

06 November 2015 EMA/PDCO/CAT/CMDh/PRAC/CHMP/261500/2015 Paediatric Committee (PDCO) Committee for Advanced Therapies (CAT) Pharmacovigilance Risk Assessment Committee (PRAC) Committee for Medicinal Products for Human Use (CHMP) Coordination Group for Mutual Recognition and Decentralised Procedures (CMDh)

Scientific guidance on post-authorisation efficacy studies Draft

Adopted by PDCO for release for consultation	09 October 2015
Adopted by CAT for release for consultation	16 October 2015
Adopted by CMDh for release for consultation	21 October 2015
Adopted by PRAC for release for consultation	22 October 2015
Adopted by CHMP for release for consultation	23 October 2015
Start of public consultation	06 November 2015
End of consultation (deadline for comments)	31 January 2016
Adopted by <committee></committee>	<dd month="" yyyy=""></dd>
Date for coming into effect	<dd month="" yyyy="">¹</dd>

Comments should be submitted using this <u>template</u>. The completed comments form should be sent to <u>PAESconsultation@ema.europa.eu</u>

KeywordsPost-authorisation, Efficacy, Observational, Randomised, TrialsPragmatic, Explanatory, Historical controls, PAES

30 Churchill Place • Canary Wharf • London E14 5EU • United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact

An agency of the European Union

 $\textcircled{\mbox{\sc c}}$ European Medicines Agency, 2015. Reproduction is authorised provided the source is acknowledged.

¹ First day of the 7th month.

Scientific guidance on post-authorisation efficacy studies

Draft guidance

1. Introduction	. 3
1.1. Legal basis and purpose	3
1.2. Scope	3
2. General guidance on the need for PAES	. 4
3. General methodological considerations for PAES	.4
3.1. Clinical trials	.5
3.1.1. Explanatory Trials	5
3.1.2. Pragmatic Trials	5
3.2. Observational studies	6
3.2.1. Studies with concurrent controls	7
3.2.2. Studies with historical comparison data	7
3.3. Data sources	
3.4. Safety aspects	.9
4. Scientific guidance on specific situations	Q
+. Scientific guidance on specific situations	
4.1. Uncertainties concerning benefits stemming from (sub)-populations	
	9
 4.1. Uncertainties concerning benefits stemming from (sub)-populations	9 10 10
 4.1. Uncertainties concerning benefits stemming from (sub)-populations 4.2. Uncertainties concerning benefits stemming from endpoints 4.3. Uncertainties in benefits regarding treatment over time 4.4. Uncertainties in benefits regarding co-treatment with other products 	9 10 10 10
 4.1. Uncertainties concerning benefits stemming from (sub)-populations 4.2. Uncertainties concerning benefits stemming from endpoints 4.3. Uncertainties in benefits regarding treatment over time 4.4. Uncertainties in benefits regarding co-treatment with other products 4.5. Uncertainties stemming from benefits of the medicinal product in real life use 	9 10 10 10 11
 4.1. Uncertainties concerning benefits stemming from (sub)-populations 4.2. Uncertainties concerning benefits stemming from endpoints 4.3. Uncertainties in benefits regarding treatment over time 4.4. Uncertainties in benefits regarding co-treatment with other products 4.5. Uncertainties stemming from benefits of the medicinal product in real life use 4.6. Change in the understanding of the disease or drug 	9 10 10 10 11 12
 4.1. Uncertainties concerning benefits stemming from (sub)-populations 4.2. Uncertainties concerning benefits stemming from endpoints 4.3. Uncertainties in benefits regarding treatment over time 4.4. Uncertainties in benefits regarding co-treatment with other products 4.5. Uncertainties stemming from benefits of the medicinal product in real life use 	9 10 10 10 11 12
 4.1. Uncertainties concerning benefits stemming from (sub)-populations 4.2. Uncertainties concerning benefits stemming from endpoints 4.3. Uncertainties in benefits regarding treatment over time 4.4. Uncertainties in benefits regarding co-treatment with other products 4.5. Uncertainties stemming from benefits of the medicinal product in real life use 4.6. Change in the understanding of the disease or drug 	9 10 10 10 11 12 12
 4.1. Uncertainties concerning benefits stemming from (sub)-populations 4.2. Uncertainties concerning benefits stemming from endpoints 4.3. Uncertainties in benefits regarding treatment over time 4.4. Uncertainties in benefits regarding co-treatment with other products 4.5. Uncertainties stemming from benefits of the medicinal product in real life use 4.6. Change in the understanding of the disease or drug 4.7. Change in scientific factors for previous efficacy evaluations 	9 10 10 11 12 12
 4.1. Uncertainties concerning benefits stemming from (sub)-populations 4.2. Uncertainties concerning benefits stemming from endpoints 4.3. Uncertainties in benefits regarding treatment over time 4.4. Uncertainties in benefits regarding co-treatment with other products 4.5. Uncertainties stemming from benefits of the medicinal product in real life use 4.6. Change in the understanding of the disease or drug 4.7. Change in scientific factors for previous efficacy evaluations 5. Conduct of post-authorisation efficacy studies 	9 10 10 11 12 12 12 12
 4.1. Uncertainties concerning benefits stemming from (sub)-populations 4.2. Uncertainties concerning benefits stemming from endpoints 4.3. Uncertainties in benefits regarding treatment over time 4.4. Uncertainties in benefits regarding co-treatment with other products 4.5. Uncertainties stemming from benefits of the medicinal product in real life use 4.6. Change in the understanding of the disease or drug 4.7. Change in scientific factors for previous efficacy evaluations 5.1. Study protocol and report. 	9 10 10 11 12 12 12 12 12
 4.1. Uncertainties concerning benefits stemming from (sub)-populations	9 10 10 11 12 12 12 12 12 13

