

1 15 November 2018
2 EMA/CHMP/SWP/545588/2017
3 Committee for Medicinal Products for Human Use (CHMP)

4 **Reflection paper on the qualification of non-genotoxic
5 impurities**

6 Draft

Draft agreed by Safety Working Party	October 2018
Adopted by CHMP for release for consultation	15 November 2018
Start of public consultation	23 November 2018
End of consultation (deadline for comments)	30 September 2019

7 Comments should be provided using this [template](#). The completed comments form should be sent to
SWP-H@ema.europa.eu

8 Keywords	<i>Non-genotoxic impurities, pharmacology, toxicology, threshold of toxicological concern, read across, animal testing, in vitro testing, 3R's.</i>
------------	---

9

10 **Reflection paper on the qualification of non-genotoxic
11 impurities**

12 **Table of contents**

13 1. Introduction	3
14 2. Scope.....	4
15 3. Key considerations	4
16 Integrated risk assessment	4
17 Dose considerations	5
18 Structure activity relationships	6
19 Use of pharmacological and toxicological databases	7
20 In vitro approaches	7
21 Qualification of the NGI at the specified level.....	7
22 Reduction of animal use.....	7
23 4. Conclusion	8
24 5. References	8

25

26 1. Introduction

27 The core ICH quality guidelines addressing qualification of NGI are ICH Q3A and Q3B. These guidelines
28 state that qualification is the process of acquiring and evaluating data that establishes the biological
29 safety of an individual impurity or a given impurity profile at the level(s) specified. The applicant
30 should provide a rationale for establishing impurity acceptance criteria that includes safety
31 considerations. For DNA reactive (mutagenic) impurities, elemental impurities and residual solvents
32 specific guidance is provided (ICH M7, Q3D and Q3C, respectively). However, for non-genotoxic
33 impurities (NGI) little guidance is available on how these impurities should be qualified.

34 The level of any impurity present in a new drug substance that has been adequately tested in safety
35 and/or clinical studies would be considered qualified. This is the situation for most impurities that have
36 been present in the drug substance batches throughout development. The problem with this approach
37 is that qualification is *establishing biological safety* of a drug substance or drug product with a given
38 impurity profile, which is not the same as characterising the safety profile of an impurity. Obviously,
39 when toxicity is observed, it is usually not possible to discriminate between toxicity attributable to the
40 active pharmaceutical ingredient (API) and toxicity attributable to the impurities present in the drug
41 substance batch. The safety testing only establishes that a drug substance batch with a certain
42 impurity profile has a specific safety profile. This limits the possibilities of extrapolating the safety of a
43 drug substance or product with a given impurity profile to a drug substance or product with the same
44 API but with an increased level of an impurity, when no impurity-specific data are available. Also when
45 new impurities arise due to manufacturing changes or novel degradants are discovered at a later stage
46 of development, and these impurities cannot be controlled at a level below the qualification threshold,
47 a lack of impurity-specific safety data complicates the qualification process.

48 According to the ICH Q3A/B guidelines, additional safety testing should be considered in such cases.
49 These guidelines do not explain in detail how NGI should be qualified or which criteria should be
50 applied. The guidelines state that factors such as patient population, daily dose, and route and
51 duration of drug administration may be considered in deciding which studies can be regarded as
52 appropriate. The guidelines also state that safety assessment studies to qualify an impurity should
53 compare the new drug substance/drug product containing a representative amount of the new impurity
54 with previously qualified material. Furthermore, the guidelines express that studies using isolated
55 impurities may sometimes be appropriate. Finally, the ICH Q3A/B guidelines describe in a note that if
56 general toxicity studies are desirable, study duration should be based on available relevant information
57 and performed in the species most likely to maximise the potential to detect the toxicity of an
58 impurity. On a case-by-case basis, single-dose studies may be appropriate, especially for single-dose
59 drugs. In general, a minimum duration of 14 days and a maximum duration of 90 days would be
60 considered appropriate.

