

27 January 2022 EMA/102340/2022 Committee for Medicinal Products for Human Use (CHMP)

CHMP extension of indication variation assessment report

Invented name: Jardiance

International non-proprietary name: empagliflozin

Procedure No. EMEA/H/C/002677/II/0060

Note

Assessment report as adopted by the CHMP with all information of a commercially confidential nature deleted.

Table of contents

1. Background information on the procedure	. 8
1.1. Type II variation	8
1.2. Steps taken for the assessment of the product	9
2. Scientific discussion	9
2.1. Introduction	
2.1.1. Problem statement	
2.1.2. About the product	
2.1.3. The development programme/compliance with CHMP guidance/scientific advice	
2.1.4. General comments on compliance with GLP, GCP	
2.2. Non-clinical aspects	
2.2.1. Introduction	
2.2.2. Pharmacology	
2.2.3. Pharmacokinetics	
2.2.4. Toxicology	19
2.2.5. Ecotoxicity/environmental risk assessment	
2.2.6. Discussion on non-clinical aspects	
2.2.7. Conclusion on the non-clinical aspects	22
2.3. Clinical aspects	
2.3.1. Introduction	22
2.3.2. Pharmacokinetics	23
2.3.3. Pharmacodynamics	25
2.3.4. Discussion on clinical pharmacology	26
2.4. Clinical efficacy	26
2.4.1. Dose response study(ies)	26
2.4.2. Main study(ies)	26
2.4.3. Discussion on clinical efficacy	75
2.4.4. Conclusions on the clinical efficacy	79
2.5. Clinical safety	80
Patient exposure	
Vital sign, physical findings and other observation related to safety	97
Safety in special populations	98
Safety related to drug-drug interactions and other interactions 1	.03
Discontinuation due to adverse events 1	.04
Post marketing experience 1	.05
2.5.1. Discussion on clinical safety 1	.06
2.5.2. Conclusions on clinical safety 1	
2.5.3. PSUR cycle 1	
2.6. Risk management plan 1	
2.6.1. Overall conclusion on the RMP 1	
2.7. Update of the Product information 1	
2.7.1. User consultation	.09
3. Benefit-Risk Balance 1	10
3.1. Therapeutic Context	.10

3.1.1. Disease or condition	110
3.1.2. Available therapies and unmet medical need	110
3.1.3. Main clinical studies	111
3.2. Favourable effects	112
3.3. Uncertainties and limitations about favourable effects	
3.4. Unfavourable effects	114
3.5. Uncertainties and limitations about unfavourable effects	116
3.6. Effects Table	117
3.7. Benefit-risk assessment and discussion	118
3.7.1. Importance of favourable and unfavourable effects	118
3.7.2. Balance of benefits and risks	119
3.8. Conclusions	119
4. Recommendations	120

List of abbreviations

6MWT	6-minute walk test
ACEi	Angiotensin converting enzyme inhibitor
ADR	Adverse drug reaction
AE	Adverse event
AELD	Adverse event leading to treatment discontinuation
AESI	Adverse event of special interest
AF	Atrial fibrillation or atrial flutter
ALT	Alanine aminotransferase
ANCOVA	Analysis of covariance
ARB	Angiotensin receptor blocker
ARNi	Angiotensin receptor neprilysin inhibitor
AST	Aspartate aminotransferase
BI	Boehringer Ingelheim
BIcMQ	BI-customised MedDRA query (used where SMQ is not available)
BMI	Body mass index
CEC	Clinical event committee
CHQ-SAS	Chronic heart failure questionnaire self-administered standardised format
CI	Confidence interval
CKD-EPI	Chronic kidney disease epidemiology collaboration equation
СМН	Cochran-Mantel-Haenszel
CMR	Cardiac magnetic resonance
СО	Clinical overview
CPET	Cardiopulmonary exercise test
CRF	Case report form
CRT (-D/P)	Cardiac resynchronisation therapy (-defibrillator/pacemaker)
CTD	Common Technical Document
СТР	Clinical trial protocol
CTR	Clinical trial report
CV	Cardiovascular
DBP	Diastolic blood pressure
DILI	Drug-induced liver injury
DMC	Data monitoring committee

ECG	Electrocardiogram
EF	Ejection fraction
eGFR	Estimated glomerular filtration rate
eGFR (CKD-EPI) _{cr}	Glomerular filtration rate estimated by the chronic kidney disease epidemiology collaboration formula with serum creatinine measurement
eGFR (MDRD)	Glomerular filtration rate estimated by the modification of diet in renal disease formula
EMPA-VISION	A mechanistic trial of empagliflozin on cardiac physiology and metabolism in patients with chronic heart failure; trial 1245.148
EMPERIAL	Trials of empagliflozin on exercise ability and heart failure symptoms in patients with chronic heart failure; EMPERIAL-preserved: trial 1245.167; EMPERIAL-reduced: trial 1245.168
EMPEROR	Outcome trials of empagliflozin in patients with chronic heart failure; EMPEROR- reduced: trial 1245.121; EMPEROR-preserved: trial 1245.110
ERA	Environmental risk assessment
FU	Follow up
GCP	Good clinical practice
gMean	Geometric mean
HF	Heart failure
HFD	High fat diet
HFmEF	Heart failure with mid-range ejection fraction
HFpEF	Heart failure with preserved ejection fraction
HFrEF	Heart failure with reduced ejection fraction
HHF	Hospitalisation for heart failure
HL	Hodges-Lehmann
ICD	Implantable cardioverter defibrillator
ICH	International conference on harmonisation
IQR	Interquartile range
ISS	Integrated summary of safety
ITT	Intent to treat
KCCQ	Kansas City cardiomyopathy questionnaire
LLA	Lower limb amputation
LLN	Lower limit of normal
LVEF	Left ventricular ejection fraction
MDA	Malondialdehyde

MDDD	Madification of dist in renal disease
MDRD	Modification of diet in renal disease
MedDRA	Medical dictionary for regulatory activities
MI	Myocardial infarction
MMRM	Mixed model repeated measure
MRA	Mineralocorticoid receptor antagonist
NT-proBNP	N-terminal pro-brain natriuretic peptide
NYHA	New York heart association
OC-AD	Observed case including data after treatment discontinuation
PBRER	Periodic benefit-risk evaluation report
PD	Pharmacodynamic(s)
PEC	Predicted environmental concentration
PGI-C	Patient global impression of change
PGI-S	Patient global impression of severity
РК	Pharmacokinetic(s)
PRO	Patient-reported outcome
РТ	Preferred term
pt-yrs	Patient-years
qd	Once daily
RS	Randomised set
SAE	Serious adverse event
SAF-HF1	Safety analysis grouping for trials in patients with heart failure (1245.110, 1245.121, 1245.148, 1245.167, 1245.168)
SBP	Systolic blood pressure
SCE	Summary of clinical efficacy
SCS	Summary of clinical safety
SCR	Screened set
SD	Standard deviation
SEM	Standard error of measurement
SGLT	Sodium-dependent glucose co-transporter
SMQ	Standardised MedDRA query
SOC	System organ class
SOP	Standard operating procedures
T1DM	Type 1 diabetes mellitus
T2DM	Type 2 diabetes mellitus

TIA	Transient ischaemic attack
TS	Treated set
TSAP	Trial statistical analysis plans
TSS	Total symptom score
ULN	Upper limit of normal
UTI	Urinary tract infection
WCI	Worst-case imputation

1. Background information on the procedure

1.1. Type II variation

Pursuant to Article 16 of Commission Regulation (EC) No 1234/2008, Boehringer Ingelheim International GmbH submitted to the European Medicines Agency on 26 August 2021 an application for a variation.

The following variation was requested:

Variation reque	ested	Туре	Annexes affected
C.I.6.a	C.I.6.a - Change(s) to therapeutic indication(s) - Addition of a new therapeutic indication or modification of an	Type II	I and IIIB
	approved one		

Extension of indication to add the treatment of patients with Heart Failure with preserved ejection fraction based on the results from the clinical study 1245.110 EMPEROR-preserved.

As a consequence, sections 4.1, 4.8 and 5.1 of the SmPC and sections 1 and 4 of the PIL are updated accordingly.

Further, the MAH applied for an additional year of market protection. The updated RMP v 16.0 has also been submitted.

In addition, the statement 'sodium free' was re-located from section 2 of the SmPC to section 4.4. to comply with EMA'S QRD guidance and minor linguistic changes to the national translations are included in this submission

The variation requested amendments to the Summary of Product Characteristics and Package Leaflet and to the Risk Management Plan (RMP).

Information on paediatric requirements

Not applicable

Information relating to orphan market exclusivity

Similarity

Pursuant to Article 8 of Regulation (EC) No. 141/2000 and Article 3 of Commission Regulation (EC) No 847/2000, the MAH did not submit a critical report addressing the possible similarity with authorised orphan medicinal products because there is no authorised orphan medicinal product for a condition related to the proposed indication.

MAH request for additional market protection

The MAH requested consideration of its application in accordance with Article 14(11) of Regulation (EC) 726/2004 - one year of market protection for a new indication.

Scientific advice

The MAH did not seek Scientific Advice at the CHMP.

1.2. Steps taken for the assessment of the product

The Rapporteur and Co-Rapporteur appointed by the CHMP were:

Rapporteur:	Johann Lodewijk Hillege	Co-Rapporteur:	N/A
Timetable			Actual dates
Submission of	date		26 August 2021
Start of proc	edure:		18 September 2021
CHMP Rappo	rteur Assessment Report		15 November 2021
PRAC Rappo	rteur Assessment Report		19 November 2021
PRAC Outcor	ne		2 December 2021
CHMP memb	ers comments		6 December 2021
Updated CHN	MP Rapporteur(s) (Joint) Assessm	ent Report	9 December 2021
Request for s	supplementary information (RSI)		16 December 2021
PRAC Rappo	rteur Assessment Report		12 January 2022
CHMP Rappo	rteur Assessment Report		12 January 2022
Updated CHN	MP Rapporteur Assessment Repor	t	20 January 2022
Opinion			27 January 2022

2. Scientific discussion

2.1. Introduction

2.1.1. Problem statement

Disease or condition

Chronic heart failure (HF) is a progressive syndrome characterised by the inability of the heart to provide adequate blood supply to meet the metabolic demand of different tissues, or the heart can only provide adequate blood supply at the expense of elevated left ventricular filling pressure. HF occurs due to failure of the heart to pump adequately (systolic dysfunction) and/or impaired relaxation (diastolic dysfunction).

State the claimed the therapeutic indication

The claimed indication that is under assessment reads as follows (in bold the proposed extension of the indication):

Heart failure

Jardiance is indicated in adults for the treatment of symptomatic chronic heart failure **independent of left ventricular** with reduced ejection fraction.

In the first assessment round, the CHMP concluded that the wording of the indication should be adjusted.

As the indication for the treatment of heart failure is for all types of heart failure, the wording "*for the treatment of symptomatic chronic heart failure*" was considered more appropriate. In the response, the Applicant has adjusted the wording of the indication in accordance with the comments.

The approved indication reads as follows (in strikethrough the proposed extension of the indication):

<u>Heart failure</u>

Jardiance is indicated in adults for the treatment of symptomatic chronic heart failure with reduced ejection fraction.

Epidemiology and risk factors

Worldwide, heart failure has a prevalence of 1% to 2% and affects over 64 million people as of 2017. In the US alone the prevalence is 6.2 million, and this number has been projected to grow to over 8 million by 2030. HF is associated with premature mortality and frequent hospitalisations. HF contributes to 1 in 9 deaths, and the estimated 5-year survival is about 50% at the time of diagnosis. In addition, HF is the leading cause of hospitalisation in patients above 65 years of age. In the US, more than 1 million patients annually are hospitalised with a primary diagnosis of HF.

Clinical presentation, diagnosis

Symptoms of HF include dyspnoea (shortness of breath), oedema (build-up of fluid in the body tissues), persistent coughing and wheezing (due to build-up of fluid in the lungs), tiredness or fatigue, reduced appetite or nausea, confusion, disorientation, and increased heart rate. The most commonly used classification system, the New York Heart Association (NYHA) Functional Classification, places patients in one of four categories based on how much they are limited during physical activity. The classes range from I, i.e. no limitation of physical activity, to IV, i.e. unable to carry on any physical activity without discomfort.

