patients

regardless of obesity. If there is a risk of increased exposure in the obese, a cap on the maximal dose

183 could be applied to "normalise" drug exposure, if it can be assumed that the target concentration

184 range is similar in obese and non-obese individuals.

185 To provide appropriate dosing recommendations for studies in late phase clinical development,

186 additional dedicated PK studies in (morbidly) obese subjects may be needed if insufficient PK data are

187 available from the earliest clinical studies.

188 If the drug has a narrow therapeutic window and assuming that the target concentration range is 189 similar in obese and non-obese individuals, pharmacokinetics should be investigated in obese patients 190 for different BMI classes of obesity to guide on the dosing strategy i.e. use of loading dose, dosing 191 using total body weight / lean body weight, dose capping, etc.

192 **4.** Investigation of the effect of obesity on PK

193 **4.1.** Population pharmacokinetic (PopPK) analysis

In applications for new marketing authorisations (MA) and/or new indications (including paediatrics) for an existing MA, the effect of intrinsic factors, including body weight, on the PK of the substance is usually investigated by PopPK analysis. This uses non-linear mixed effects models, on rich and sparse plasma drug concentration data from clinical studies. A pre-requisite for a successful analysis is

198 inclusion of a sufficient number of patients having the required targeted characteristics

PopPK can therefore be an appropriate methodology to explore the effects of obesity, when a sufficient
number of obese subjects have been included in the clinical studies. However, focus or emphasis on
obese patients is rarely made. Sufficient data should, if possible, be collected in all categories of
obesity: pre-obese and BMI I, II, and III classes.

- 203 Testing body weight as a covariate in PopPK development is a common, general approach. If an effect 204 of body weight is found, the analysis should attempt to separate the effect of obesity from the effect of 205 body weight/size. Many approaches could potentially be used in order to obtain an understanding on 206 the influence of obesity on PK. Covariates such as Total Body Weight (TBW), BMI, BSA, LBM or Ideal 207 Body Weight (IBW) could all be tested as covariates in model development. The selected descriptors 208 tested as covariates in the PopPK model should be clearly justified. The most relevant covariates 209 should be included in models for further simulation of dosing scenario and posology adaptation if 210 needed. The final choice of covariate is based on the criteria to define significance, the reduced 211 residual variability and the clinical impact of the improved precision as well as the practicality of the 212 covariate during clinical use. The body size metrics should be tested as both continuous and categorical 213 variables (obesity estimators - see appendix), although it is important to consider that all body size 214 covariates are highly correlated and a testing procedure must take this into account. If the parameters 215 are likely to change within individuals during the studies, repeated measurements over time may be 216 necessary and the model should account for changes over time. Note that fluid retention, comorbidities 217 and bariatric surgery can be confounding factors.
- Presentation of the analysis should follow the recommendations outlined in the relevant CHMPguidance (4).

220 4.2. Non-compartmental analysis (NCA)

Another possible but less common approach is to conduct a formal PK study with full sampling in

parallel groups of healthy volunteers/patients classified as 'normal weight' and as 'obese' (matched
with respect to other factors expected to influence the PK). This type of study could be performed early

- in drug development to support dosing in obese subjects in phase III clinical trials.
- 225 Optimally, such a study should be sufficiently powered to detect and quantify relevant PK differences 226 between obesity classes. A PK study in obese subjects may have a "full-range design" or be a reduced 227 or staged study. When using a NCA approach, at least the following parameters should be estimated 228 and compared: AUC_t, AUC_{inf}, C_{max}, CL or CL/F, Vd or Vd/F, and T_{1/2}. Statistical analysis of the
- parameters versus size and obesity descriptors could be considered and correlations visualized.

230 4.3. Physiologically based pharmacokinetic (PBPK) modelling

PBPK models in obese populations are being developed in PBPK platforms. However, more scientific
information on the physio-pathological changes needs to be gained before this approach can be
qualified for use to reliably simulate exposure in obese subjects. The qualification requirements depend
on the regulatory impact of the simulation but will require clinical data sets, demonstrating effects of
obesity (18).