61 Although this guidance seems straightforward, concerns have been expressed from a scientific and
62 3R's perspective. When using a study design comparing qualified and non-qualified material, impurities
63 exceeding the qualification threshold in drug substances/products may in fact be dosed in these animal
64 studies at such low levels, that it is unlikely that a safety signal would be detected in such studies.
65 Especially when the API dose is low. Furthermore, the background toxicity of the API itself may mask
66 any new toxicity caused by the impurity. In those cases, the scientific rationale for the design of the
67 qualification study is compromised, and from a 3R's perspective no animal studies should be performed
68 if these studies are unlikely to provide relevant information.

69 In the literature, novel non-animal strategies to evaluate the toxicity of compounds have been
70 described (e.g. Berggren et al. 2017; Blaabuwer et al. 2016). A recent overview of these developments
71 in the EU has been provided by Zuang et al. (2017). In this reflection paper, there is a discussion on

72 how a more impurity-specific evaluation could be followed making use of these novel approaches. Such
73 an approach may provide more useful information than the generic approach of testing a batch with
74 the specified level of impurity in a short/medium term toxicology study in animals.

75 The current document does not contain explicit guidance on which non-clinical approaches are most
76 suitable. Rather it tries to establish a framework to facilitate future discussions among stakeholders.
77 The thresholds above which qualification is required are defined in the ICH Q3A/B guidelines. It is
78 recommended to consider the approaches discussed in this reflection paper when qualification is
79 required and data from the regular (non-)clinical development with the API batches is not considered
80 sufficient. Also when the level of an impurity is below the qualification threshold defined in ICH Q3A/B
81 guidelines, but a toxicological concern may still exist, the approaches discussed in this reflection paper
82 may be considered. This could be the case when high dose pharmaceuticals are concerned, or when a
83 concern exists that the impurity involved is unusually potent, producing toxic or pharmacological
84 effects at a level equal to or below that of the identification threshold.

85 **2. Scope**

86 This reflection paper considers the safety evaluation of NGI in chemically synthesised pharmaceuticals.
87 This reflection paper will not address the qualification of solvents and elemental impurities since
88 specific guidance is provided in ICH Q3C and ICH Q3D, respectively.
89 This reflection paper does not consider the qualification of impurities in biological medicines,
90 oligonucleotides and synthetic peptides. However, in some instances the use of the principles discussed
91 in this reflection paper could be considered to the appropriate extent.

92 **3. Key considerations**

93 ***Integrated risk assessment***

94 To assess whether a NGI has acceptable safety at the proposed specified level a case-by-case
95 approach should be used. The integrated risk assessment (IRA) may encompass several or all of the
96 approaches discussed in more detail in the subsequent sections, but may also be limited to a single or
97 only few steps. In this reflection paper no specific recommendations are made which *in silico* tools or *in*
98 *vitro* methods to use. However, regulatory acceptance of any tool or assay should be supported with
99 data showing the method is suitable for its intended purpose, as explained in following sections.

100 A reasonable first step could be to assess whether the exposure to the NGI would remain below a
101 threshold of toxicological concern (TTC). When this is the case and it can also be corroborated that no
102 relevant pharmacological activity would occur, the evaluation could end.

103 When a risk cannot be excluded on the basis of negligible exposure, further information may be
104 retrieved from toxicological databases, (Quantitative) Structure Activity Relationship ((Q)SAR)
105 approaches and read-across (RAX) approaches. When sufficient relevant information is available on
106 comparable structures indicating low risk, the evaluation could be concluded.

107 It could also be possible that insufficient information is available or that specific concerns are
108 identified. In that case, risk-driven choices for appropriate *in vitro* testing should be made to fill data
109 gaps and inform on potential risks and safe exposure levels. The interpretation of *in vitro* data would
110 depend on comparison with data obtained for structurally similar compounds or compounds having a
111 similar activity profile *in vitro*. The ability to link the data would to a large extent depend on the
112 granularity of the databases and knowledge on the predictivity of the data.

113 Further integration of *in vitro* and *in silico* data could indicate a potential impact of the NGI on specific
114 adverse outcome pathways (AOPs). AOPs are currently in development and once sufficient data are
115 available it may be possible to assess a compound based on a signature of data obtained *in vitro*.