Patients with HF are categorised according to left ventricular ejection fraction (LVEF); patients with LVEF \leq 40% are considered to have HFrEF, and those with LVEF >50% are considered to have HFpEF. LVEF of >40% to <50% is considered as HFpEF in many clinical trials and registries, although more recently, the term HF with "mid-range" EF (HFmEF) was introduced to categorise this group separately. The relative prevalence of HFpEF among HF patients is approximately 50% and appears to be increasing.

HFrEF and HFpEF differ in several aspects, including underlying aetiologies, demographics, co-morbidities, and responses to treatment. For example, patients with HFpEF tend to be older, more often women, and more likely to have a history of hypertension and atrial fibrillation than patients with HFrEF. In addition, although HFpEF and HFrEF have similarly profound impacts on patient quality of life and prognosis, historically, therapies shown to improve prognosis in patients with HFrEF do not seem to be effective in patients with HFpEF.

In addition to a substantial risk of mortality and hospitalisation, HF is shown to have a major impact on all aspects of quality of life, and particularly on patients' mobility and usual activities. Poor quality of life scores independently predicts higher mortality and hospitalisation. Despite guideline-directed medical therapy, the quality of life in patients with HF remains greatly impaired.

Management

Heart failure with a reduced ejection fraction can be treated with drugs that attenuate the overactivation of endogenous neurohormonal systems. However, the therapeutic options for patients with heart failure and a preserved ejection fraction are limited.

Recommendations for the treatment of HFrEF include the use of angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), angiotensin receptor-neprilysin inhibitors (ARNi), betablockers, mineralocorticoid receptor antagonists (MRA), and the use of implantable devices like ICD and CRT, all of which have been shown to reduce mortality in patients with HFrEF.

For patients with HFpEF, no therapy has been proven to be superior to control based on the pre-specified primary endpoint in any prior pivotal clinical outcome study in patients with HFpEF. According to the current guidelines, the management of HFpEF involves controlling congestive symptoms, usually with diuretics, and treating co-morbidities. A lack of therapeutic options that can reduce the risk of mortality and hospitalisation in these patients represents an unmet medical need.

2.1.2. About the product

Empagliflozin (Jardiance) is an orally administered, potent and selective inhibitor of the human sodiumglucose cotransporter-2 (SGLT 2) developed by Boehringer Ingelheim (BI). By inhibition of SGLT 2 in the kidneys, empagliflozin reduces the reabsorption of glucose by the kidneys leading to increased urinary glucose excretion and, consequently, to a lowering of blood glucose. Empagliflozin is approved for the treatment of type 2 diabetes mellitus (T2DM) worldwide as an adjunct therapy to diet and exercise to improve glycaemic control in adults with type 2 diabetes. In the United States and several other countries, it is also approved to reduce the risk of cardiovascular (CV) death in patients with T2DM and established CV disease. The results of the EMPA-REG OUTCOME trial (Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients) showed significant improvement in the primary composite cardiovascular outcome (MACE-3) and significant reductions in cardiovascular death, hospitalization for heart failure (HHF) as well as death from any cause as compared to standard of care. These beneficial cardiovascular effects were found to be largely independent of the glucose-lowering effect of empagliflozin. On 17 Jun 2021, empagliflozin was approved in the EU for the treatment of heart failure with reduced ejection fraction based on the EMPEROR-Reduced study (1245.121) results.

Empagliflozin exerts its effect by preventing sodium and glucose reabsorption. While natriuresis will be compensated within days of drug administration through changes in tubulo-glomerular feedback, glucosuria will last for as long as the medication is used. This leads to long-lasting hemodynamic changes associated with modest osmotic diuresis, blood pressure-lowering effect, improvement in arterial stiffness, reduction in oxidative stress, and decrease in rate pressure product, an indirect measure of myocardial oxygen demands, with no increase in HR and no effect on sympathetic nerve activity. Therefore, the non-glycosuric physiological and hemodynamic adaptations under empagliflozin may benefit patients with HF with or without diabetes.

Based on the results of trial 1245.25 (EMPA-REG OUTCOME) in patients with T2DM and established CV disease, BI initiated a phase III program for empagliflozin 10 mg once daily in chronic heart failure regardless of diabetes status.

2.1.3. The development programme/compliance with CHMP guidance/scientific advice

The development programme

BI initiated a Phase III program for empagliflozin 10 mg once daily in chronic heart failure regardless of diabetes status. There are two CV outcome trials ("EMPEROR"), two functional capacity trials ("EMPERIAL"), and a mechanistic Phase III trial ("EMPA-VISION") in patients with HFrEF (reduced ejection fraction) and HFpEF (preserved ejection fraction). All 5 trials are placebo-controlled, randomised (empagliflozin 10 mg

to placebo 1:1), double-blind, and parallel-group by design.

The EMPEROR trials are pivotal outcome trials that investigate the long-term effect of empagliflozin in reducing the risk of hospitalisation for HF and of cardiovascular death in patients with heart failure. The EMPERIAL trials are additional trials that investigated the short-term (12 weeks) effect of empagliflozin on functional capacity, signs and symptoms of heart failure, and quality of life. The EMPA-VISION trial is a supporting trial investigating the short-term (12 weeks) effect of empagliflozin on mechanistic cardiac physiology and metabolism. All 5 trials have been completed and the clinical trial reports are available.

The EMPEROR-Reduced and the EMPERIAL trials have been previously submitted. The EMPEROR-Preserved trial results are described in this document. In addition, a meta-analysis of both EMPEROR trials for efficacy endpoints was prespecified.

Compliance with CHMP guidance

The most relevant CHMP guideline is "Clinical investigation of medicinal products in the treatment of chronic heart failure" (CPMP/EWP/235/95, Rev.2). The compliance with this guideline is addressed in the discussion of the design of the trial.

Scientific advice

The Applicant requested scientific advice for both the EMPEROR-preserved and EMPEROR-reduced trial in procedure in 2016, Procedure No.: EMEA/H/SA/2969/2/2016/II.

2.1.4. General comments on compliance with GLP, GCP

GLP

Not applicable

GCP

According to the Applicant, the trials are carried out in compliance with the CTP, in accordance with the principles of the Declaration of Helsinki, in accordance with the ICH GCP, and in accordance with applicable regulatory requirements and BI's standard operating procedures.

2.2. Non-clinical aspects

2.2.1. Introduction

Empagliflozin is approved in many countries globally as an adjunct therapy to diet and exercise to improve glycaemic control in adults with type 2 diabetes, and to reduce the risk of cardiovascular death in adult patients with type 2 diabetes mellitus and established cardiovascular disease.

In the EMPA-REG OUTCOME trial (Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients), empagliflozin significantly improved the primary composite cardiovascular outcome (MACE-3: composite of death from cardiovascular causes, nonfatal myocardial infarction (excluding silent myocardial infarction), or nonfatal stroke) and significantly reduced cardiovascular death, hospitalization for heart failure (HHF) as well as death from any cause as compared to standard of care. In the EMPEROR-Reduced trial, empagliflozin significantly improved cardiovascular and renal outcomes in patients with heart

failure with reduced ejection fraction, independent of baseline diabetes status. Interestingly, these beneficial cardiovascular effects were found to be largely independent of the glucose-lowering effect of empagliflozin.

The beneficial cardiovascular effects of empagliflozin in clinical studies may result – at least in part - from an influence on neurohumoral pathways, such as RAAS inhibition via tubulo-glomerular feedback mechanisms and from a reduction of cardiac pre- and afterload by natriuretic and osmotic effects. Further, an increased haematocrit, decrease in blood pressure and cardiac sympathetic nerve activity have been observed with empagliflozin and may contribute to the effects on the cardiovascular system.

Effects of empagliflozin on pathophysiological processes in the cardiovascular system were studied in various pharmacological experimental settings, in particular in models of heart failure induced by different stimuli. Furthermore, effects of empagliflozin were studied *in vitro* in cardiac tissue of patients with HFpEF, respectively, as well as in tissues taken from mice.

In vivo studies were performed in different species like mice, rats and pigs in order to reproduce aspects of the beneficial results of the clinical studies and to better understand the mode of action of empagliflozin on the cardiovascular system. Importantly, studies were done in normoglycemic animals and in animals with pre-existing diabetes.

This document is an Addendum to the Nonclinical Overview [U12-3933-01] submitted with the initial Marketing Authorization Application (MAA). Since the initial MAA, three nonclinical study reports with the corresponding Addendum to Nonclinical Overview were submitted to provide:

- results of a nonclinical study looking at the effect of empagliflozin on blood ketone level at refeeding after a fasting period and comparison between refeeding with glucose or fat [n00253114-01]

- results of an *in vitro* study investigating the inhibition of UGT2B7, UGT1A3, UGT1A8, and UGT1A9 by empagliflozin [n00234868-01]

- results from a nonclinical juvenile toxicity study in the rat [n00231757-01].

Empagliflozin is a SGLT2 inhibitor that reduces the reabsorption of glucose by the kidney resulting in the increased urinary glucose excretion and subsequent lowering of the blood glucose. Empagliflozin also showed beneficial cardiovascular effects in the clinical trials with patients with heart failure, which appear to be independent of its glycaemic control action. Empagliflozin is currently approved for the treatment of patients with heart failure with reduced ejection fraction (HFrEF). The current application concerns the extension of the indication to the patients with heart failure with preserved ejection fraction (HFpEF). The applicant has submitted an addendum (dated 29 July 2021) to the previously provided non-clinical overview, including the pre-clinical studies conducted to investigate the cardiovascular effects of empagliflozin in vitro *in vivo*, to provide the rationale for the envisaged extension. As the clinical effects were shown to be independent of the well-documented glucose-lowering effects of empagliflozin, the pre-clinical studies were performed in normoglycaemic animals as well as in animals with pre-existing diabetes mellitus. The addendum was prepared by Dr. Michael Paul Pieper and consists of 17 pages with 23 references. The CV of Dr. Pieper has been provided.

2.2.2. Pharmacology

Primary pharmacodynamic studies

Empagliflozin is a potent and selective inhibitor of the human sodium-glucose cotransporter-2 (SGLT 2). By inhibition of SGLT 2 in the proximal tubules empagliflozin reduces the reabsorption of glucose by the kidneys

leading to increased urinary glucose excretion and, in consequence, to a lowering of blood glucose under hyperglycaemic as well as normoglycemic conditions.

The results of the EMPA-REG OUTCOME trial as well as the EMPEROR-Reduced trial clearly demonstrated the beneficial effects of empagliflozin on the cardiovascular system.

In this section, pre-clinical studies are compiled that investigated the cardiovascular effects of empagliflozin *in vitro* and *in vivo* in various species and different experimental settings. As the clinical effects were shown to be independent of the well-documented glucose-lowering effects of empagliflozin, the pre-clinical studies were performed in normoglycemic animals as well as in animals with pre-existing diabetes mellitus.

Effects of empagliflozin in vitro/ex vivo

Potential direct effects of 500 nmol/L empagliflozin on myocardial tissue were investigated in LV myocardial biopsies obtained from patients with HFpEF and compared to samples from non-failing hearts [P20-04305]. Inflammation markers including ICAM-1, VCAM-1, TNF-a, and IL-6 were higher in human HFpEF myocardium than controls. Empagliflozin significantly reduced the inflammatory markers assessed both by ELISA and immunoblots. Empagliflozin lowered the pathophysiologically increased cardiomyocyte Ca²⁺⁻ independent passive force ($F_{passive}$), a measure for cardiomyocyte stiffness, in cardiomyocytes from patients with HFpEF *in vitro*. GSH administration resulted in a further additional effect on $F_{passive}$. In contrast, empagliflozin did not induce additional effects on $F_{passive}$ on top of GSH indicating an antioxidative effect of empagliflozin in cardiomyocytes.

Experiments were performed in murine papillary muscles from diabetic BKS.Cg-Dock7m +/+ Leprdb/J mice showing a typical diabetic cardiomyopathy phenotype [P18-09844]. Empagliflozin significantly reduced the excessive diastolic tension by ~19.1 % in these isolated organs *in vitro*. This effect was reversible upon wash-out.

Thus, empagliflozin caused direct effects on the myocardium of patients with HFpEF and similar effects in mice with diabetic cardiomyopathy by improving diastolic stiffness that may translate in an improved diastolic function. Furthermore, empagliflozin reduced myocardial inflammation and oxidative stress in cardiomyocytes from patients with HFpEF compared to tissue from non-failing hearts.

