

10 June 2025
EMA/188370/2025 Rev 1*
Committee for Medicinal Products for Human Use (CHMP)

Emtricitabine/Tenofovir Disoproxil film-coated tablets 200mg/245 mg product-specific bioequivalence guidance

Draft agreed by Pharmacokinetics Working Party (PKWP)	October 2013
Adoption by CHMP for release for consultation	24 October 2013
Start of public consultation	15 November 2013
End of consultation (deadline for comments)	15 February 2014
Agreed by Pharmacokinetics Working Party	22 October 2014
Adopted by CHMP	20 November 2014
Date for coming into effect	1 June 2015
Draft revision agreed by Methodology Working Party (MWP)	3 April 2025
Adopted by CHMP	10 June 2025
Date of coming into effect	1 January 2026

^{*} This revision relates to the addition of the salt form

Keywords Bioequivalence, generics, emtricitabine, tenofovir disoproxil	
--	--

Emtricitabine/Tenofovir Disoproxil film-coated tablets 200mg/245 mg product-specific bioequivalence guidance

Disclaimer:

This guidance should not be understood as being legally enforceable and is without prejudice to the need to ensure that the data submitted in support of a marketing authorisation application complies with the appropriate scientific, regulatory and legal requirements.

Requirements for bioequivalence demonstration (MWP)*

BCS Classification**	BCS Class: I Neither of the two Background: Emtricitabine is considered a high solubility and permeability compound, tenofovir disoproxil fumarate is considered a high solubility and low permeability compound.
Bioequivalence study design in case a BCS biowaiver is not feasible or applied	single dose cross-over
	healthy volunteers ☐ fasting ☐ fed ☐ both ☐ either fasting or fed
	Strength: Emtricitabine 200 mg and tenofovir disoproxil 245 mg. Background: 200 / 245 mg is the only combination strength.

	Number of studies: One single dose study.	
Analyte	□ parent □ metabolite □ both Background: For emtricitabine the parent, for tenofovir disoproxil the metabolite (as tenofovir).	
	□ plasma/serum □ blood □ urine	
	Enantioselective analytical method: \square yes \boxtimes no	
Bioequivalence assessment	Main pharmacokinetic variables: AUC _{0-t} and C _{max}	
	90% confidence interval: 80.00 – 125.00%	

^{*} As intra-subject variability of the reference product has not been reviewed to elaborate this product-specific bioequivalence guideline, it is not possible to recommend at this stage the use of a replicate design to demonstrate high intra-subject variability and widen the acceptance range of C_{max} . If high intra-individual variability ($CV_{intra} > 30$ %) is expected, the applicants might follow respective guideline recommendations.

^{**} This tentative BCS classification of the drug substance serves to define whether *in vivo* studies seem to be mandatory (BCS class II and IV) or, on the contrary, (BCS Class I and III) the Applicant may choose between two options: *in vivo* approach or *in vitro* approach based on a BCS biowaiver. In this latter case, the BCS classification of the drug substance should be confirmed by the Applicant at the time of submission based on available data (solubility experiments, literature, etc.). However, a BCS-based biowaiver might not be feasible due to product specific characteristics despite the drug substance being BCS class I or III (e.g. *in vitro* dissolution being less than 85 % within 15 min (BCS class III) or 30 min (BCS class I) either for test or reference, or unacceptable differences in the excipient composition).