116 Additional analyses could encompass quantitative *in vitro*-*in vivo* extrapolation (QIVIVE) and PBPK
117 modelling in order to extrapolate the data obtained *in vitro* to the human situation.

118 **Dose considerations**

119 *Daily exposure levels*

120 In the ICH Q3C and Q3D guidelines, acceptance of a specified level of an impurity is regulated by
121 setting a compound specific health based level defined as a permitted daily exposure (PDE) associated
122 with an acceptable risk level. The older ICH Q3A and Q3B guidelines still regulate acceptability on a
123 concentration based approach resulting in a variable patient exposure to impurities depending on the
124 dose of the API. As is the case for elemental impurities and residual solvents, any conclusion on the
125 safety of a NGI at a specified level can only be based on a safety evaluation considering the daily
126 intake of the impurity. For this the maximal daily dose of the medicinal product should be taken into
127 account to calculate the daily intake of the NGI.

128 To comply with pharmaceutical quality, specified levels for impurities will be low, usually close to or
129 below 1%. Consequently, exposure to these impurities will be low. Therefore, the focus of a safety
130 evaluation of any new impurity or impurity with an increased specified level would be to identify
131 impurities with toxic properties, even at these low levels of exposures. Ultimately, the goal is to
132 determine whether the NGI can be considered safe at the specified level. Many NGI will have a low or
133 moderate toxicity, which would not be of concern at the anticipated low exposure levels.

134 *Application of TTC values*

135 A well-known principle is the TTC. Making use of TTC values would provide a sound basis to conclude
136 on the absence of risk for those NGI for which it has been calculated that the daily intake is below the
137 appropriate TTC. Oral TTC values have been delineated for NGI based on Cramer-classification (Munro
138 et al. 1996; Tluczkiewicz et al. 2011). For pharmaceuticals administered through different routes,
139 different TTC values may be appropriate. When products administered by inhalation are concerned,
140 local toxicity effects may be of greater concern than systemic effects and lower levels may apply
141 (Schüürmann et al. 2016). On the other hand, dermally applied pharmaceuticals may have a low
142 systemic exposure and it may be feasible to refine oral derived TTC values to adjust for this lower
143 exposure scenario (Williams et al. 2016). In the case of parenterally used pharmaceuticals, oral
144 bioavailability data could be used to transform oral to parenteral TTC values, but if no bioavailability
145 data are known, a standard conversion factor of ten could be used.

146 Where sufficient data are available, category-specific TTC values may have been derived and can be
147 used (Kroes et al. 2004).

148 *Duration of exposure*

149 Another consideration related to dose is the duration of exposure. It has been argued that modified
150 Haber's rule could be used to justify that exposures for a short duration could be higher than for life-
151 long exposure. Haber's rule is appropriate for extrapolation to different durations of exposure for
152 conditions where the dose rate is not the determining factor and only total dose dictates the biological
153 effect. (Gaylor, 2000). Where the dose rate does matter, modified Haber's rule has been proposed to
154 justify that exposures for a short duration could be higher than for life-long exposure (ten Berge et al
155 1986; Gaylor, 2000; Harvey et al., 2017). However, the dose rate-time relationship in modified
156 Haber's rule is based on data from ten Berge and co-workers (ten Berge et al, 1986) who studied

157 noxious gasses and exposure durations of less than 2 hours. Whether the use of modified Haber's rule
158 for the extrapolation of safety of NGI from life-time to subchronic exposure durations is appropriate
159 remains to be established. Therefore, the use of modified Haber's rule for qualification of non-
160 genotoxic impurities warrants further discussion.