Effects of empagliflozin on endothelial dysfunction and cardiac remodelling were tested in obese Zucker diabetic fatty/spontaneously hypertensive heart failure F1 hybrid (ZSF1)-HFpEF rats, experimentally used as a model of metabolic syndrome. Rats develop a dysfunction in endothelium-dependent relaxations and cardiac remodelling. Lean rats were used as controls [P20-01824]. Rats were treated with empagliflozin via a diet admixture at a daily dose of 30 mg/kg for 6 weeks. *Ex vivo*, empagliflozin restored the normal endothelium-dependent relaxations and blunted endothelium-dependent contractile responses to acetylcholine. Further, empagliflozin reduced the increased heart weight as well as the increased left ventricle volume in ZSF1 rats. Interestingly, SGLT2 protein expression was detected in vascular endothelial cells under stress conditions in this model.

Effects of empagliflozin in animals with diabetes:

Effects of empagliflozin on diabetic cardiovascular injury was tested in male db/db mice and male nondiabetic and lean db/m mice as control [P14-15469]. Mice were fed a standard diet containing 0.03% empagliflozin for 10 weeks. Empagliflozin significantly ameliorated cardiac interstitial fibrosis, peri-coronary arterial fibrosis, coronary arterial thickening, cardiac interstitial macrophage infiltration, and cardiac superoxide levels in db/db mice. Further, empagliflozin significantly ameliorated the impairment of vascular endothelial function compared with control db/db mice.

In summary, empagliflozin ameliorated cardiac fibrosis, inflammation, coronary arterial remodelling, and vascular dysfunction in db/db diabetic mice.

Effects of empagliflozin on cardiovascular function was tested in db/db mice on a high fat diet as a model of severe type 2 diabetes [P20-03987]. Mice were fed a high fat western-type diet (high fat diet (HFD), 39 kJ% fat, 41 kJ% carbohydrates and 20 kJ% protein) with or without 150 mg/kg empagliflozin. Empagliflozin induced glycosuria and reduced blood glucose levels. The increased expression of hepatic inflammatory cytokines in db/db mice was significantly reduced by empagliflozin treatment. Empagliflozin reduced mortality in db/db mice: while 54 % of db/db mice on HFD died after 4.5 weeks, all heterogeneous wild type mice as well as all empagliflozin-treated db/db mice on HFD were alive. Hemodynamic investigations revealed that empagliflozin significantly improved cardiac relaxation as an indicator of diastolic function while numerically affecting systolic left ventricular function. Heart rate was unaffected by empagliflozin. No change in ketone bodies or branched-chain amino acids were observed in this study.

In summary, empagliflozin improved diastolic cardiac function and reduced mortality in db/db mice on a high fat diet.

Effects of empagliflozin on myocardial oxidative stress and fibrosis were tested in the genetic type 2 diabetic KK-Ay mouse model [P19-01258]. Levels of blood glucose levels as well as HbA1c levels in mice were significantly decreased by empagliflozin after 8 weeks of treatment. After 8 weeks of HFD, the LV mass/body weight ratio in mice with diabetes mellitus (DM) was significantly lower than that in control and diabetic mice treated with empagliflozin (DM+EM). Empagliflozin treatment largely restored the ejection fraction (EF), the fractional shortening (FS), the fractional area change (FAC), and the ratio between early (E)-tolate (A) diastolic mitral inflow (E/A ratio) in DM mice, which were similar to those in the control group. LV mass was decreased in all of the diabetic groups compared with the control group. However, the LV mass/body weight ratio in DM mice was significantly lower than that in control and DM + EM mice. Empagliflozin inhibited the reduction of left ventricular internal dimension in diastole (LVIDd) and decreased interventricular septum thickness in diastole (IVSd) as compared to the control group. There were, however, no significant differences in the values of left ventricular internal dimension in systole (LVIDs) and interventricular septum thickness in systole (IVSs) among the three groups. In the DM group, lipid hydroperoxide concentration and malondialdehyde (MDA) level were significantly higher than in control and DM + EM groups treated with empagliflozin. Furthermore, decreased levels of the antioxidant enzymes SOD and GSHPx were restored by empagliflozin. Thus, empagliflozin almost completely inhibited the increase in MDA that is considered a biomarker of oxidative stress.

DM mice showed a massive accumulation of extracellular matrix and myocardial fibrosis demonstrated by histology using Masson's trichrome staining as well as immunohistochemistry. Empagliflozin inhibited the increase in TGF-B1-, collagen type I-, collagen type III- and connective tissue fraction- positive areas as compared to DM mice significantly.

Thus, empagliflozin inhibited LV dysfunction and remodelling and inhibited myocardial fibrosis and oxidative stress in the type 2 diabetic KK-Ay mice model.

Echocardiography in obese diabetic rats (ZDF) revealed a mild diastolic dysfunction (HFpEF) in comparison to their lean controls [P18-09844]. A prolonged isovolumetric relaxation time (IVRT), reduced E/A ratio and mild cardiac hypertrophy (increased wall thickness) was observed in the diseased rats. Empagliflozin after intravenous injection of 0,25 mg/kg significantly shortened IVRT (to 27.0 ± 3.6 ms) and increased E/A ratio (to 1.6 ± 0.4), indicating an improved diastolic function. The systolic contractile function as measured by ejection fraction was not altered. Further, the microvascular inflammation was reduced by empagliflozin in ZDF rats [P20-04305]. Empagliflozin reduced markers for oxidative stress, namely H2O2, 3-nitrotyrosine, and lipid peroxide and restored the antioxidant GSH to control levels. The NO–sGC–cGMP–PKG pathway was restored as well.

In summary, empagliflozin improved functional parameters of heart failure, induced anti-inflammatory as well as anti-oxidative effects and restored the NO bioavailability *in vivo*.

Cardiac energy deficiency is characterized by a decreased cardiac phosphocreatinine-to-ATP ratio (PCr/ATP) and has been proposed to play a major role in the development of heart failure. Male diabetic C57BL/Ks db/db mice received a single oral dose of empagliflozin (30 mg/kg) after 4 hours of fasting [P18-09761]. After further 2 hours of fasting plasma glucose and ketone levels (β-hydroxybutyrate) were measured. Thereafter in vivo cardiac PCr/ATP and function were measured using 31P magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI), respectively. Empagliflozin lowered plasma glucose and increased plasma ketone levels compared to placebo-treated mice. Cardiac PCr/ATP ratio was 45% higher in empagliflozin-treated mice compared to placebo. Empagliflozin reduced this ratio to a value measured in nondiabetic db/+ mice in a separate study. The cardiac PCr/ATP ratio correlated with plasma ketone but not with plasma glucose levels. Empagliflozin-treated mice showed a lower end-diastolic and stroke volume compared with placebo, whereas ejection fraction and end-systolic volume were not significantly affected.

In summary, the increase in plasma ketone levels by a single oral dose of empagliflozin is associated with an improvement of cardiac energetics and cardiac function in fasting diabetic db/db mice, suggesting a role for ketones in the energy supply in cardiometabolic health.

Effects of empagliflozin in animals without diabetes:

As clinical studies indicate that empagliflozin exerts beneficial cardiovascular effects independently of the glucose-lowering effects, pre-clinical pharmacological studies in HF models were performed in animals without diabetes mellitus.

There are multiple ways to induce heart failure in pre-clinical experimental settings, e.g. HF secondary to myocardial infarction (MI) induced by ischemia-reperfusion or ligation/occlusion of coronary arteries, HF induced by transverse aortic constriction (TAC) and by injections of the anti-cancer compound doxorubicin all of them demonstrating aspects of the human heart failure pathophysiology.

Doxorubicin is a marketed drug for the treatment of different types of cancer. A serious, well-known side effect of doxorubicin is dilated cardiomyopathy, leading to congestive heart failure. Thus, Doxorubicin is experimentally used to induce cardiomyopathy in different animal models. Doxorubicin-induced cardiotoxicity is characterized by left ventricular dysfunction and cardiac hypertrophy, which lead to congestive HF. *In vivo* experiments were performed after a single administration of doxorubicin as well as after repeated administration for 12 days [P19-10933]. In both settings, mice were randomized into 4 groups, each: Control group, empagliflozin-treated group, control group + doxorubicin, empagliflozin-treated group + doxorubicin. For compound administration, mice were fed a normal chow diet containing 300 mg/kg empagliflozin. Empagliflozin reduced doxorubicin-induced myocardial fibrosis in mouse hearts as histologically demonstrated by Masson's trichrome staining in both acute and chronic settings. Mouse hearts showed hypertrophic changes after 12 days of doxorubicin treatment. Empagliflozin significantly improved ejection fraction, reduced fractional shortening, left ventricular diastolic and systolic dimension and significantly reduced LV mass compared with the sham-treated doxorubicin group. Serum levels of ketone bodies, namely β-hydroxybutyrate (βOHB), were significantly elevated in empagliflozin-treated mice with or without single doxorubicin injection.

In order to investigate the effects of ketones (β OHB), H9C2 cardiac myocytes were treated with β OHB at concentrations of 100 μ M, 1 mM, 10 mM and 30 mM *in vitro* and exposed to 5 μ M doxorubicin. The doxorubicin increased ROS production in H9C2 cells was significantly decreased by pretreatment with β OHB for 2 hours. Further, β OHB restored the doxorubicin-induced decrease of tetramethylrhodamine methyl ester (TMRM). This result suggests that β OHB protects cardiomyocytes from doxorubicin-induced mitochondrial dysfunction. Finally, β OHB significantly increased intracellular levels of ATP in H9C2 cardiac myocytes.

Effects of BOHB were thereafter tested in vivo in single-dose doxorubicin-induced cardiomyopathy in mice. BOHB preserved myofibril structure and reduced cardiac fibrosis in the left ventricles of mice exposed to doxorubicin.

In summary, empagliflozin attenuated doxorubicin-induced cardiomyopathy in mice. Doxorubicin-induced cardiac hypertrophy and myocardial fibrosis was reduced in empagliflozin diet-fed mice in the acute and chronic setting. Empagliflozin increased serum levels of ketone bodies. Ketone bodies were shown to induce cardioprotective effects. Thus, this study provides evidence that increased levels of ketone bodies may mediate these beneficial effects of empagliflozin.

Effects of empagliflozin on left ventricular dysfunction were tested in non-diabetic male Sprague–Dawley rats with myocardial infarction (MI) induced by permanent coronary artery ligation. Control rats underwent sham surgery [P19-03653]. Rats received a chow containing empagliflozin resulting in an average intake of 30 mg/kg/day or a control chow. Treatment started either 2 days before (early) or 2 weeks after surgery (late). Rats were stratified according to left ventricular ejection fraction (LVEF) 2 weeks post-surgery to ensure similar baseline cardiac function between the groups. The average infarct size in the left ventricle was 33 % and did not differ between the MI groups. MI induced a significant dilatation of the left ventricle and a reduction in LVEF. LVEF was significantly higher in both empagliflozin early and empagliflozin late group as compared to the respective sham-treated MI groups. Thus, empagliflozin prevented the progressive deterioration of cardiac function after MI. After MI, a marked cardiac hypertrophy was observed with a 10 % increase in ventricular mass and an 81 % increase in cardiomyocyte cross-sectional area. Empagliflozin attenuated the increase in LV mass both after early and late treatment and diminished the cardiomyocyte cross-sectional area compared to the sham-treated MI group.

The three-fold increase in myocardial fibrosis in the non-infarcted left ventricle was also markedly attenuated by empagliflozin treatment. Empagliflozin-induced reductions in fibrosis were paralleled by similar reductions in the expression of the fibrosis markers collagen 1 and pro-collagen.

Empagliflozin restored mitochondrial DNA (mtDNA) damage, increased mtDNA/nuclear DNA ratio and restored PGC1-aa expression, a critical mediator of mitochondrial biogenesis, indicating an attenuation of mitochondrial dysfunction. Cardiac ATP levels were significantly reduced in the MI-vehicle group and were significantly restored in the MI-EMPA-early group, and there was a trend towards increased ATP levels in the MI-EMPA-late group.

While the glucose and fatty acid oxidation is disrupted in the failing heart, ketone bodies are increasingly utilized as a fuel source. Empagliflozin increased circulating ketone levels and urinary ketone excretion in sham and MI groups. In parallel, ketone utilization was increased by empagliflozin as measured by expression of proteins involved in myocardial ketolysis: Ketone body transporter (MCT1), ketogenic enzyme $\beta\beta$ -hydroxy butyrate dehydrogenase (BDH1) and succinyl-CoA:3-ketoacid CoA transferase (SCOT).