1 **1. Introduction**

2 **1.1. Legal basis and purpose**

Post-authorisation efficacy studies (PAES) of medicinal products are studies conducted within the
 authorised therapeutic indication to complement available efficacy data in the light of well-reasoned
 scientific uncertainties on aspects of the evidence of benefits that should be, or can only be, addressed

- 6 post-authorisation.
- A PAES may be initiated, managed or financed by a marketing authorisation holder (MAH) voluntarily,
 or pursuant to an obligation imposed by a competent authority as follows:
- 9 Within the scope of Delegated Regulation (EU) No 357/2014², PAES may be imposed for centrally
 10 (CAPs) and nationally authorised medicinal products (NAPs) either:
- at the time of granting the initial marketing authorisation (MA) where concerns relating to some
 aspects of the efficacy of the medicinal product are identified and can be resolved only after the
 medicinal product has been marketed [Art 9(4)(cc) of REG / Art 21a(f) of DIR]; or
- after granting of a MA where the understanding of the disease or the clinical methodology or the
 use of the medicinal product under real-life conditions indicate that previous efficacy evaluations
 might have to be revised significantly [Art 10a(1)(b) of REG / Art 22a(1)(b) of DIR].
- 17 Outside of the scope of Delegated Regulation (EU) No 357/2014, PAES may be imposed in the
 18 following specific situations:
- a conditional MA granted in accordance with Article 14(7) of Regulation (EC) No 726/2004;
- a MA granted in exceptional circumstances and subject to certain conditions in accordance with
 Article 14(8) of Regulation (EC) No 726/2004 or Article 22 of Directive 2001/83/EC;
- a MA granted to an advanced therapy medicinal product in accordance with Article 14 of
 Regulation (EC) No 1394/2007;
- the paediatric use of a medicinal product in accordance with Article 34(2) of Regulation (EC) No
 1901/2006;
- a referral procedure such as initiated in accordance with Articles 31 or 107i of Directive
 2001/83/EC or Article 20 of Regulation (EC) No 726/2004.
- 28 This guidance has been developed in accordance with Article 108a of Directive 2001/83/EC which
- 29 provides a mandate for European Medicines Agency (EMA) in cooperation with competent authorities
- 30 and other interested parties to draw up scientific guidance on PAES.

31 **1.2. Scope**

- 32 This guidance is intended to provide scientific guidance for MAHs and for Competent Authorities on
- 33 PAES in the context of EU regulatory decision-making with regard to: the general need for such
- 34 studies, general methodological considerations, specific situations and study conduct. It is not
- restricted to the situations falling within the scope of the Delegated Regulation (EU) No 357/2014.

² Commission Delegated Regulation (EU) No 357/2014 of 3 February 2014 supplementing Directive 2001/83/EC of the European Parliament and of the Council and Regulation (EC) No 726/2004 of the European Parliament and of the Council as regards situations in which post-authorisation efficacy studies may be required (OJ L 107, 10/04/2014, p. 1).

- 36 This guidance is not intended to replace or reproduce methods available in textbooks on various study
- 37 designs but to highlight regulators' particular considerations and the potential role of mentioned study
- 38 designs for the PAES setting. For the specific scenarios where PAES may be considered, additional
- 39 clarifications are given together with study designs which may be considered useful.
- 40 This guidance should be read in conjunction with Delegated Regulation (EU) No 357/2014, Regulation
- 41 (EC) No 726/2004, Regulation (EC) No 1901/2006, Directive 2001/83/EC and Directive 2001/20/EC³.
- 42 See Annex 1 for other relevant guidance.

43 **2. General guidance on the need for PAES**

The granting and maintenance of a MA is dependent on data generated to that point in time from
relevant tests and trials supporting a positive benefit risk balance within the authorised therapeutic
indication and target population as laid out in the Summary of Product Characteristics (SmPC).