161 **Structure activity relationships**

162 When a risk cannot be excluded on the basis of its anticipated daily exposure and a TTC approach,
163 (Q)SAR approaches may be used to evaluate both the pharmacological and toxicological properties of
164 the NGI. To successfully apply (Q)SAR, the tools used should be shown to be suitable for their intended
165 purpose. This means that it should be clear which defined endpoint is predicted; the algorithm used
166 should be unambiguous; the domain of applicability should be defined; appropriate measures of
167 goodness-of-fit, robustness and predictivity should be provided; and - if possible, consideration should
168 be given to a mechanistic interpretation of the model used. These are the principles reflected in the
169 OECD Principles for the validation, for regulatory purposes, of (quantitative) structure-activity
170 relationship models (OECD 2004). Detailed guidance on how to apply (Q)SAR has been published by
171 ECHA for the implementation of REACH (ECHA 2008). No such detailed guidance exists for the
172 pharmaceuticals. However, when required, the ECHA guidance may be consulted. Currently, no
173 established procedures exist for investigating the toxicity of compounds with *in silico* methods. Which
174 endpoints to investigate and which specific method to use may vary and efforts are being made to
175 develop more standardised protocols (e.g. Myatt et al 2018). The endpoints to be considered in *in silico*
176 approaches for the qualification of NGI can be affected by several factors, such as intended use and
177 route of administration of the pharmaceutical and existing knowledge on comparable compounds.
178 Usually endpoints will be limited to those associated with organ-specific toxicity. For products
179 administered topically or by inhalation, sensitising potential should be considered.

180 NGI may either have a structure that is related to the API, only having deviating substructures, or
181 have a structure not resembling the API. For NGI only having a deviating substructure, the goal would
182 not be to predict the similarity in toxicity profile with the API. To the extent that the profile would be
183 similar, the NGI, being present at such low levels, would not contribute significantly to the overall
184 safety profile of the drug substance. Instead it would be relevant to look at the differences and
185 determine whether any substructures that have not been identified in the API alert for specific types of
186 toxicity.

187 For NGI bearing a structure not related to the API, RAX approaches may provide relevant safety
188 information when sufficient compounds with similar structure as the NGI exist for which toxicological
189 data are available.

190 From a pharmacological perspective it may be considered that closely related impurities may have
191 enough similarities to the API to show activity at the same primary target. Provided that the
192 pharmacological action at this target is similar, this would not be of concern, since the relative
193 contribution of the NGI to the total pharmacological activity would be negligible. However,
194 pharmacological activity could be a concern when for example an agonist becomes less efficacious in
195 the presence of an antagonistic impurity.¹ To evaluate these possibilities medicinal chemistry expertise
196 may be required.

¹ This could be a theoretical concern only. Examples for this situation are searched for. Depending on the outcome it will be decided whether this paragraph will be maintained.

197 **Use of pharmacological and toxicological databases**

198 Historical toxicological and pharmacological data are increasingly being collected in proprietary and
199 public databases, including both *in vivo* and *in vitro* data. Making use of these data will permit the
200 derivation of more specific TTC values. Also such databases are the starting point for the application of
201 (Q)SAR and RAX approaches. When using data from these databases it should be considered what the
202 applicability domain of the database is to qualify the use of the database for the safety evaluation of
203 NGI. An example of a database containing information of pharmaceuticals is the IMI eTox database.
204 Other databases may also be useful, provided that the applicability domain fits with the structure of
205 the impurity for which a safety evaluation is being performed.

206 ***In vitro* approaches**

207 When (Q)SAR predictions raise concerns, further qualification data may be needed. Targeted use of *in*
208 *vitro* methodologies (2D and 3D cell systems and microphysiological systems) with careful selection of
209 endpoints may be considered. No single assay would provide a definitive answer to the question
210 whether an impurity can be considered safe at the specified level. Scientific efforts are ongoing to
211 develop batteries and strategies using *in vitro* approaches. When applying an *in vitro* approach to
212 evaluate the safety of a NGI, assays should be carefully selected based on concerns identified from
213 SAR or RAX analyses and their applicability justified. Targeted *in vitro* models might not be
214 validated/qualified for their use for regulatory purposes. This should not prevent the use of non-
215 standard *in vitro* methods. To facilitate an assessment of the quality of data produced and their
216 potential utility in regulatory applications, supportive information should be provided, showing that the
217 method is suitable for its intended purpose. Useful guidance to this end can be found in the Guideline
218 on the principles of regulatory acceptance of 3Rs (replacement, reduction, refinement) testing
219 approaches (EMA/CHMP/CVMP/JEG-3Rs/450091/2012) and the OECD Guidance document for
220 describing non-guideline *in vitro* test methods (OECD 2014).