In summary, empagliflozin improved cardiac function and remodelling in non-diabetic rats with LV dysfunction after MI. This effect was associated with substantial improvements in cardiac energy production measured as increased ATP levels.

Heart failure was induced in nondiabetic, female Yorkshire pigs by 2-h balloon occlusion of the proximal left anterior descending (LAD) artery followed by reperfusion [P19-03216]. Myocardial damage was confirmed by 3-dimensional (3D) echocardiography and cardiac magnetic resonance (CMR). Animals were then randomized to receive either 10 mg empagliflozin daily orally or placebo for 2 months. After this treatment period, 3D echo and CMR were repeated. Simultaneous blood samplings from coronary arteries and coronary sinus were performed to assess myocardial metabolite consumption and to calculate myocardial oxygen consumption and myocardial work efficiency. Tissue samples were collected for the assessment of myocardial energetics and molecular markers of cardiac metabolism. Animals in the treatment group showed marked glycosuria demonstrating effective SGLT 2 inhibition in the kidneys of non-diabetic pigs. Empagliflozin ameliorated adverse cardiac remodelling and HF. In detail, empagliflozin reduced LV end-systolic and end-diastolic volumes detected with CMR and 3D echocardiography. Further, mean LV mass measured by both CMR and direct weight immediately after necropsy and the 3D-sphericity index were significantly lower in the empagliflozin-treated animals compared to the control group. Two months post-MI, control animals showed a myocardial metabolic switch characterized by marked reduction in FFA and enhanced glucose consumption compared to the non-MI group. Glucose was mainly metabolized through anaerobic metabolism, as confirmed by increased net myocardial lactate production. Empagliflozin modified the cardiac energy metabolism by switching away from glucose towards ketone bodies and free fatty acids as a source of energy. Empagliflozin-treated animals exhibited higher myocardial ATP (adenosine triphosphate) content. In summary, empagliflozin improved LV systolic and diastolic function and ameliorated adverse LV remodelling. This effect is likely to be - at least in part - mediated by switching the energy metabolism towards ketone bodies and free fatty acids, thus improving cardiac energy supply in pigs with heart failure secondary to myocardial infarction.

Empagliflozin is a SGLT2 (sodium-glucose transport protein 2) inhibitor that reduces the reabsorption of glucose by the kidney resulting in increased urinary glucose excretion and subsequent lowering of the blood glucose. Empagliflozin also showed beneficial cardiovascular effects in patients with heart failure, which appear to be independent of its glycaemic control action. The pharmacological mechanism of this effect is, however, not completely elucidated. In order to justify the proposed extension of the indication to the patients with heart failure with preserved ejection fraction (HFpEF) the applicant has provided an addendum to the previously provided nonclinical overview, consisting of public literature data that investigated the effects of empagliflozin on the cardiac function in myocardial samples of HFpEF patients, as well as in various pharmacological models of heart failure in different species (mice, rats and pigs). The investigations included both normoglycemic animals and animals with pre-existing diabetes.

SGLT2 inhibitors reduce blood glucose concentrations by inhibiting the main glucose transporter on the luminal surface of the proximal tubule in the kidneys, thus increasing urinary glucose excretion. The process works as a co-transport of glucose molecules and sodium ions (ratio 1:1), resulting in an increased concentration of sodium in the distal tubule and at the macula densa. Regulatory processes at the macula densa may influence neurohormonal pathways, such as RAAS inhibition, which together with a reduction of cardiac pre- and afterload by natriuretic and osmotic effects, may at least partially explain the beneficial cardiovascular effects of empagliflozin observed in clinical studies.

The provided literature overview demonstrated that in cardiomyocytes from the LV myocardial samples obtained from patients with HFpEF empagliflozin was shown to reduce the inflammation markers (ICAM-1, VCAM-1, TNF-a and IL-6) compared to the samples from non-failing hearts and attenuated pathological oxidative parameters (H2O2, 3-nitrotyrosine, GSH, lipid peroxide) in the cardiomyocytal cytosol and mitochondria's. The observed effects were explained as being possibly related to the reduced inflammation and oxidative stress due to the improved eNOS phosphorylation and NO bioavailability in the myocardium, as empagliflozin was demonstrated to increase the NO levels, sGC activity, sGMP concentration and PKGIa activity. Empagliflozin was also shown to reduce cardiomyocyte stiffness, measured as cardiomyocyte Ca2+-independent passive force (Fpassive), in cardiomyocytes from patients with HFpEF and in the treated in vivo murine ZDF obese rats, used as a model of HFpEF. In db/db mice on a high fat diet used as a type 2 diabetes mellitus model, empagliflozin improved left ventricular function and reduced mortality. Empagliflozin also improved functional parameters like ejection fraction, fractional shortening and the ratio between early (E)-to-late (A) diastolic mitral inflow (E/A ratio) in the genetic T2DM KK-Ay mouse model. In non-diabetic animals empagliflozin improved cardiac function in models of heart failure in ischemia/reperfusion-induced myocardial infarction in pigs, in doxorubicin-induced heart failure in mice and in coronary artery ligation-induced heart failure in rats. Further, empagliflozin increased the plasma levels of ketone bodies, namely ß-hydroxybutyrate, which have been suggested to play a role as an alternative fuel for failing hearts with less oxygen consumption compared to glucose oxidation.

In summary, beneficial cardiovascular effects of empagliflozin have been demonstrated *in vitro* in cardiac tissue of patients with HFpEF, as well as in a number of animal heart disease models, both in normoglycemic and in diabetic animals. However, the exact molecular mechanism of the beneficial effects of empagliflozin in these in vitro/ex vivo models remains unclear. It could be related to increasing tubuloglomerular feedback and reducing intraglomerular pressure lowering both pre- and postload of the heart, and downregulating of sympathetic activity. Other contributing mechanisms, such as reduced inflammation and oxidative stress and the increased plasma levels of ketone bodies, can also not be excluded.

2.2.3. Pharmacokinetics

No new information has been provided.

2.2.4. Toxicology

No new information has been provided.

2.2.5. Ecotoxicity/environmental risk assessment

An Environmental Risk Assessment (ERA) for empagliflozin was submitted with the initial MAA and an updated ERA after the completion of an additional study. The risk assessment resulted in the conclusion that no significant impact on the environment is expected.

In the current ERA, the estimation of the predicted environmental concentration (PEC) of empagliflozin in the various environmental compartments is based on the default market penetration factor (Fpen = 0.01), as provided in the EMA guideline, and the highest maximum daily dose of 25 mg. The recommended maximum daily dose of the newly proposed indication (heart failure in patients with preserved ejection fraction, HFpEF) will only be 10 mg.

The default Fpen is based on a very conservative worst-case estimation, meaning that 1% of all EU inhabitants are treated 365 d/a with the recommended maximum daily dose. The market penetration factor was not refined though, e.g. by using the much smaller actual amount of substance placed on the market.

Therefore, the effects on the environment by adding the new intended heart failure indication (HFpEF) with a much smaller patient group are considered negligible and well covered by the used Fpen.

In previously submitted procedures, a full ERA of empagliflozin was submitted, including the determination of physical-chemical properties, Phase I and, due to the exceeded PECsw threshold limit (of 0.125), also the Phase II environmental fate studies. The conclusion of this ERA was that empagliflozin is neither PBT nor vPvB, and no unacceptable adverse effects for the surface water, groundwater, STP (sewage treatment plant) and sediment are expected from the prescribed use of empagliflozin. According to the MAH, the ERA submitted with the initial MAA remains valid for the current type II variation covering the additional proposed indication. It is agreed with the MAH that, considering the lower maximum recommended dose, the PEC/PNEC ratios for the surface water, groundwater and STP will not increase more than twice and will therefore still be below the threshold level for Tier B (ratios for the single indication were 0.00052, ≤ 0.0000125 and ≤ 0.000003125). Still, the MAH was requested to submit an updated ERA table with the new PECsurfacewater value. The summary ERA table submitted with the initial MAA was updated with the new PECsurfacewater values. The MAH was also requested to amend the ERA table by deleting the data on readily biodegradability and adding information data on persistence derived in the water/sediment study. Additionally, the MAH was requested to include data on toxicity to sediment dwelling organisms.

The summary ERA table which was included in the original authorization of Jardiance was updated by the MAH as requested (see table below).

Summary of main study results

CAS-number (if available): 80	54070-44-0				
PBT screening		Result			Conclusion
Bioaccumulation potential – log K _{ow}	OECD107	Log K _{ow} =	1.73		Not potentially PBT, nor vPvB
PBT-assessment					1.2.7.10.1.12
Parameter	Result relevant for conclusion				Conclusion
Bioaccumulation	log K _{ow}	Log K _{ow} =	1.73		not B
Persistence	DT50 or ready biodegradability	Parent: DT ₅₀ , 12°C water: 2.6/2.3 d DT ₅₀ , 12°C sediment: 5.5/4.1d Transformation products: TP M3 (stereoisomer of empagliflozin) DT ₅₀ , 12°C sediment = 189.8/140.9 d TP M12: DT ₅₀ , 12°C water = 79.8 d TP M3: very persistent in sediment, TP M12: very persistent in water		vP (for transformation products M3 in sediment, TP M12 in water)	
Toxicity	NOEC or CMR	2.4 mg/L			not T
PBT-statement	The compound is co		PBT and	not vPvB	
Phase I					
Calculation	Value	Unit			Conclusion
PEC _{surfacewater} (all indications), default or refined (e.g. prevalence, literature)	0.225	µg/L			> 0.01 threshold
Other concerns (e.g. chemical class)					No
Phase II Physical-chemical p	roperties and fate				
Study type	Test protocol	Results			Remarks
Adsorption-Desorption	OECD 106	$K_{\rm oc} = 51.5$	L/kg		Mean of 49 and 54 L/kg for WWTF sludge.
Ready Biodegradability Test	OECD 301	Not readily	[,] biodegr	adable	
Aerobic and Anaerobic Transformation in Aquatic Sediment systems	OECD 308	$\begin{array}{c} DT_{50, water} = 1.2/1.1 \ d \ (r/p) \\ DT_{50, sediment} = 2.6/1.9 \ d \\ (r/p) \\ DT_{50, whole system} = 1.3/1.3 \ d \end{array}$		r = river, p = pond, Significant shifting to sediment observed	
Phase IIa Effect studies		-1	•	1	n
Study type	Test protocol	Endpoin t	valu e	Unit	Remarks
Algae, Growth Inhibition Test / Pseudokirchneriella subcaptitat	OECD 201	NOEC	≥ 100	mg/L	
Daphnia sp. Reproduction Test	OECD 211	NOEC	≥ 100	mg/L	
Fish, Early Life Stage Toxicity Test / <i>Danio rerio</i>	OECD 210	NOEC	2.4	mg/L	
Activated Sludge, Respiration Inhibition Test	OECD 209	NOEC	≥ 100	mg/L	
Phase IIb studies				1	
Sediment dwelling organism Chironomus riparius	OECD 218	NOEC	1010	mg/kg	normalized to 10% Corg

2.2.6. Discussion on non-clinical aspects

The current application concerns an extension of the indication of Jardiance to patients with heart failure with preserved ejection fraction (HFpEF). The active substance empagliflozin is a SGLT2 (sodium glucose transport protein 2) inhibitor that reduces the reabsorption of glucose by the kidney resulting in the

increased urinary glucose excretion and subsequent lowering of the blood glucose. Empagliflozin also showed beneficial cardiovascular effects in patients with heart failure, which appear to be independent of its glycaemic control action. The pharmacological mechanism of this effect is, however, not completely elucidated. The applicant has provided an addendum to the previously submitted non-clinical overview based on public literature data that demonstrated beneficial cardiovascular effects of empagliflozin in vitro in cardiac tissue of patients with HFpEF and in a number of animal heart disease models, both in normoglycemic and in diabetic animals. It has been concluded that these effects could be related to increasing tubuloglomerular feedback and reducing intraglomerular pressure, lowering both pre- and postload of the heart, and downregulating of sympathetic activity. Other contributing mechanisms, such as reduced inflammation and oxidative stress and the increased plasma levels of ketone bodies, can also not be excluded.