- 47 General practice is that to support a positive risk benefit in an indication, demonstration of benefit is 48 required from pivotal, almost invariably randomised, trials that are appropriately designed and
- 49 conducted in accordance with applicable guidance⁴. The demonstration of benefits therefore relies on
- 50 persuasive and extensive data on the clinical outcome of interest or a validated surrogate in the
- 51 patient population of interest. A PAES within the authorised indication may nevertheless be needed
- 52 where there is a well-reasoned scientific uncertainty the resolution of which is important for
- 53 understanding therapeutic efficacy and benefit-risk that is to be addressed post-authorisation and for
- 54 which a study can be designed and conducted that will give interpretable results with the potential to
- 55 impact on the licensing status or product labelling. This is in keeping with the concept of life-cycle
- 56 product benefit-risk profiling through targeted post-authorisation research that translates into better
- 57 labelling and better use of medicines by patients and prescribers in clinical practice.

3. General methodological considerations for PAES

59 The choice of study design will be based on the scientific uncertainty to be addressed. In designing and 60 conducting a PAES, consideration should be given to ensuring that the requested study will be feasible,

- 61 ethically acceptable and of a design known to return reliable and interpretable results in relation to its
- 62 primary objectives. The design should take particular account of the post-authorisation setting and be
- 63 feasible to complete within a reasonable timeframe.
- 64 There may be circumstances in which a PAES imposed in accordance with Delegated Regulation (EU)
- No 357/2014 could also include additional investigational arms as proposed by the MAH and/or
- 66 supported by the competent authorities e.g. data for health technology assessment purposes, provided
- this would not impact on the study integrity and the primary objectives of the study as defined in thecondition of the MA.
- A PAES may be conducted as a randomised or non-randomised study. Note, as this is a scientific
- 70 guidance, terms such as randomised, non-randomised and observational are used without prejudice to
- 71 the definitions pertaining to clinical trials that may be applied in European Union and national
- 72 legislation, and related regulatory guidance.
- 73 Studies involving randomisation may be the preferred design in the PAES setting. Without
- randomisation, estimates of effects (purporting to reflect only a difference in intervention) can be

Scientific guidance on post-authorisation efficacy studies EMA/PDCO/CAT/PRAC/CHMP/CMDh/261500/2015

³ To be repealed by Regulation (EU) No 536/2014 in accordance with Articles 96 and 99 thereof.

⁴ Exceptions to replication of scientific results are highlighted in CHMP/EWP/83561/05 and CPMP/2330/99.

- expected to be affected by confounding factors or biases in the population under evaluation. This is
- because non-randomised studies, especially those comparing treatment with no treatment, may have a
- strong relationship between the decision to allocate a particular treatment and prognosis. It is widely
- acknowledged that results from non-randomised studies of efficacy are generally more difficult to
- interpret than those from similar studies of safety where confounding is likely to be less. Nevertheless,
- 80 in certain situations (see section 3.2) the conduct of non-randomised studies, where measures are
- 81 included to minimise limitations/ biases, could be justifiable in the PAES setting.
- 82 All PAES should conform to applicable legislation and recognised international methodological and
- 83 ethical standards for research.

84 3.1. Clinical trials

As far as is possible, the methods applicable for preauthorisation clinical trials should also be adopted in the PAES setting. One or more control arms should, as appropriate, be allocated to placebo (perhaps as 'add-on' to standard of care) and / or an established medicinal product of proven therapeutic value and any other design should be justified.

- 89 Trial designs, e.g. choice of control arm(s), objective (e.g. superiority or non-inferiority) will be
- 90 determined by the uncertainty to be addressed, the nature of the intervention and the condition under

91 treatment. It may be preferable to compare the medicinal product subject to PAES with that of an

92 established medicinal product of proven therapeutic value. (See also the specific situations regarding

93 real-life use (Section 4.5) for further discussion on where submission of a PAES with an active

- 94 comparator may be considered or required).
- 95 Clinical trial design options for the design of PAES could include explanatory and pragmatic trials.

96 **3.1.1. Explanatory Trials**

97 Such trials are expected to have a high degree of internal validity and to be tightly designed to reflect
98 the intended indication and treatment regimen, so that the errors and biases will influence the results as
99 little as possible. This will control for sources of bias (systematic errors) by means of randomisation,
100 blinding, and allocation concealment and will have a clearly defined participant population.

101 These trials play an important role in providing knowledge concerning the effects of precisely defined 102 interventions applied to selected groups under controlled conditions. However, depending on the detail 103 of the protocol, external validity may be limited in applicability. Thus in a PAES setting, these designs 104 are best targeted at uncertainties where a need for tight control of heterogeneity is foreseen. Such an 105 experiment will also need to be feasible post-authorisation and ethical considerations around the choice 106 of control arm must be taken into account.

107 **3.1.2. Pragmatic Trials**

- 108 Pragmatic trials examine interventions under circumstances that approach real-world practice, with
- 109 more heterogeneous patient populations, possibly less-standardised treatment protocols, and delivery in 110 routine clinical settings as opposed to a research environment. Minimal restrictions may be placed on
- 111 modifying dose, dosing regimens, co-therapies or co-morbidities or treatment switching.