221 It is expected that more valuable information would be obtained from assays in which the purified NGI
222 is tested. Adding spiked samples of the API to test systems would complicate the interpretation of the
223 read-outs, as the API itself may also have an effect in the model employed.

224 **Qualification of the NGI at the specified level**

225 For NGI qualification there is no strict-requirement to determine a NOAEL for the NGI in order to draw
226 a conclusion on the safety of the NGI at the specified level. The only requirement is to determine that
227 at the specified level no adverse effects are expected. This alleviates the need to extend the safety
228 evaluation to a very detailed level in many cases.

229 To reach a conclusion a weight-of-evidence (WoE) approach may be applied. This approach should
230 describe both the evidence pointing to a risk and the evidence showing the absence of risk. In addition
231 the uncertainty of the evidence should be made clear. Lastly, the balance between potential risk and
232 absence of risk should be discussed, before a conclusion is drawn.

233 **Reduction of animal use**

234 Following the 3R strategies described in this reflection paper will in many cases obviate the
235 requirement to perform a dedicated animal study. In fact, by generating impurity-specific safety data
236 and integrating this with existent knowledge, it is likely that these approaches will provide a better
237 understanding of the safety of the NGI than by following the conventional approach of testing an active
238 substance batch containing the NGI in an animal study.

239 **4. Conclusion**

240 When impurity-specific safety information is required, alternative strategies to gather this information
241 may be followed, including the use of TTC, (Q)SAR, RAX and *in vitro* approaches. This information can
242 be used in an integrated risk assessment. A WoE approach including an assessment of the level of
243 uncertainty may be used to decide whether the NGI can be considered safe at the specified level.

244 **5. References**

- 245 • Berggren, E., White, A., Ouedraogo, G., Paini, A., Richarz, A.-N., Bois, F. Y., Exner, T., Leite, S.,
246 Grunsven, L. A. van, Worth, A., & Mahony, C. (2017). Ab initio chemical safety assessment: A
247 workflow based on exposure considerations and non-animal methods. *Computational Toxicology*, 4,
248 31-44.
- 249 • Blaauboer BJ, Boobis AR, Bradford B, Cockburn A, Constable A, Daneshian M, Edwards G, Garthoff
250 JA, Jeffery B, Krul C, Schuermans J. Considering new methodologies in strategies for safety
251 assessment of foods and food ingredients. *Food Chem Toxicol*. 2016 May;91:19-35.
- 252 • ECHA 2008. ECHA Guidance on information requirements and chemical safety assessment chapter
253 R.6 QSARs and grouping of chemicals.
- 254 • EMA 2016. Guideline on the principles of regulatory acceptance of 3R (replacement, reduction,
255 refinement) testing approaches (EMA/CHMP/CVMP/JEG-3Rs/450091/2012).
- 256 • Gaylor D.W. The use of Haber's Law in standard setting and risk assessment. *Toxicology* 149,
257 2000, pp. 17-19.
- 258 • Harvey J, Fleetwood A, Ogilvie R, Teasdale A, Wilcox P, Spanhaak S. Management of organic
259 impurities in small molecule medicinal products: Deriving safe limits for use in early development.
260 *Regul Toxicol Pharmacol*. 2017 Mar;84:116-123.
- 261 • ICH M7 (R1) Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to
262 limit potential carcinogenic risk
- 263 • ICH Q3A(R2) Impurities in New Drug Substances
- 264 • ICH Q3B(R2) Impurities in New Drug Products
- 265 • ICH Q3C(R5) Impurities: Guideline for Residual Solvents
- 266 • ICH Q3D Guideline for Elemental Impurities
- 267 • Kroes, R., Renwick, A., Cheesman, M., Kleiner, J., Mangelsdorf, I., Piersma, A., Schilter, B.,
268 Schlatter, J., van Schothorst, F., Vos, J.G., Wurtzen, G., 2004. Structured-based thresholds of
269 toxicological concern (TTC): Guidance for application to substances present at low levels in the
270 diet. *Food Chem. Toxicol.* 42, 65–83.
- 271 • Munro, I.C., Ford, R.A., Kennepohl, E., Sprenger, J.G., 1996. Correlation of structural class with
272 no-observed-effect levels: a proposal for establishing a threshold of toxicological concern. *Food*
273 *Chem. Toxicol.* 34, 829–867.
- 274 • Myatt GJ, Ahlberg E, Akahori Y, Allen D, Amberg A, Anger LT, Aptula A, Auerbach S, Beilke L,
275 Bellion P, Benigni R, Bercu J, Booth ED, Bower D, Brigo A, Burden N, Cammerer Z, Cronin MTD,
276 Cross KP, Custer L, Dettwiler M, Dobo K, Ford KA, Fortin MC, Gad-McDonald SE, Gellatly N, Gervais
277 V, Glover KP, Glowienke S, Van Gompel J, Gutsell S, Hardy B, Harvey JS, Hillegass J, Honma M,
278 Hsieh JH, Hsu CW, Hughes K, Johnson C, Jolly R, Jones D, Kemper R, Kenyon MO, Kim MT, Kruhlak