It is agreed with the MAH that the ERA conclusions based on the previous ERA of empagliflozin remain unchanged. The DT50-values for the total system, sediment and water normalised to 12 °C for empagliflozin and the relevant transformation products M3, M1 and M12 are included in the updated ERA as well as the proposed molecular structures of M3 and M1. It is also mentioned in the ERA that M3 is proposed to be a stereoisomer of the active substance empagliflozin and thus might be pharmacologically active. The MAH was however asked to submit an updated ERA table with the new PECsurfacewater value, deletion of the data on readily biodegradability and addition of information data on persistence derived in the water/sediment study and data on toxicity to sediment dwelling organisms.

2.2.7. Conclusion on the non-clinical aspects

Although several factors have been mentioned that may contribute to the positive actions of empagliflozin on heart function, the precise molecular mechanisms of these effects are not clear. Several possible mechanisms may play a role, such as a reduced sodium reabsorption in the proximal tubules, resulting in reduced intraglomerular pressure and lowered cardiac pre- and afterload; increased level of ketone bodies, improving cardiac energy supply by increasing cardiac uptake and oxidization of β -hydroxybutyrate. It is currently not clear which of the numerous potential mechanisms of action are of clinical relevance or which one would be the dominant one. The provided information is endorsed.

Based on the updated data submitted in this application, the new/extended indication does not lead to a significant increase in environmental exposure further to the use of empagliflozin.

2.3. Clinical aspects

2.3.1. Introduction

GCP

The Clinical trials were performed in accordance with GCP as claimed by the MAH (Table 1).

Trial no. Phas	se No. randomised	Patient population	Treatment duration	First patient screened	Last patient completed	CTR
CV outcome t	rials ("EMPER	ROR-Preserved/Re	duced")			
1245.121 III	3730	HFrEF (LVEF ≤40%)	Event- driven	Apr 2017	May 2020	[c28576542]
1245.110 III	5988	HFpEF (LVEF >40%)	Event- driven	Mar 2017	Apr 2021	[c31803238]
Functional ca	pacity trials ("I	EMPERIAL-prese	rved/reduced	")		
1245.168 III	312	HFrEF	12 weeks	Mar 2018	Oct 2019	[c26554767]
1245.167 III	315	HFpEF	12 weeks	Apr 2018	Oct 2019	[c26554599]
Mechanistic c	ardiac physiolo	gy and metabolisr	n ("EMPA-V	ISION")		
1245.148 III	72	HFrEF/HFpEF separate cohorts	12 weeks	Mar 2018	May 2020	[c31537568]

Table 1. Tabular overview of clinical studies

2.3.2. Pharmacokinetics

Table PK01

No new information has been provided with regard to basal pharmacokinetics. This is all described in previous applications.

Additionally, pharmacokinetic data from trial 1245.110 was compared with the data from trial 1245.121. As a measure of systemic drug exposure to empagliflozin, steady-state trough PK samples were taken in the EMPEROR-preserved trial in a subset of patients (overall number of patients with valid PK samples: N=519). The PK of empagliflozin in patients with chronic heart failure with preserved ejection fraction in the EMPEROR-preserved trial was presented. Additionally, pharmacokinetic data from trial 1245.110 was compared with the data from trial 1245.121.

Comparison of PK trial 1245.110 and 1245.121

After demographic and baseline characteristic stratifications, similar results were observed in patients with HFpEF when compared to patients with HFrEF: Empagliflozin exposure in both trials increased with a decrease in renal function or an increase in age and decreased with an increase in body weight or BMI. There were only minor differences in empagliflozin exposures between trials regarding all further demographic or baseline characteristics.

For all subgroups, the gMean steady state trough concentrations of empagliflozin 10 mg in trial 1245.110 were similar (0.71 to 1.24-fold) to those of empagliflozin 10 mg in trial 1245.121.

	trial 1245.110 with resp	pect to those in tria	l 1245.121 for diffe	rent subgroups.
stratification by	subgroup	1245.110 gMean (gCV[%]), N	1245.121 gMean (gCV[%]), N	Ratio gMean 1245.110 vs. gMean 1245.121
	All	63.4 (80.6), 519	67.3 (91.8), 308	0.94
Intrinsic factors				
	\geq 90 mL/min/1.73 m ²	38.5 (109), 30	42.1 (84.6), 40	0.91
eGFR	≥60 and <90 mL/min/1.73 m ²	54.0 (78.7), 222	51.9 (92.3), 119	1.04
	\geq 30 and <60 mL/min/1.73 m ²	73.3 (68.0), 242	92.5 (72.4), 125	0.79

Fold differences in the gMean steady state trough concentrations of empagliflozin
trial 1245,110 with respect to those in trial 1245,121 for different subgroups.

	> 15 and <20 mJ /	116 (75.9), 25	103 (62.6), 24	1.13
	\geq 15 and <30 mL/min/1.73 m ²	48.5 (101), 12	40.9 (95.0), 22	1.19
	< 50 years	× 7.	× //	
Age	\geq 50 and < 65 years	52.8 (94.1), 68	58.4 (98.5), 84	0.90
C	\geq 65 and < 75 years	64.0 (83.3), 189	67.8 (82.0), 112	0.94
	\geq 75 years	66.9 (72.8), 250	86.1 (84.6), 90	0.78
	≤50 kg	87.6 (69.4), 40	90.4 (84.6), 34	0.97
Body Weight	>50 and ≤70 kg	69.1 (72.4), 191	73.6 (89.2), 126	0.94
v o	>70 and ≤90 kg	57.5 (86.8), 164	63.1 (80.3), 101	0.91
	>90 kg	56.7 (82.1), 124	49.3 (113), 47	1.15
	$< 25 \text{ kg/ m}^2$	70.3 (68.2), 201	74.7 (83.4), 160	0.94
DMI	≥ 25 and < 30 kg/ m^2	62.9 (94.4), 158	62.9 (95.6), 88	1.00
BMI	\geq 30 and < 35 kg/ m ²	56.3 (89.3), 83	61.0 (81.7), 43	0.92
	\geq 35 kg/ m ²	55.7 (69.5), 77	46.5 (164), 17	1.20
-	Male	62.7 (81.3), 322	67.2 (88.5), 243	0.93
Sex	Female	64.4 (79.5), 197	67.9 (105), 65	0.95
stratification by	subgroup	1245.110 gMean (gCV[%]), N	1245.121 gMean (gCV[%]), N	Ratio gMean 1245.110 vs. gMean 1245.121
	All	63.4 (80.6), 519	67.3 (91.8), 308	0.94
	Asian	71.0 (66.5), 235	68.9 (82.2), 172	1.03
D	Asian Black	× ,,,	× 7.	
Race		71.0 (66.5), 235	68.9 (82.2), 172	1.03
Race	Black	71.0 (66.5), 235 65.6 (59.9), 21	68.9 (82.2), 172 63.9 (76.2), 13	1.03 1.03
Race Lifestyle	Black White	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110	1.03 1.03 0.89
	Black White	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110	1.03 1.03 0.89
	Black White Other	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246 44.8 (132), 16	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110 63.4 (55.6), 13	1.03 1.03 0.89 0.71
Lifestyle	Black White Other Current Smoker	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246 44.8 (132), 16 77.5 (65.1), 37	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110 63.4 (55.6), 13 62.4 (63.0), 39	1.03 1.03 0.89 0.71 1.24
Lifestyle Smoking Status	Black White Other Current Smoker Ex-Smoker	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246 44.8 (132), 16 77.5 (65.1), 37 59.7 (76.3), 273	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110 63.4 (55.6), 13 62.4 (63.0), 39 68.4 (92.1), 150	1.03 1.03 0.89 0.71 1.24 0.87
Lifestyle	Black White Other Current Smoker Ex-Smoker Never Smoked	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246 44.8 (132), 16 77.5 (65.1), 37 59.7 (76.3), 273 66.1 (87.7), 209	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110 63.4 (55.6), 13 62.4 (63.0), 39 68.4 (92.1), 150 66.7 (101), 113	1.03 1.03 0.89 0.71 1.24 0.87 0.99
Lifestyle Smoking Status Alcohol status	Black White Other Current Smoker Ex-Smoker Never Smoked Drinks Alcohol	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246 44.8 (132), 16 77.5 (65.1), 37 59.7 (76.3), 273 66.1 (87.7), 209 62.2 (76.1), 245	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110 63.4 (55.6), 13 62.4 (63.0), 39 68.4 (92.1), 150 66.7 (101), 113 66.6 (89.7), 107	1.03 1.03 0.89 0.71 1.24 0.87 0.99 0.93
Lifestyle Smoking Status Alcohol status Background disea	Black White Other Current Smoker Ex-Smoker Never Smoked Drinks Alcohol Does not Drink Alcohol	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246 44.8 (132), 16 77.5 (65.1), 37 59.7 (76.3), 273 66.1 (87.7), 209 62.2 (76.1), 245	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110 63.4 (55.6), 13 62.4 (63.0), 39 68.4 (92.1), 150 66.7 (101), 113 66.6 (89.7), 107	1.03 1.03 0.89 0.71 1.24 0.87 0.99 0.93
Lifestyle Smoking Status Alcohol status	Black White Other Current Smoker Ex-Smoker Never Smoked Drinks Alcohol Does not Drink Alcohol se and Co-medication	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246 44.8 (132), 16 77.5 (65.1), 37 59.7 (76.3), 273 66.1 (87.7), 209 62.2 (76.1), 245 64.4 (84.6), 274	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110 63.4 (55.6), 13 62.4 (63.0), 39 68.4 (92.1), 150 66.7 (101), 113 66.6 (89.7), 107 68.6 (90.4), 192	1.03 1.03 0.89 0.71 1.24 0.87 0.99 0.93 0.94
Lifestyle Smoking Status Alcohol status Background disea T2DM status	Black White Other Current Smoker Ex-Smoker Never Smoked Drinks Alcohol Does not Drink Alcohol se and Co-medication Non-T2DM	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246 44.8 (132), 16 77.5 (65.1), 37 59.7 (76.3), 273 66.1 (87.7), 209 62.2 (76.1), 245 64.4 (84.6), 274 60.5 (74.3), 281	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110 63.4 (55.6), 13 62.4 (63.0), 39 68.4 (92.1), 150 66.7 (101), 113 66.6 (89.7), 107 68.6 (90.4), 192	1.03 1.03 0.89 0.71 1.24 0.87 0.99 0.93 0.94
Lifestyle Smoking Status Alcohol status Background disea T2DM status NYHA	Black White Other Current Smoker Ex-Smoker Never Smoked Drinks Alcohol Does not Drink Alcohol se and Co-medication Non–T2DM T2DM	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246 44.8 (132), 16 77.5 (65.1), 37 59.7 (76.3), 273 66.1 (87.7), 209 62.2 (76.1), 245 64.4 (84.6), 274 60.5 (74.3), 281 66.9 (87.5), 238	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110 63.4 (55.6), 13 62.4 (63.0), 39 68.4 (92.1), 150 66.7 (101), 113 66.6 (89.7), 107 68.6 (90.4), 192 63.5 (94.4), 145 71.0 (89.2), 163	1.03 1.03 0.89 0.71 1.24 0.87 0.99 0.93 0.94
Lifestyle Smoking Status Alcohol status Background disea T2DM status	Black White Other Current Smoker Ex-Smoker Never Smoked Drinks Alcohol Does not Drink Alcohol se and Co-medication Non-T2DM T2DM I	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246 44.8 (132), 16 77.5 (65.1), 37 59.7 (76.3), 273 66.1 (87.7), 209 62.2 (76.1), 245 64.4 (84.6), 274 60.5 (74.3), 281 66.9 (87.5), 238 63.6 (53.6), 3	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110 63.4 (55.6), 13 62.4 (63.0), 39 68.4 (92.1), 150 66.7 (101), 113 66.6 (89.7), 107 68.6 (90.4), 192 63.5 (94.4), 145 71.0 (89.2), 163 not reportable	1.03 1.03 0.89 0.71 1.24 0.87 0.99 0.93 0.94
Lifestyle Smoking Status Alcohol status Background disea T2DM status NYHA	Black White Other Current Smoker Ex-Smoker Never Smoked Drinks Alcohol Does not Drink Alcohol se and Co-medication Non-T2DM T2DM I I	71.0 (66.5), 235 65.6 (59.9), 21 58.4 (88.6), 246 44.8 (132), 16 77.5 (65.1), 37 59.7 (76.3), 273 66.1 (87.7), 209 62.2 (76.1), 245 64.4 (84.6), 274 60.5 (74.3), 281 66.9 (87.5), 238 63.6 (53.6), 3 62.1 (79.9), 438	68.9 (82.2), 172 63.9 (76.2), 13 65.8 (114), 110 63.4 (55.6), 13 62.4 (63.0), 39 68.4 (92.1), 150 66.7 (101), 113 66.6 (89.7), 107 68.6 (90.4), 192 63.5 (94.4), 145 71.0 (89.2), 163 not reportable 68.6 (91.4), 240	1.03 1.03 0.89 0.71 1.24 0.87 0.99 0.93 0.94 0.95 0.94 0.91

--- not calculated

[Source data: c36415368, Tables Z.11.3: 2-6, Tables Z.11.3: 8-9, Tables Z.11.3: 11-12, Table Z.11.3: 14, and Tables Z.11.3: 16 to 17]

In general pharmacokinetic data generated for EMPEROR-Preserved/ study is comparable to previously collected pharmacokinetic data.