236 5. Presentation and discussion of data

The aim is to develop treatment recommendations to ensure that obese patients will obtain a

treatment that is considered to be as effective and safe as for the general target population. This

should be based on information available on exposure effect relationships gained in the clinical studies

or conventional documentation of exposure vs efficacy and safety in the reference group and obese

population. Target criteria (the concentration for which satisfactory efficacy and safety has been
 shown) should specify what change in exposure would justify a posology adjustment based on the

main concern (adverse events or lack of efficacy) for the specific medicinal product.

As background for the decision on adequate treatment recommendations, simulations of the predicted exposure during treatment should be provided and should include a graphical description of

concentration over time and the predicted variability in the population. The choice of dosing strategy

i.e. use of loading dose, TBW, lean body weight (LBW), IBW, dose capping, etc. should be carefully

considered. If needed, different descriptors may be needed to optimise the loading and maintenance

dose. The dose optimisation should include discussions of the risk of under- or over-dosing in each BMI

grade of obese patients, as well as practical applicability and risk of dosing errors. Graphical and

numerical presentations may aid this discussion. If dose titration is applied, the suitability of the

titration for obese patients should be supported.

It is recommended that the numbers of subjects studied in the clinical development programmecategorised according to their BMI are presented in tabular format as follows:

BMI (WHO classification)	Pre-obesity	Obesity class I	Obesity class II	Obesity class III
	(25.0-29.9)	(30.0-34.9)	(35.0-39.9)	(Above 40)
Clinical Trial				

255

Identification of the sub-population for which the posology adjustments are to be recommended should
be clearly described under section 4.2 (Posology) of the Summary of Product Characteristics (SmPC).
Other types of treatment recommendations should be similarly supported and addressed in relevant
SmPC sections. The recommendations should be as practically applicable as possible.

A description of the PK data in obese patients should be presented in section 5.2 (pharmacokinetic properties) of the SmPC together with existing information on the effects of covariates on the PK of the

262 drug.

263 6. References

Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co morbidities. BMC Public Health. 2009 Mar 25;9:88.

- 266 2. Forbes GB, Welle SL. Lean body mass in obesity. Int J Obesity 1983; 7: 99-107.
- 267 3. Clinical evaluation of medicinal products used in weight contro.I EMA/CHMP/311805/2014.
- 268 4. Clinical evaluation of medicinal products used in weight control addendum on weight control in269 children. CHMP/EWP/517497/07.
- 270 5. Reporting the results of population pharmacokinetic analyses. CHMP/EWP/185990/06.
- Cho SJ, Yoon IS, Kim DD. Obesity-related physiological changes and their pharmacokinetic
 consequences. J Pharm Investig. 2013;43(3):161-169.
- 273 7. Blouin RA, Warren GW. Pharmacokinetic considerations in obesity. J Pharm Sci. 1999;88(1):1-7.
- Margreke J. Brill, Anne van Rongen, Eric P. van Dongen, Bert van Ramshorst, Eric J. Hazebroek,
 Adam S. Darwich, Amin Rostami-Hodjegan, and Catherijne A. Knibbe. The Pharmacokinetics of the
 CYP3A Substrate Midazolam in Morbidly Obese Patients Before and One Year After Bariatric
 Surgery. Pharm Res. 2015; 32(12): 3927–3936.
- Hollenstein UM , Brunner M, Schmid R and Müller M. Soft tissue concentrations of ciprofloxacin in
 obese and lean subjects following weight-adjusted dosing. International Journal of Obesity 2001
 25: 354-358.
- 281 10. Chagnac A. et al. Obesity induced glomerular hyperfiltration. Nephro Dial Transplant 2008 Dec;
 282 23(12):3946-52.
- 283 11. Diehl AM. Nonalcoholic steatohepatitis. Semin Liver Dis 1999; 19: 221-9.
- 12. Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug
 metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009 Apr; 85(4): 434–438.
- 13. Pierre V, Johnston CK. Population Pharmacokinetics of Morphine in Patients With Nonalcoholic
 Steatohepatitis (NASH) and Healthy Adults. Clinical Pharmacology and Therapeutics,
 Pharmacometrics Syst. Pharmacol. (2017) 6, 331–339).
- 14. Allan E, Ensom MHH. Pharmacokinetic Effects of Bariatric Surgery. Ann Pharmacother 2012;
 46:130-6.
- 15. Jakobsen GS, Skottheim IB, Sandbu R, Christensen H, Røislien J, Asberg A, Hjelmesæth J. Long term effects of gastric bypass and duodenal switch on systemic exposure of atorvastatin. Surg
 Endosc. 2013 Jun; 27(6):2094-101.
- 294 16. Jain R, Chung SM, Jain L, et al. Implications of obesity for drug therapy: limitations and challenges.
 295 Clin Pharmacol Ther. 2011; 90(1):77-89.
- 17. Hotamisligil GS, Arner P, Caro JF, et al. Increased adipose tissue expression of tumor necrosis
 factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95(5):2409.
- 298 18. Qualification and reporting of physiologically based pharmacokinetic (PBPK) modelling and
 299 simulation. EMA/*CHMP*/458101/2016.
- 300