279 NL, Kulkarni SA, Kümmerer K, Leavitt P, Majer B, Masten S, Miller S, Moser J, Mumtaz M, Muster
280 W, Neilson L, Oprea TI, Patlewicz G, Paulino A, Lo Piparo E, Powley M, Quigley DP, Reddy MV,
281 Richarz AN, Ruiz P, Schilter B, Serafimova R, Simpson W, Stavitskaya L, Stidl R, Suarez-Rodriguez
282 D, Szabo DT, Teasdale A, Trejo-Martin A, Valentin JP, Vuorinen A, Wall BA, Watts P, White AT,
283 Wichard J, Witt KL, Woolley A, Woolley D, Zwickl C, Hasselgren C.. In silico toxicology protocols.
284 *Regul. Toxicol. Pharmacol.* 2018 Jul; 96:1-17

285 • OECD 2004. OECD principles for the validation, for regulatory purposes, of (quantitative) structure-
286 activity relationship models. <http://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf>.

287 • OECD 2014. Guidance document for describing non-guideline in vitro test methods.
288 <http://www.oecd.org/publications/guidance-document-for-describing-non-guideline-in-vitro-test-methods-9789264274730-en.htm>

290 • Schüürmann G., Ebert R.-U., Tluczkiewicz I., Escher S.E., Kühne R. Inhalation threshold of
291 toxicological concern (TTC) — Structural alerts discriminate high from low repeated-dose inhalation
292 toxicity. *Environment International* 88 (2016) 123–132.

293 • ten Berge W.F., A. Zwart, L.M. Appelman. Concentration—time mortality response relationship of
294 irritant and systemically acting vapours and gases. *Journal of Hazardous Materials*, Volume 13,
295 Issue 3, 1986, pp. 301-309.

296 • Tluczkiewicz, I., Buist, H.E., Martin, M.T., Mangelsdorf, I., Escher, S.E., 2011. Improvement of the
297 Cramer classification for oral exposure using the database TTC Repdose — a strategy description.
298 *Regul. Toxicol. Pharmacol.* 61, 340–350.

299 • Williams F.M., H. Rothe, G. Barrett, A. Chiodini, J. Whyte, M.T.D. Cronin, N.A. Monteiro-Riviere, J.
300 Plautz, C. Roper, J. Westerhout, Ch. Yang, R. Guy, Assessing the safety of cosmetic chemicals:
301 consideration of a flux decision tree to predict dermally delivered systemic dose for comparison
302 with oral TTC (Threshold of Toxicological Concern), *Reg. Toxicol. Pharmacol.* 76 (2016) 174–186.

303 • Zuang V., Viegas Barroso J.F., Belz S., Berggren E., Bernasconi C., et al. EURL ECVAM status
304 report on the development, validation and regulatory acceptance of alternative methods and
305 approaches (2017). Publications Office of the European Union