Empagliflozin exposure in trial 1245.110 increased with a decrease in renal function (up to a 3.01-fold difference in gMean) or an increase in age (up to a 1.38-fold difference in gMean); This increase in exposure is correlated as average renal function decreases with an increase in age. In addition, empagliflozin exposure decreased with an increase in body weight (up to a 1.54-fold difference in gMean) or BMI (up to a 1.26-fold difference in gMean).

After demographic and baseline characteristic stratifications, similar results were observed in patients with HFpEF compared to patients with HFrEF. In addition, there were no differences (<1.25-fold difference in gMean) in empagliflozin exposure by sex, race (comparison Asian versus White or Black versus White), NYHA classification, diabetes status or use of ARNi at baseline.

Differences in empagliflozin exposures were observed among different groups of geographic region (up to 1.38-fold difference in gMean) or investigator country (up to a 1.44-fold difference in gMean).

However, when all data from special groups were compared with results from trial 1245.121, the gMean steady-state trough concentration of empagliflozin 10 mg was not higher than that of empagliflozin 25 mg in any corresponding subgroup in 1245.25 [c32077394]. Since the gMean steady-state trough concentrations were similar between 1245.110 and 1245.121 in all subgroups, these data support that dose adjustment based on PK is not needed for renal function, age, body weight, BMI, sex, race, smoking status, or alcohol use.

2.3.3. Pharmacodynamics

Mechanism of action

There were no new dedicated clinical pharmacology studies.

Empagliflozin is a reversible, highly potent (IC50 of 1.3 nmol) and selective competitive inhibitor of sodiumglucose co-transporter 2 (SGLT2). Empagliflozin does not inhibit other glucose transporters important for glucose transport into peripheral tissues and is 5000 times more selective for SGLT2 versus SGLT1, the major transporter responsible for glucose absorption in the gut. SGLT2 is highly expressed in the kidney, whereas expression in other tissues is absent or very low. As the predominant transporter, it is responsible for the reabsorption of glucose from the glomerular filtrate back into the circulation. In patients with type 2 diabetes and hyperglycaemia, a higher amount of glucose is filtered and reabsorbed.

Empagliflozin improves glycaemic control in patients with type 2 diabetes by reducing renal glucose reabsorption. The amount of glucose removed by the kidney through this glucuronic mechanism is dependent on blood glucose concentration and GFR. Inhibition of SGLT2 in patients with type 2 diabetes and hyperglycaemia leads to excess glucose excretion in the urine. In addition, initiation of empagliflozin increases excretion of sodium, resulting in osmotic diuresis and reduced intravascular volume.

Empagliflozin improves both fasting and post-prandial plasma glucose levels. The mechanism of action of empagliflozin is independent of beta-cell function and insulin pathway, and this contributes to a low risk of hypoglycaemia. Improvement of surrogate markers of beta-cell function, including Homeostasis Model Assessment- β (HOMA- β) was noted. In addition, urinary glucose excretion triggers calorie loss, associated with body fat loss and body weight reduction. The glucosuria observed with empagliflozin is accompanied by diuresis, which may contribute to sustained and moderate reduction of blood pressure. Empagliflozin may impact on multiple pathophysiological pathways common for both HFrEF and HFpEF. Empagliflozin reduces sodium reabsorption and increases the delivery of sodium to the distal tubule. This may influence several physiological functions including, but not restricted to: increasing tubuloglomerular feedback and reducing intra-glomerular pressure, lowering both pre- and afterload of the heart, downregulating

sympathetic activity, and reducing left ventricular wall stress as evidenced by lower NT-proBNP values with further beneficial effects on cardiac remodelling, filling pressures and diastolic function.

The exact molecular mechanisms of the beneficial cardiovascular effects of empagliflozin are, however, still under intense pharmacological investigation.

2.3.4. Discussion on clinical pharmacology

Pharmacodynamics

The mode of action and pharmacodynamics of SGLT2i for the treatment of T2DM, in general, are well known. For the treatment of HFrEF, modes of action have also been described and discussed in a previous application. For HFrEF, it is thought that SGLT2i reduce sodium reabsorption, increase tubuloglomerular feedback and consequently lower both pre- and afterload of the heart and downregulating sympathetic activity. The Applicant also described mechanisms of action relevant for both HFrEF and HFpEF, e.g. reduction in left ventricular wall stress with further beneficial effects on cardiac remodelling, filling pressures and diastolic function.

2.4. Clinical efficacy

2.4.1. Dose response study(ies)

Not applicable.

Based on the data for the indication of T2DM and HFrEF it is acceptable that no dose-finding study has been performed, but it cannot be excluded that a lower dose than 10 mg is effective for the current indication.

2.4.2. Main study(ies)

BI initiated a Phase III program for empagliflozin 10 mg once daily in chronic heart failure regardless of diabetes status. There are two CV outcome trials ("EMPEROR"), two functional capacity trials ("EMPERIAL"), and a mechanistic Phase III trial ("EMPA-VISION") in patients with HFrEF (reduced ejection fraction) and HFpEF (preserved ejection fraction). All 5 trials are placebo-controlled, randomised (empagliflozin 10 mg to placebo 1:1), double-blind, and parallel-group by design (Table 2.).

The EMPEROR trials are pivotal outcome trials investigating the long-term effect of empagliflozin in reducing the risk of hospitalisation for HF and cardiovascular death in patients with heart failure. The EMPERIAL trials are additional trials that investigated the short-term (12 weeks) effect of empagliflozin on functional capacity, signs and symptoms of heart failure, and quality of life. The EMPA-VISION trial is a supporting trial investigating the short-term (12 weeks) effect of empagliflozin on mechanistic cardiac physiology and metabolism. All 5 trials have been completed and the clinical trial reports are available.

The EMPEROR-Reduced and the EMPERIAL trials have been previously submitted. The EMPEROR-Preserved trial results are described in this document, along with a brief summary of EMERIAL and EMPA-VISION and the pre-specified meta-analysis of efficacy endpoints based on both EMPEROR trials. Safety assessments in this document mainly focuses on pooled results from all 5 trials.

Based on the results of the pivotal trial 1245.110 (EMPEROR-Preserved), BI sought a new indication for empagliflozin in adult patients with heart failure (NYHA class II-IV) with preserved ejection fraction.

Where the indication for patients with heart failure with reduced ejection fraction has already been approved (which was based on the previously submitted pivotal trial 1245.121, EMPEROR-Reduced), BI aims to

combine both indications to an indication for adult patients with symptomatic chronic heart failure (NYHA class II-IV).

Trial no.	Pha	No.	Patient	Treatment	First	Last patient	CTR
	se	randomised	population	duration	patient	completed	
					screened		
CV outco	ome tr	ials ("EMPER	OR-Preserved/R	Reduced")			
1245.1	III	3730	HFrEF	Event-	Apr 2017	May 2020	[c28576542]
21			(LVEF ≤40%)	driven			
1245.1	III	5988	HFpEF	Event-	Mar 2017	Apr 2021	[c31803238]
10			(LVEF >40%)	driven			
Function	nal cap	acity trials ("	EMPERIAL-pres	erved/reduc	ed")		
1245.1	III	312	HFrEF	12 weeks	Mar 2018	Oct 2019	[c26554767]
68							
1245.1	III	315	HFpEF	12 weeks	Apr 2018	Oct 2019	[c26554599]
67							
Mechani	Mechanistic cardiac physiology and metabolism ("EMPA-VISION")						
1245.1	III	72	HFrEF/HFpEF	12 weeks	Mar 2018	May 2020	[c31537568]
48			separate				
			cohorts				

Table 2. Clinical trials in patients with chronic heart failure

Title of Study: EMPEROR-preserved (1245.110)

Methods

Study participants

Trial 1245.110 was carried out at 622 clinical sites in 23 countries in Europe, Latin America, North America, Asia, and other (South Africa, Australia, India). In total, 5988 patients were randomised to double-blind empagliflozin 10 mg (2997 patients) or placebo (2991 patients) once daily treatment. Randomisation was stratified by region, diabetes history, LVEF, and eGFR (CKD-EPI)cr at screening. All but 3 randomised patients (1 in the empagliflozin 10 mg group and 2 in the placebo group) were treated with at least 1 dose of study medication.

Inclusion criteria

The key eligibility criteria for the EMPEROR-Preserved (1245.110), in comparison with EMPEROR-Reduced (1245.121), are shown in Table 3.

Table 3.	Key eligibility criteria for the EMPEROR trials	
----------	---	--

1245.121 (HFrEF)	1245.110 (HFpEF)
A	

Age \geq 18 years Chronic HF NYHA class II to IV eGFR (CKD-EPI)_{cr} \geq 20 mL/min/1.73 m² Reduced EF (LVEF \leq 40%) and elevated NT-proBNP for patients with/without atrial fibrillation or atrial flutter (AF):

LVEF	NT-proBNP	NT-proBNP
	without AF	with AF
36 to 40%	≥2500	≥5000
	pg/mL	pg/mL
31 to 35%	≥1000	≥2000
	pg/mL	pg/mL
≤30%	≥600 pg/mL	≥1200
		pg/mL
≤40% and HHF	≥600 pg/mL	≥1200
≤12 months*		pg/mL

Preserved EF (LVEF >40%) and elevated NT-proBNP: >300 pg/mL for patients without AF; >900 pg/mL for patients with AF

 Stable therapy for HF consistent with local and international cardiology guidelines
 Structural heart disease or HHF ≤12 months

 Appropriate and stable dose of oral diuretics if prescribed

 IYHA, New York heart association; LVEF, left ventricular ejection fraction; HHF, hospitalisation for heart failure; AF, a

NYHA, New York heart association; LVEF, left ventricular ejection fraction; HHF, hospitalisation for heart failure; AF, atrial fibrillation or atrial flutter; NT-proBNP, N-terminal pro-brain natriuretic peptide; eGFR (CKD-EPI)_{cr}, glomerular filtration rate estimated by the chronic kidney disease epidemiology collaboration formula with serum creatinine measurement

Exclusion criteria

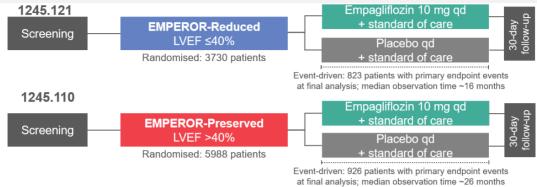
Patients were excluded if they had a disorder that could change their clinical course, independent of heart failure, or if they had any condition that might jeopardize patient safety or limit their participation in the trial. The key exclusion criteria are listed below.