- 112 The distinction between pragmatic and explanatory clinical trials may be considered as a continuum⁵
- 113 rather than dichotomous hence the distinction is less important than the design features in respect of
- 114 trial objectives. For example, some elements (inclusion of a broad patient population or those with
- 115 higher baseline risks) of explanatory trials could be made more pragmatic without relaxing all of the
- design parameters associated with the most explanatory type of trials. Pragmatic trials may be more
- amenable to trial designs not commonly employed for explanatory clinical trials e.g. cluster-randomised
- 118 or stepped-wedge designs.
- 119 From a regulatory perspective, a number of methodological issues are highlighted given that these
- 120 designs have been less commonly encountered for regulatory purposes: robust randomisation processes
- 121 with allocation concealment should be used as per explanatory trials. The length of follow up should be
- 122 sufficient and the events of interest should be detectable. Consideration should be given to the level of
- 123 bias introduced if the outcome assessment is not masked to the treatment allocation. Consequently,
- 124 outcomes that can be established to be accurate independent of the investigator or patients are useful.
- 125 The analysis plan should consider how to measure the effect of the treatment of interest in the event of
- discontinuation of study drug or use of rescue medications consistent with the objective of the
- 127 experiment. Where the objective is to establish evidence for absence of a difference between
- 128 interventions, the interpretation of findings should take account the level of noise and variability.
- 129 Specifically it should be justified that the trial is sensitive to detect differences if they exist.
- 130 Investigators should therefore report quality metrics i.e. measures quantifying the control mechanisms
- and the extent to which they were relaxed. Clinical trials conducted for regulatory purposes should be
- reported in line with applicable legislation but from a scientific perspective pragmatic adaptation in the
- trial design should be clearly identified in the report as described in the CONSORT⁶ statement extension
- 134 for pragmatic trials.
- 135 Consideration should be given to whether or not the pragmatic diagnostic approaches to indications or
- 136 outcomes are reliable, as pragmatic trials tend not to do confirmatory tests, and whether the results are
- 137 generalizable in different healthcare settings. However, populations may still be self-selecting and it
- 138 may be worth checking the demographic characteristics of the enrolled patients.
- 139 For the PAES setting, pragmatic trials may be used in situations where there is a need to explore
- 140 whether the intervention is used in the same way in the real-world setting as in the pivotal trials or
- 141 where there are concerns about whether trial results translate into this setting or where non-adherence
- 142 to treatment could be an issue.
- 143 Such trials may also be used if the comparator is usual care (if not, an explanatory trial is needed) or if
- randomisation (as opposed to non-randomisation) is needed to answer a particular question or if strong
- 145 modifying effects are anticipated.

146 **3.2. Observational studies**

- 147 Non-randomised studies may be considered for investigating benefits where one or more of the
- 148 following situations apply: randomisation is unethical or unfeasible, outcomes are infrequent or are far
- in the future, the generalisability of randomised trials is limited, outcomes are highly predictable, or

⁵ Treweek S, Zwarenstein M. Making trials matter: pragmatic and explanatory trials and the problem of applicability. Trials 2009 10:37.

⁶ Zwarenstein M, Treweek S, Gagnier JJ, Altman DG, Tunis S, Haynes B, Oxman AD, Moher D for the CONSORT and Pragmatic Trials in Healthcare (Practihc) group. Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ 2008;337;a2390.

- 150 effect sizes are very large⁷. Observational PAES may additionally be useful to investigate effect
- 151 modifiers, namely factors that describe important differences between patients within the licensed
- 152 indication that may influence the level of efficacy of the drug and may not have been fully explored prior
- 153 to authorisation. Examples of effect modifiers are patient sub-groups defined by factors such as age, co-
- 154 morbidities and use of concomitant drugs, disease severity, disease duration, treatment history and
- 155 factors related to a defined country or health care system.
- 156 Observational studies to measure benefits require exposures and outcomes which can be measured with
- a high degree of accuracy(i.e. minimised risk of misclassification bias); objective criteria are preferred.
- 158 The degree to which relevant confounding factors and effect modifiers can be correctly measured will
- 159 greatly impact on the confidence with which the results can be interpreted. This will, in general, be
- 160 easier when comparing with another active treatment rather than no treatment.
- 161 Post-marketing observational studies involving secondary use of existing data (see Section 3.3) could be 162 considered in situations where a rapid exploration of an efficacy question is needed.