7. Appendix: obesity estimators

302 Many methods are used for the measurement of body fat composition and the gradation of obesity:

303 The most commonly used obesity estimators are:

304 A. Body Mass Index (BMI):

BMI (kg/m^2) = Body Weight $(kg)/Height (m)^2$. This metric is still the most widely used for overweight

and obesity classification in adults due to its practicality. The WHO recommendation is presented inTable 1.

SOT TADIE

308 **Table 1 - WHO underweight**, overweight and obesity classification for adults 309

Weight Status	Underweight	Normal range	Overweight	Pre- obese	Obese, class I	Obese, class II	Obese, class III
Kg/m²	< 18.50	18.50- 24.99	≥25.00	25.00- 29.99	30.00- 34.99	35.00- 39.99	≥40.00

310

However, in children the situation is more complex as the BMI changes as they mature. BMI cut-offs

based on pooled international data that link the accepted adult cut-off points to cut-off points related

to age for children should be used to define overweight and obesity in the paediatric population. WHO

currently suggest a set of thresholds based on single standard deviation (SD) spacing above or below

the standard median for children aged 5 – 19 years:

316 **Table 2 - WHO SD thresholds for children aged 5 – 19 years** 317

Thinness	Overweight	Obese
<-2SD	Between +1SD and <+2SD	>+2SD

318

Obesity is defined for children aged less than 5 years as having weight-for-height greater than 3 SDabove the WHO Child Growth Standards median.

321 B. Body Surface Area (BSA):

322 The body surface area (BSA) is the measured or calculated surface area of a human body. Direct

measurement of BSA could not be easily performed. Similarly to BMI, BSA is derived from the

assumption that BSA depends upon weight and height and also does not take the subject's gender intoaccount.

Various formulas are proposed for BSA estimation. A simplified formula to estimate BSA is used inoncology:

328 BSA (m²) = [TBW (kg) x Height (cm) /3600]^{1/2}.

329 The classification of overweight and obesity based on BSA has the same limitations as BMI and BSA is

more difficult to estimate, increasing the risk of dosing errors. The utility of BSA for obesity

331 classification needs to be further supported.

332 C. Fat mass calculated from Total Body Weight (TBW) and Lean Body Weight (LBW):

- The amount of body fat is defined as the difference between the TBW and the Fat-Free Mass (FFM).
- There are many different methods to estimate the fraction of body fat to TBW, which are described in
- the literature, such as hydrodensitometry, skin fold-thickness, bioelectrical impedance analysis (BIA)
- and dual-energy X-ray absorptiometry. Presently, mainly indirect indexes, based on weight and height
- are used, as these are considered easily accessible and measurable parameters. Failure to distinguish
- between the lean and adipose tissues are among the major drawbacks of using these metrics.
- Estimation of the body fat mass is also a useful approach to describe obesity. By subtracting LBW
- 340 (extracellular fluid, muscle, bone and vital organs) from TBW, the adipose tissue mass can then be
- 341 estimated as well as the ratio adipose tissue to TBW.
- 342