<u>Cardiovascular diseases or treatments that increase the unpredictability of or change the patients' clinical</u> <u>course, independent of heart failure</u>

- Myocardial infarction (increase in cardiac enzymes in combination with symptoms of ischemia or new ischemic ECG changes), coronary artery bypass graft surgery, or other major cardiovascular surgery, stroke or transient ischemic attack in the past 90 days
- Heart transplant recipient or listed for a heart transplant. Currently implanted left ventricular assist device.
- Cardiomyopathy based on infiltrative diseases (e.g. amyloidosis), accumulation diseases (e.g. hemochromatosis, Fabry disease), muscular dystrophies, cardiomyopathy with reversible causes (e.g. stress cardiomyopathy), hypertrophic obstructive cardiomyopathy or known pericardial constriction.
- Any severe (obstructive or regurgitant) valvular heart disease, expected to lead to surgery during the trial period
- Acute decompensated heart failure requiring intravenous diuretics, vasodilators, inotropic agents or mechanical support within 1 week of screening and during the screening period prior to randomization
- Implanted cardioverter defibrillator within 3 months prior to screening
- Cardiac resynchronization therapy

<u>Untreated or undertreated cardiovascular conditions that might influence the course of heart failure or</u> <u>tolerability of the study medications</u>

- Atrial fibrillation or atrial flutter with a resting heart rate >110 bpm documented by ECG at screening
- Systolic blood pressure ≥180 mmHg at randomization. If the systolic blood pressure is 151-179 mmHg, the patient should be receiving ≥3 antihypertensive drugs
- Symptomatic hypotension and/or a systolic blood pressure <100 mmHg at screening or at randomization Significant comorbid conditions that might influence the clinical course, independent of heart failure
- Chronic pulmonary disease requiring home oxygen, oral corticosteroid therapy or hospitalisation for exacerbation within 12 months; significant chronic pulmonary disease; or primary pulmonary arterial hypertension
- Acute or chronic liver disease, defined by serum levels of transaminases or alkaline phosphatase more than three times the upper limit of normal at screening
- Impaired renal function, defined as eGFR < 20 mL/min/1.73 m2 (CKD-EPI) or requiring dialysis at the time of screening
- Haemoglobin <9 g/dL at screening
- Major surgery (major according to the investigator's assessment) performed within 90 days prior to screening, or major scheduled elective surgery (e.g. hip replacement) within 90 days after screening.
- Gastrointestinal surgery or gastrointestinal disorder that could interfere with trial medication absorption.
- Any documented active or suspected malignancy or history of malignancy within 2 years prior to screening, except appropriately treated basal cell carcinoma of the skin, in situ carcinoma of uterine cervix, or low risk prostate cancer (patients with pre-treatment PSA <10 ng/mL, and biopsy Gleason score of ≤6 and clinical stage T1c or T2a)
- Presence of any other disease than heart failure with a life expectancy of less than one year (in the opinion of the investigator) Any condition that might jeopardize patient safety, limit the patients' participation in the trial, or undermine the interpretation of trial data.


Treatments

Trial 1245.110 is a placebo-controlled, randomised (empagliflozin 10 mg to placebo 1:1), double-blind, and parallel-group by design. Patients were to be treated with randomised study medication in addition to standard of care (in accordance with local/international guidelines) until the required number of patients with adjudicated primary endpoint events was expected to be reached. The median observation time of the trial was about 26 months, with the median exposure to study medication about 23 months. After the last intake of study medication, patients were to be followed up for 30 days.

Design of EMPEROR trials in patients with chronic heart failure

CV outcome trials ("EMPEROR-Reduced/Preserved")

Aim: To investigate the safety and efficacy of empagliflozin versus placebo on top of guideline-directed medical therapy in patients with heart failure with **reduced** or **preserved ejection fraction**

Population: T2DM and non-T2DM, aged ≥18 years, chronic HF (NYHA class II–IV)

qd, once daily; LVEF, left ventricular ejection fraction; 6MWT, 6-minute walk test; CMR, cardiac magnetic resonance; CPET, cardiopulmonary exercise test

Objectives

The EMPEROR-Preserved trial is a pivotal CV outcome trial that investigates the long-term effect of empagliflozin in reducing the risk of hospitalisation for HF and of cardiovascular death in patients with HFpEF. The objective of this event-driven trial is to demonstrate the superiority of empagliflozin 10 mg versus placebo in patients with symptomatic, chronic HF and preserved ejection fraction (LVEF > 40%) under stable treatment of HF symptoms.

Outcomes/endpoints

The following endpoints were pre-specified for 1245.110:

- Primary endpoint (confirmatory):
 - o Time to first event of adjudicated CV death or adjudicated HHF
- Key secondary endpoints (confirmatory):
 - o Occurrence of adjudicated HHF (first and recurrent)
 - o eGFR (CKD-EPI)cr slope of change from baseline
- Other secondary endpoints (exploratory):
 - o Time to the first event in the composite renal endpoint: chronic dialysis¹, renal transplant, or sustained² reduction in eGFR (CKD-EPI)cr³
 - o Time to first adjudicated HHF
 - o Time to adjudicated CV death
 - o Time to all-cause mortality
 - o Time to onset of DM (defined as HbA1c $\geq\!\!6.5\%$ or as diagnosed by the investigator) in patients with pre-DM^4

- o Change from baseline in KCCQ clinical summary score⁵ at Week 52
- o Occurrence of all-cause hospitalisation (first and recurrent)

¹ Chronic dialysis was defined as dialysis with a frequency of twice per week or more for at least 90 days

² Sustained was determined by two or more consecutive post-baseline central laboratory measurements separated by at least 30 days (the first to last of the consecutive eGFR values)

³ Reduction in eGFR (CKD-EPI)cr was defined as reduction in eGFR from baseline of \geq 40%, eGFR <15 mL/min/1.73 m2 for patients with baseline eGFR \geq 30 mL/min/1.73 m2, or eGFR <10 mL/min/1.73 m2 for patients with baseline eGFR <30 mL/min/1.73 m2

 4 Pre-DM was defined as no history of DM and no HbA1c $\geq\!\!6.5\%$ before treatment, and a pretreatment HbA1c value of $\geq\!\!5.7\%$ and $<\!\!6.5\%$

⁵ KCCQ, Kansas City cardiomyopathy questionnaire; clinical summary score measures HF symptoms (frequency and burden) and physical limitations

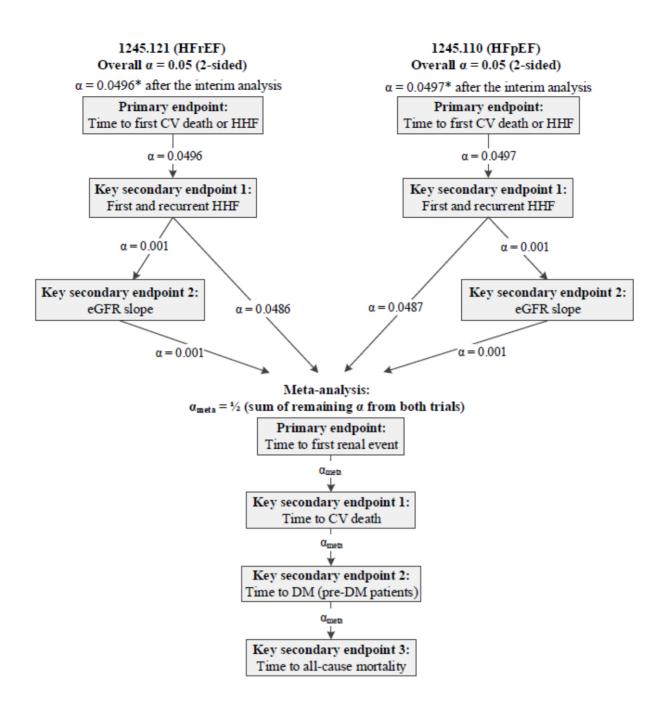
• Further endpoints (exploratory) include time to or occurrence of CV and/or renal events, progression or reversal of albuminuria, changes from baseline in eGFR, KCCQ scores, NYHA class, EQ-5D, NT-proBNP, albuminuria, body weight, blood pressure, pulse rate, HbA1c, FPG, etc.

Sample size

For the sample size calculation, a yearly event rate in the placebo group of 10% is assumed. The assumption is based on the CHARM-Preserved study and part of the TOPCAT study from the Americas. The annual event rates in CHARM-Preserved were 8.1% in the candesartan group and 9.1% in the placebo group. The annual rates from the Americas in the TOPCAT study were 10.4 in the spironolactone group and 12.6 in the placebo group. The trial is designed to achieve a power of 90% for a two-sided test at level a = 0.05. The number of required events together with the number of to be randomised and treated patients were calculated assuming an accrual period of 18 months and a follow-up period of 20 months. The follow-up period was not fixed, but the trial would continue until the necessary number of events has been observed, which are confirmed by the adjudication committee. A hazard ratio of 0.8 was chosen as a conservative estimate based on the results of the EMPA-REG OUTCOME trial drop-out rate from the trial is assumed to be low (< 1% per year) and is therefore not further considered for the determination of sample size. An interim analysis was performed by the independent DMC. The EMPEROR-preserved trial included 5988 subjects (empagliflozin 10 mg: 2997 patients, placebo: 2991 patients).

Randomisation

Subjects who fulfilled all eligibility criteria were randomized double-blind in a 1:1 manner. Randomisation was performed with a permuted block design and was stratified by geographic region, diabetes status, estimated glomerular filtration rate (eGFR) of less than 60 ml per minute per 1.73 m² of body-surface area or 60 ml or more per minute per 1.73 m², and left ventricular ejection fraction of less than 50% or 50% or more; all measured at screening.


Blinding (masking)

Patients, Investigators and everyone involved in trial conduct or analysis or with any other interest in this double-blind trial remain blinded with regard to the randomised treatment assignments until after database lock. The DMC is provided with unblinded data in order to allow them to review efficacy and safety and to fulfil their tasks as outlined in the data monitoring committee charter. An independent team, not otherwise involved in the conduct of the trial, provided the unblinded results to the DMC. The randomisation code is kept secret by Clinical Trial Support up to database lock.

Statistical methods

The EMPEROR-Preserved (1245.110) trial was designed to have a power of 90% for the primary endpoint at two-sided a of 0.05 to detect a hazard ratio of 0.8 between empagliflozin and placebo, which required at least 841 adjudicated primary endpoint events. After 494 events (planned approximately 500 events or about 60% of anticipated events), an interim analysis was performed by the independent DMC. Based on the interim results, the DMC recommended continuing the trial as planned. The a-level for the final analysis was 0.0497 (2-sided). A hierarchical procedure (see Figure 2) was applied to the primary and key secondary endpoints. If a confirmatory endpoint was successful (i.e. empagliflozin superior to placebo), the a would be used for the subsequent step(s). If a confirmatory endpoint was not successful, all subsequent endpoints would be evaluated in an exploratory manner. After evaluation of the first key secondary endpoint (recurrent HHF), a was to be split into 0.001 (two-sided) for the analysis of eGFR slope, and the rest transferred to an efficacy meta-analysis. If the eGFR slope analysis was successful, the a of this branch would also be transferred to the meta-analysis.

Planned hierarchical testing strategy and alpha spending for the individual trials 1245.121 and 1245.110 and the meta-analysis

Unless otherwise specified, efficacy analyses followed the ITT principle and included all randomised patients (RS; treatment assigned as randomised) and all available data up to the planned treatment discontinuation (including "off-treatment" data during unplanned treatment interruptions and after premature treatment discontinuations). Unless otherwise specified, the outcome events were based on adjudication results from the clinical event committee (CEC), according to prespecified definitions in the CEC charter.

Primary endpoint (time to adjudicated CV death or HHF)

The primary analysis was a Cox regression with factors treatment, region (Asia, Europe, Latin America, North America, and other), baseline status of DM (diabetic, pre-diabetes, and normal), age (continuous), sex, LVEF (continuous), and baseline eGFR (CKD-EPI)cr(continuous). Region, status of DM, LVEF (<50% or \geq 50%), and eGFR (CKD-EPI)cr (<60 or \geq 60 mL/min/1.73 m²) at screening are randomisation stratification factors. Following the ITT principle, all data up to the end of the planned treatment period (including the data after the end of treatment for patients not completing the treatment period as planned) from all randomised patients were used. Patients without a specific endpoint event were considered censored at the last date the patient was known to be free of the event or at the end of the planned treatment period, whichever was earlier. Cumulative incidence function curves that account for competing risks (i.e. non-CV deaths) and Kaplan-Meier curves of time to censoring were displayed. The individual components that contributed to the primary endpoint were summarised descriptively. Subgroup analyses by predefined demographic and baseline characteristics (e.g. comorbidities, risk factors, and background medications) were carried out.

Key secondary endpoint 1 (adjudicated recurrent HHF)

The analysis for recurrent HHF used a joint frailty model that accounts for the dependence between recurrent HHF and CV death, with the same covariates used for the primary endpoint. All data up to the end of the planned treatment period (including the data after the end of treatment for patients not completing the treatment period as planned) from all randomised patients were used. The number of HHF events per patient was summarised descriptively. Negative binomial models were additionally fitted for recurrent HHF events. The mean cumulative incidence was displayed for adjudicated recurrent HHF. Subgroup analyses were carried out.

