Pegylated liposomal doxorubicin hydrochloride concentrate for solution 2 mg/ml product-specific bioequivalence guidance

Draft Agreed by Pharmacokinetics Working Party (PKWP)	April 2018
Adopted by CHMP for release for consultation | 31 May 2018
Start of public consultation | 5 July 2018
End of consultation (deadline for comments) | 30 September 2018
Agreed by Pharmacokinetics Working Party (PKWP) | October 2018
Adopted by CHMP | 13 December 2018
Date of coming into effect | 1 July 2019

Keywords

| Bioequivalence, generics, pegylated liposomal doxorubicin hydrochloride |

© European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged.
Pegylated liposomal doxorubicin hydrochloride concentrate for solution 2 mg/ml product-specific bioequivalence guidance

Disclaimer:
This guidance should not be understood as being legally enforceable and is without prejudice to the need to ensure that the data submitted in support of a marketing authorisation application complies with the appropriate scientific, regulatory and legal requirements.

Requirements for bioequivalence demonstration (PKWP)*

<table>
<thead>
<tr>
<th>Bioequivalence study design</th>
<th>Single dose study: Any dose (but no dose adjustments for toxicities during the study) in e.g. stable ovarian/breast cancer patients.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Background: Dose proportional pharmacokinetics.</td>
</tr>
<tr>
<td></td>
<td>cross-over</td>
</tr>
</tbody>
</table>
| | **Other critical aspects:** The single dose study may need to be conducted with standardized light meals
 | rather than in the fasting state due to patient’s needs. |
| Analyte | □ total drug □ encapsulated drug □ unencapsulated drug □ doxorubicinol (metabolite) |
| | **Other critical aspects:** Unencapsulated drug concentrations must be achieved by means of appropriate |
bioanalytical methods rather than by subtracting encapsulated from total drug.

<table>
<thead>
<tr>
<th>plasma/serum</th>
<th>blood</th>
<th>urine</th>
</tr>
</thead>
</table>

Enantioselective analytical method:
- yes
- no

Bioequivalence assessment

Main pharmacokinetic variables: $AUC_{0-\tau}$, $AUC_{0-\infty}$, C_{max}, partial AUCs (e.g. AUC_{0-48h} and $AUC_{48-\text{tlast}}$)

Background/justification: $AUC_{0-\tau}$, $AUC_{0-\infty}$ and C_{max} for encapsulated and unencapsulated drug. Partial AUCs for the encapsulated drug to ensure profile comparability.

90% confidence interval acceptance limits: 80.00 – 125.00%

Additional information can be added if considered necessary

To be noted: Proving equivalent efficacy and safety of a liposomal formulation developed to be similar to an innovator product is considered a step-wise approach which in addition to the pharmacokinetic study also takes account of quality and non-clinical comparison, where appropriate.

* As intra-subject variability of the reference product has not been reviewed to elaborate this product-specific bioequivalence guideline, it is not possible to recommend at this stage the use of a replicate design to demonstrate high intra-subject variability and widen the acceptance range of C_{max}, C_{τ}, ss and partial AUC. If high intra-individual variability ($CV_{\text{intra}} > 30\%$) is expected, the applicants might follow respective guideline recommendations.