3.2.1. Studies with concurrent controls

- 164 In general, the preferred comparison within an observational study will be to a concurrent set of 165 patients who have not or who are not currently receiving the treatment of interest.
- 166 In observational studies of drug effects, confounding by indication and channelling of treatments are
- amongst the main sources of bias when evaluating benefit endpoints. These need to be addressed. For
- 168 well-measured confounders, there is little difference in results between different methods used to
- address confounding, although the impact of unknown, unmeasured or poorly measured confounders
- 170 remains a source of bias. When it is possible to identify a subset of the observational study population
- that is broadly similar to that included in the explanatory randomised clinical trials, confidence in the
- 172 overall study results may be increased if similar results are found in this sub-population. The importance
- 173 of sensitivity analyses to test the robustness of study results is therefore emphasised.
- 174 Observational studies can also be more challenging to interpret due to time-varying confounders in
- 175 chronic conditions, adherence to treatment guidelines resulting in highly selective patient populations
- 176 receiving treatment, and temporal changes in prescribing trends, particularly in the early stages of
- 177 marketing. The ENCePP Guide on Methodological Standards in Pharmacoepidemiology⁸ and the ISPE
- 178 Guidelines for Good Pharmacoepidemiology Practices⁹ provides a further discussion of methods that go
- 179 towards addressing these issues.

180

3.2.2. Studies with historical comparison data

- 181 Comparison of currently treated patients with historically treated controls is difficult for two reasons.
- 182 The decision to treat applies only to a selected patient group that may differ from the historical controls 183 and the clinical background may have changed over time.
- 184 However, comparison to historical datasets may have a role in the PAES setting where obtaining
- 185 prospective data is infeasible or unnecessary because the historical data are well-characterised and
- 186 relevant and a large effect size is anticipated. These datasets are most likely to come from formal

⁸ The European Network of Centres for Pharmacoepidemiology and Pharmacovigilance (ENCePP). Guide on Methodological Standards in Pharmacoepidemiology (Revision 3). EMA/95098/2010. http://www.encepp.eu/standards_and_guidances ⁹ The International Society for Pharmacoepidemiology. Guidelines for Good Pharmacoepidemiology Practices (Revision 2). https://www.pharmacoepi.org/resources/guidelines_08027.cfm

⁷ Why we need observational studies to evaluate the effectiveness of health care. Black N. BMJ. May 11, 1996; 312(7040): 1215–1218. ⁸ The European Network of Control for Pharmaceonidersial and Pharmace

- 187 clinical trials for which the selection criteria were well documented and strictly applied and in which the
- 188 known, important prognostic variables were recorded and can be matched to the treated patient data. A
- 189 major consideration is whether the selection criteria in the original trials have been applied in the
- 190 subsequent observational study. Historically treated controls may sometimes be considered when there
- is insufficient information for more established methods. For example, when a new medicine is used,
- 192 there may be too little exposure to calculate propensity score models and disease risk score methods
- 193 for rare outcomes may not work well unless they can be developed with more extensive historical data.
- 194 If the new drug takes a lot of the market then again historical controls may need to be used.

195 **3.3. Data sources**

196 There are two main approaches for data collection. One is primary collection of data specifically for a 197 study. The other is to use data already collected for another purpose, e.g. as part of electronic records 198 of patient health care ("secondary data collection").

- 199 Clinical trials in general will rely on primary data collection. In contrast, using electronic routinely 200 collected clinical healthcare record databases to facilitate the conduct of clinical trials is relatively new 201 and some challenges are likely to need regulatory dialogue if the results of these trials are to be used to 202 support regulatory decision-making. Potential value of using such databases may be realised when 203 outcomes are clinically important acute events (e.g. death and onset of new disease) that are likely to 204 be well recorded. Long-term low-cost follow-up could be possible and studying rare disease outcomes 205 might be facilitated. Any application to treatments in orphan diseases is limited unless extremely large 206 population coverage is available. The quality and completeness of data in the database must be 207 sufficient to conduct a credible study. Important variations exist between individual databases and 208 consequently it should be assured that clinical trial processes can be implemented in a consistent way . 209 Database screening or record linkage can be used to detect and measure outcomes of interest otherwise 210 assessed through the normal process of care. Patient recruitment, informed consent, confidentiality, 211 assuring of patient anonymity, and proper documentation of patient information are areas that still 212 need to be addressed in accordance with the applicable (local) legal and ethical requirements for RCTs. 213 Administrative requirements, coding conventions, quality of data, the ability to link to additional data sources and the ability to provide further clinical details on request are all likely to be specific to a 214 215 database.
- The use of primary and secondary data collection sources for observational studies are well describedelsewhere.
- 218 Regulators can require marketing authorisation holders (MAHs) to establish post-authorisation
- registries¹⁰ to support collection of data on effectiveness and safety of medicinal products in the routine treatment of diseases, in particular in cases of paediatric use and orphan products.
- 220 treatment of diseases, in particular in cases of paediatric use and orphan products.
- 221 The design of a registry (including the definition of the patient population and the outcomes to be
- 222 measured) should be primarily based on the objectives and the planned analyses as described in a
- 223 protocol and not on an *a priori* decision on how patients will be recruited. Disease registries will
- facilitate treatment comparisons within them. Registries based on a single medicinal product alone
- 225 provide little avenues for treatment comparisons.

¹⁰ The term registry is used in this document to indicate an organised system that uses observational methods to collect uniform data on specified outcomes in a population defined by a particular disease, condition or exposure.

- 226 Established registries may provide an opportunity to assess patient outcomes including effectiveness
- 227 particularly where supplementary data collection or linkage are feasible. It is always important to
- 228 consider the potential utility of existing registries before starting new ones.

Registries allow for a wide variety of observational study design options including prospective cohort studies with nested case-control analysis, inception cohorts, retrospective cohorts for events with short induction times, natural history studies, and cohort studies with internal comparators, linkage and/or

- 232 supplementary data collection. A common set of variables and procedures (e.g. inclusion criteria,
- 233 clinical and socio-demographic characteristics, major outcomes, follow-up schedules) can allow
- extraction of data in a standardised form and facilitate such observational studies. As for any other
- epidemiological source of data, data quality is crucial. Measures to improve the quality of data, the validity of studies and the usefulness of results from registries include using common terminologies
- validity of studies and the usefulness of results from registries include using common terminologiesand data dictionaries/definitions, quality control of laboratory and measurements data and standards
- 238 for collection of patient-reported information.
- Registries with large numbers of subjects may allow for heterogeneity of efficacy by different patient
- characteristics to be studied. Amongst the limitations are those applicable to observational studies and situations where the disease or exposure classification is not specific enough or where follow-up is not
- possible or available, or where appropriate controls cannot be identified. In terms of data
- interpretability, it is important to describe the representativeness and generalisability of a registry, and
- whether it covers the relevant patients and periods of interest. Moreover, the use of registry data is
- 245 limited by selection bias as with other observational datasets.

246 **3.4. Safety aspects**

247 Safety reporting from PAES which are clinical trials falls under the scope of Directive 2001/20/EC. The 248 provisions set out in Directive 2001/83/EC and Regulation (EC) No 726/2004 apply for studies falling 249 outside the scope of Directive 2001/20/EC. For the latter, detailed guidance is provided in Module VI of 250 the Good Pharmacovigilance Practice.

4. Scientific guidance on specific situations

252 The following guidance expands on the detail of the situations where PAES may be imposed in the 253 context of Delegated Regulation (EU) No 357/2014. As referred to in Section 1.1 there may be other 254 legal frameworks where such situations might also arise. There may also be a wide range of scenarios 255 arising from change in understanding or the identification of new scientific factors that require a PAES 256 to be imposed. It is, however, emphasised that these studies will be rare rather than routine and that 257 to impose a PAES there should be a well-reasoned scientific uncertainty that is important for 258 understanding therapeutic efficacy and benefit-risk but can be addressed post-authorisation and for 259 which a study can be designed and conducted that will give interpretable results with the potential to 260 impact on the licensing status or product labelling. The clinical relevance of the scientific uncertainty 261 should also be considered.

262 **4.1.** Uncertainties concerning benefits stemming from (sub)-populations

An important well-reasoned scientific uncertainty may exist regarding aspects of the target population in the therapeutic indication and a PAES aimed at reducing such uncertainty may be required.

A wide range of potentially applicable sub-populations can be envisaged. These sub-populations may be defined by baseline demographic criteria or specific factors affecting disease prognosis or a drug's

- 267 pharmacokinetic/pharmacodynamic profile, e.g. pharmacogenomic markers affecting treatment
- response. Uncertainty may arise when the target population changes during the course of a
- 269 development programme (including where new biomarkers are identified), or due to a poor general
- 270 existing evidence base for authorised products, lack of patient numbers in a given sub-population or
- 271 unduly restrictive inclusion / exclusion criteria and the consequent reliance on extrapolation rather
- than clinical trial data to support a broader indication statement. Further study may be aimed at
- establishing whether an effect exists or whether an effect is modified in a given sub-population.
- Both randomised clinical trials and observational studies could be considered. The choice of design will
 need careful justification taking account of the precise question for which an answer is wanted, the
 available evidence and the uncertainty.

277 **4.2.** Uncertainties concerning benefits stemming from endpoints

278 The clinical relevance of the outcome measures in assessments of efficacy is essential to support a 279 positive risk benefit. Thus the use of intermediate endpoints that are not the final clinical outcomes at 280 the time of a MA application should only be the basis for a MA when agreed to be surrogates or to be 281 sufficiently informative by the scientific/regulatory community. However, there may be varying degrees 282 of uncertainty in the strength of relation between the intermediate endpoints and the final clinical 283 outcomes¹¹. PAES may therefore be required where supplementary data are needed to support the 284 established positive benefit risk balance. Examples include in the case of slowly progressive conditions 285 necessitating extended follow up, or where there are complex composite or intermediate or key 286 secondary endpoints that are important to establishing therapeutic efficacy and benefit-risk but cannot 287 be fully understood on the basis of the clinical trial data presented. In the case of a requirement for 288 long term follow up, observational designs may be necessary.

Another scenario is when additional complementary endpoints are identified for further assessment toprovide additional meaningful information.

4.3. Uncertainties in benefits regarding treatment over time

292 For treatments given on a continuous basis, the benefit risk balance assumes that benefits established 293 in the timeframe of pivotal studies persist. This assumption also applies for intermittent or repeated 294 treatments e.g. where neutralising antibodies, which may abolish treatment effects, develop over time. 295 Where uncertainty arises that a decreased response takes place over time, a PAES may be required. 296 Randomised clinical trials or observational studies could be used to address this uncertainty. The 297 design will be dependent on the degree of uncertainty taking account of the clinical pharmacology of 298 the medicinal product and the possibility of generating interpretable data. Randomised withdrawal 299 designs could be considered and justified taking into account the timeframe of the effects.

300 **4.4.** Uncertainties in benefits regarding co-treatment with other products

- At the time of its licensing, the use of a medicinal substance in anticipated combination with other treatments must be substantiated in terms of the safety and efficacy of the combination.
- PAES may be required for additional potential combinations (simultaneous or sequential) for which
 uncertainties remain based on the accumulated scientific knowledge or for which theoretical
- 305 uncertainties arise about a specific combination. The study design will be dependent on the

¹¹ Svensson S, Menkes DB, Lexchin J. Surrogate Outcomes in Clinical Trials: A Cautionary Tale. JAMA Intern Med. 2013; 173(8):611-612.

- uncertainty, in particular whether the aim is to establish efficacy of the new combination per se, or tocompare one potential combination with another, and the potential variability.
- 308 In the post-marketing setting, treatment paradigms may change over time resulting in treatment
- 309 combinations that are different to those that were originally studied for the marketing authorisation
- and PAES may therefore be required if an uncertainty over the use of a particular combination arises.
- 311 Observational designs may suffice if justified.

4.5. Uncertainties stemming from benefits of the medicinal product in real life use

- A PAES may be required where the benefits of a medicinal product demonstrated in clinical trials may be significantly affected by the use of the medicinal product under real-life conditions, e.g. where the efficacy demonstrated might not translate into a clinical benefit if the use of the drug provokes an effect on the behaviour of the recipients (risk compensation) or impacts negatively on other measures considered as important to prevent the disease. The results of such studies would allow determination of benefit in everyday medical practice and regulatory action if necessary.
- 320 A related scenario would be where the choice of control or background treatment is sub-optimal or 321 where a comparison to a particular standard-of-care, usually another medicinal product, is considered 322 necessary even though positive benefit-risk has been established relative to a particular clinical trial 323 control arm. The difficulties in defining standard of care are acknowledged including in the context of 324 appropriate comparator arms, local definitions and the idea of multiple studies defining a number of 325 'standards of care'. For medical products where a major advancement in care has taken place whilst 326 pivotal trials were ongoing and which also constituted a scenario where an active control would be 327 needed to further inform on the benefit-risk of the product, consideration may be given to requiring a 328 PAES with a relevant active comparator.
- Another scenario where the need for PAES might be considered is where a specific scientific rationale questions the external validity of the data across various populations and settings despite a high degree of internal validity of the results from pivotal clinical trials e.g. impact of co-morbidities and polypharmacy on effectiveness of a specific intervention in a geriatric population.
- 333 With recognition that the assessment of the risk of a medicinal product is most meaningful when 334 considered in light of its benefits, post marketing evaluation of medicinal products is increasingly based 335 on a benefit-risk management model encompassing evaluation of emerging evidence relevant to both 336 risks and benefits. For example, a formal evaluation of benefit is a feature of Periodic Safety Update 337 Reports. There may be circumstances where important uncertainties concerning a product's benefits 338 become relevant in the context of a post marketing benefit-risk evaluation particularly where 339 knowledge of the safety or benefit-risk profile has changed significantly since first authorisation. In 340 such circumstances the need for a PAES may be considered.
- A PAES may also be required in the case of vaccines where protective efficacy studies have not been feasible or to further determine the impact of microbial epidemiology and herd immunity on efficacy. PAES may also be used to estimate vaccine effectiveness using study designs different to those that supported the initial MA. The information gained from assessment of vaccine effectiveness may also be particularly important to add knowledge on the most appropriate mode of use of a vaccine (e.g. need for booster doses in at least some segments of the population to maintain adequate protection over time).

348 **4.6.** Change in the understanding of the disease or drug

Knowledge of the mechanism of action of a medicinal product develops throughout the product
lifecycle. Investigation of dose-response is a critical aspect of the drug development process. The initial
understanding of a positive benefit risk balance may be improved through further investigation of
posology. In the case where a change in the understanding of the standard of care for a disease or of

- 353 the pharmacology of the drug has put into question the criteria used to establish the efficacy of the
- product at the time of authorisation, a PAES may be imposed.

355 **4.7.** Change in scientific factors for previous efficacy evaluations

356 If new concrete and objective scientific factors (including regulatory or clinical guidance) emerge which 357 significantly bring into question the criteria used to establish the efficacy of a medicinal product at the 358 time the MA was granted, a requirement for a PAES may be considered.

5. Conduct of post-authorisation efficacy studies

360 Marketing authorisation holders and investigators should follow all relevant EU requirements and the 361 national legislation and guidance of those Member States where the study is being conducted.

362 **5.1. Study protocol and report**

363 Study protocols for PAES should take into account relevant scientific guidance applicable to the issue to 364 be investigated and the study design to be applied. Agreement on the protocol between sponsor and 365 regulator needs to be reached for an imposed PAES. Any amendment to the protocol should be 366 discussed and agreed in advance with the competent authorities.

The time frame for the final study report to be submitted and for any interim report should be agreed by the competent authorities at the time of study request or further refined at time of protocol finalisation. If the study is discontinued, a final report should be submitted and the reasons for stopping the study should be explained. The format of study report should follow the conventional

371 format as per ICH guidance.

372It is recommended that agreement be sought as early as possible between sponsor and regulator that373the proposed study design is adequate to address the uncertainty in question. Scientific advice on the

study protocol between sponsor and regulator with respect to the proposed study design is alsorecommended.

376 **5.2.** Data protection and transparency requirements

- The collection, use and trans-border transfer of personal data relating to patients enrolled in a PAES has to comply at all times with the requirements of the Data Protection Rules¹².
- To support transparency on PAES that are outside the scope of Directive 2001/20/EC and which are
- conducted pursuant to a condition of the MA or voluntarily, study information (including for studies
- 381 conducted outside the EU) should be made available in the EU electronic register of post-authorisation

¹² Data Protection Rules includes Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of individuals with regard to the processing of personal data and on the free movement of such data, the national laws, the laws of the European Union Member States transposing this Directive, the Opinions and guidance developed by Article 29 Working Party and the guidance developed by the competent data protection authorities of the European Union Member States.

studies (EU PAS Register) maintained by the Agency¹³. This recommendation is without prejudice to
 national transparency requirements.

384 **5.3.** Quality control and quality assurance

The MAH should ensure the fulfilment of its pharmacovigilance obligations in relation to the study and that this can be audited, inspected and verified. For PAES imposed as an obligation, the MAH should ensure that the analytical dataset and statistical programmes used for generating the data included in the final study report are kept in electronic format and are available for auditing and inspection and adhere to CONSORT or STROBE reporting guidelines. This provision should also be applied to PAES voluntarily initiated, managed or financed by the MAH.

391 6. Conclusions

392 To impose a PAES, there should be a well-reasoned scientific uncertainty to be addressed post-

393 authorisation to enhance understanding of therapeutic efficacy and benefit-risk with implications for

better use of the medicine in clinical practice. In addition, it should be ethical and feasible for a study

to be designed with a suitable methodology and conducted in a manner to give reliable and

interpretable answers to the question at hand. Agreement should be sought as early as possible

397 between the regulator and sponsor on the appropriateness of a study design to achieve this and to this

398 end, scientific advice is recommended.

399

¹³ http://www.encepp.eu/encepp_studies/indexRegister.shtml

400 Annex 1: Relevant guidance

- 401 The extent of population exposure to assess clinical safety for drugs (ICH E1A).
- 402 Dose response information to support drug registration (ICH E4).
- 403 General considerations for clinical trials (ICH E8).
- 404 Statistical principles for clinical trials (ICH E9).
- 405 Choice of control group in clinical trials (ICH E10).
- 406 Clinical investigation of medicinal products in the paediatric population (ICH E11).
- 407 Accelerated evaluation of products indicated for serious diseases (Life Threatening or Heavily
 408 Disabling Diseases) (CPMP/495/96 rev. 1).
- 409 Points to consider on applications with 1.) Meta-analyses and 2.) One pivotal study
 410 (CPMP/2330/99).
- 411 Points to consider on switching between Superiority and Non-inferiority (CPMP/EWP/482/99)
- 412 Reflection paper on methodological issues in confirmatory clinical trials with flexible design and
 413 analysis plans (CHMP/2459/02).
- 414 Guideline on Data Monitoring Committees (CHMP/EWP/5872/03 Corr)
- 415 Clinical trials in small populations (CHMP/EWP/83561/05)
- 416 Qualification of novel methodologies for drug development: guidance to applicants
 417 (EMEA/CHMP/SAWP/72894/2008)
- 418 ENCePP Guide on methodological standards in pharmacoepidemiology
- 419 International Society for Pharmacoepidemiology (ISPE) guidelines for good pharmacoepidemiology
 420 practices