Key secondary endpoint 2 (eGFR slope of change from baseline)

The analysis was a random coefficient model allowing for random intercept and random slope per patient, with the same factors used for the primary endpoint and additional factors "time", "treatment-by-time interaction", and "baseline eGFR (CKD-EPI)cr-by-time interaction". Only "on-treatment" data from treated patients (i.e. measurements up to 1 day after the last intake of study medication) were used. Subgroup analyses were carried out.

Other secondary and further endpoints (exploratory)

Exploratory efficacy endpoints were analysed in the following way in general:

- Time-to-event endpoints: similar to the primary analysis of the primary endpoint. Subgroup analyses were performed for time to CV death and time to first HHF
- Recurrent events endpoints: similar to the primary analysis of the first key secondary Endpoint
- Continuous endpoints: a mixed model repeated measure (MMRM) analysis
- Categorical endpoints: descriptive

Results

Disposition of patients

This trial was a multicentre trial conducted globally (Table 4).

Geographical regio	n Countries	Patients screened	Patients randomised
Total	23 countries	11583	5988
Europe	Poland, Czech Republic, Hungary, Germany	, 4568	2689
	the Netherlands, Italy, Romania, Spain, Belgium),	
	United Kingdom		
Latin America	Brazil, Argentina, Colombia, Mexico	3636	1515
North America	United States, Canada	1632	719
Asia	Japan, China, Korea, Singapore	968	686
Other	South Africa, Australia, India	779	379

Table 4. Overview of screened and randomised patients by region in 1245.110 - SCR

About half of the screened patients (48.3%) were not randomised, most commonly because of NT-proBNP levels being below protocol-specified thresholds at screening (37.6% of screened patients) (Table 5.)

Of the 5988 randomised patients, 5816 patients (97.1%) had complete follow-up for the primary endpoint and the final vital status was known for 5952 patients (99.4%); see Table 5. Of the 5985 patients treated with study medication, 1888 patients prematurely discontinued treatment (31.5%, including patients who died).

The most common reason for premature discontinuation of study medication was an AE (10.6% of patients with non-fatal events and 8.2% with fatal events). The next most common reason was refusal to continue study medication, which was balanced across the placebo (10.2%) and empagliflozin (9.5%) groups.

Table 5. Disposition of patients in 1245.110 – SC

	Placebo	Empa 10 mg	Total
	N (%)	N (%)	N (%)
Screened			11583
Randomised	2991 (100.0)	2997 (100.0)	5988 (100.0)
Final vital status known	2972 (99.4)	2980 (99.4)	5952 (99.4)
Alive	2527 (84.5)	2543 (84.9)	5070 (84.7)
Deceased	445 (14.9)	437 (14.6)	882 (14.7)
Vital status unknown	19 (0.6)	17 (0.6)	36 (0.6)
Completed trial or died ¹	2903 (97.1)	2913 (97.2)	5816 (97.1)
Prematurely discontinued trial	88 (2.9)	84 (2.8)	172 (2.9)
Consent withdrawn	25 (0.8)	27 (0.9)	52 (0.9)
Site closure ²	15 (0.5)	8 (0.3)	23 (0.4)
Limited follow-up agreed ³	33 (1.1)	25 (0.8)	58 (1.0)
Lost to follow-up to the primary endpoint ⁴	15 (0.5)	24 (0.8)	39 (0.7)
Treated	2989 (100.0)	2996 (100.0)	5985 (100.0)
Not prematurely discontinued from trial medication	2046 (68.5)	2051 (68.5)	4097 (68.5)
Prematurely discontinued study medication	943 (31.5)	945 (31.5)	1888 (31.5)
Adverse event	553 (18.5)	575 (19.2)	1128 (18.8)
Non-fatal events	309 (10.3)	326 (10.9)	635 (10.6)
Worsening of HF	26 (0.9)	21 (0.7)	47 (0.8)
Worsening of other pre-existing disease	47 (1.6)	49 (1.6)	96 (1.6)
Other	236 (7.9)	256 (8.5)	492 (8.2)
Fatal events	244 (8.2)	249 (8.3)	493 (8.2)
Worsening of HF	57 (1.9)	36 (1.2)	93 (1.6)
Worsening of other pre-existing disease	8 (0.3)	13 (0.4)	21 (0.4)

Other	179 (6.0)	200 (6.7)	379 (6.3)
Non-compliance with protocol	30 (1.0)	24 (0.8)	54 (0.9)
Lost to follow-up	6 (0.2)	16 (0.5)	22 (0.4)
Patient refusal to continue, not due to AE	304 (10.2)	284 (9.5)	588 (9.8)
Other reason	44 (1.5)	45 (1.5)	89 (1.5)
Reason missing ⁵	6 (0.2)	1 (<0.1)	7 (0.1)
		·1 / 1 / 1 / 1	

¹ Patients with primary event (HHF or CV death) or follow-up for the primary endpoint until study end/death.

² Including patients from Site no. 1156007 (see [CTR 1245.110, c31803238, Section 9.6]) and closed sites (who did not complete the trial or die and did not withdraw consent).

³ Patients not from a closed site who discontinued all trial activities but did not withdraw consent to vital status collection at treatment termination.

⁴ Other patients with incomplete follow-up for the primary endpoint.

⁵ Includes 7 patients from closed sites.

Patients who discontinued study medication prematurely were to be followed up for outcome events and vital status until the end of the trial. Vital status was known for 99.4% of the randomised patients, and 97.1% completed follow up for the primary endpoint, with balanced distribution between groups. The proportion of patients who prematurely discontinued study medication (including due to death) was balanced between the empagliflozin group and the placebo group (both 31.5%), with the most frequent reasons to discontinue study medication being adverse events (10.6% of total patients with non-fatal events and 8.2% with fatal events) and refusal to continue (9.8%).

The number of subjects that prematurely discontinued study medication was similar between empagliflozin vs placebo.

Conduct of the study

The Applicant states that the trials are carried out in compliance with the clinical trial protocol (CTP), in accordance with the principles of the Declaration of Helsinki, in accordance with the ICH GCP, and in accordance with applicable regulatory requirements and BI's standard operating procedures.

Impact of COVID-19 pandemic on clinical visits and study medication supply

Before the onset of the COVID-19 outbreak, 5896 patients (98.5%) had been randomised in this trial, and 92 patients were randomised thereafter.

Information on the disruption due to COVID-19 to the clinical visits and study medication supply was collected on the CRF and summarised. About one-third of patients (31.8%) had at least one visit affected by COVID-19. The majority of these patients (25.7% overall) had at least one visit performed by phone instead of on-site, and 4.6% had at least one visit performed outside the protocol-defined window. A total of 1.4% of patients had an interruption of trial medication for more than 7 days due to COVID-19 and 0.8% had permanent treatment discontinuation due to COVID-19 infection.

Baseline data

Slightly more than half of the patients were men (55.3%). The majority of the patients were White (75.9%) and elderly (64.1% of patients were \geq 70 years old). See Table 6. for details.

Table 6. Demographic data in 1245.110 - R	S
---	---

	Placebo	Empa 10 mg	Total
Number of patients, N (%)	2991 (100.0)	2997 (100.0)	5988 (100.0)
Sex, N (%)			

Male	1653 (55.3)	1659 (55.4)	3312 (55.3)
Female	1338 (44.7)	1338 (44.6)	2676 (44.7)
Race (summary), N (%)			
White	2256 (75.4)	2286 (76.3)	4542 (75.9)
Black/African American	125 (4.2)	133 (4.4)	258 (4.3)
Asian	411 (13.7)	413 (13.8)	824 (13.8)
Other including mixed race	198 (6.6)	164 (5.5)	362 (6.0)
Ethnicity, N (%)			
Not Hispanic/Latino	2236 (74.8)	2227 (74.3)	4463 (74.5)
Hispanic/Latino	754 (25.2)	770 (25.7)	1524 (25.5)
Region, N (%)			
North America	359 (12.0)	360 (12.0)	719 (12.0)
Latin America	757 (25.3)	758 (25.3)	1515 (25.3)
Europe	1343 (44.9)	1346 (44.9)	2689 (44.9)
Asia	343 (11.5)	343 (11.4)	686 (11.5)
Other	189 (6.3)	190 (6.3)	379 (6.3)
Age [years], mean (SD)	71.9 (9.6)	71.8 (9.3)	71.9 (9.4)
Age [years], N (%)			
<50	72 (2.4)	67 (2.2)	139 (2.3)
50 to <65	533 (17.8)	527 (17.6)	1060 (17.7)
65 to <75	1092 (36.5)	1122 (37.4)	2214 (37.0)
75 to <85	1088 (36.4)	1103 (36.8)	2191 (36.6)
≥85	206 (6.9)	178 (5.9)	384 (6.4)
Age [years], N (%)			
<70	1084 (36.2)	1066 (35.6)	2150 (35.9)
≥70	1907 (63.8)	1931 (64.4)	3838 (64.1)
Patients with information missing are not shown;	for data, see [CTR 1245.	110, c31803238, Table 1	5.1.4: 1]

Source data: [CTR 1245.110, c31803238, Section 10.4]

Baseline characteristics and variables

Patients with an LVEF of >40% could participate in the trial. The mean LVEF was 54.3%. About a third of patients were in each of the predefined LVEF categories (LVEF <50%, 50 to <60%, and ≥60%). Median NT-proBNP was 974 pg/mL (Q1, Q3 499, 1731). The majority of patients had SBP <140 mmHg and DBP <90 mmHg. eGFR <60 mL/min/1.73 m2 was reported for 49.9% of patients, with eGFR <30 mL/min/1.73 m2 reported for 309 patients (5.2%). Normal UACR was reported for 58.0% of patients, while 31.1% had microalbuminuria and 10.5% had macroalbuminuria. A history of atrial fibrillation or atrial flutter was reported for 52.4% of patients. Half of the patients were reported with type 2 diabetes, and 10 patients (0.2%) were reported with type 1 diabetes (Table 7.).

	NO		
	Placebo	Empa 10 mg	Total
Number of patients, N (%)	2991 (100.0)	2997 (100.0)	5988 (100.0)
LVEF [%], mean (SD)	54.3 (8.8)	54.3 (8.8)	54.3 (8.8)
<50%, N (%)	988 (33.0)	995 (33.2)	1983 (33.1)
50 to <60%, N (%)	1030 (34.4)	1028 (34.3)	2058 (34.4)
≥60%, N (%)	973 (32.5)	974 (32.5)	1947 (32.5)
NT-proBNP [pg/mL]			
All patients, median (Q1, Q3)	946 (498, 1725)	994 (501, 1740)	974 (499, 1731)

Table 7. Baseline characteristics in 1245.110 - RS

Patients with no atrial fibrillation or flutter from	m 1966	1924	3890
baseline ECG, N			
Median (Q1, Q3)	643 (386, 1212)	654 (380, 1197)	649 (382, 1200)
Patients with atrial fibrillation or flutter from baselin	ie 1016	1064	2080
ECG, N			
Median (Q1, Q3)	1582 (1132, 2366)	1611 (1135, 2312)	1603 (1134, 2339)
Blood pressure			
SBP [mmHg], mean (SD)	131.9 (15.7)	131.8 (15.6)	131.8 (15.6)
DBP [mmHg], mean (SD)	75.7 (10.5)	75.7 (10.6)	75.7 (10.6)
SBP <140 mmHg and DBP <90 mmHg, N (%)	1917 (64.1)	1909 (63.7)	3826 (63.9)
SBP ≥140 mmHg or DBP ≥90 mmHg, N (%)	1074 (35.9)	1088 (36.3)	2162 (36.1)
Heart rate [bpm], mean (SD)	70.3 (11.8)	70.4 (12.0)	70.4 (11.9)
BMI [kg/m ²], mean (SD)	29.90 (5.92)	29.77 (5.81)	29.84 (5.87)
<30 kg/m², N (%)	1642 (54.9)	1654 (55.2)	3296 (55.0)
≥30 kg/m², N (%)	1349 (45.1)	1343 (44.8)	2692 (45.0)
eGFR (CKD-EPI) [mL/min/1.73 m ²], mean (SD)	60.6 (19.9)	60.6 (19.8)	60.6 (19.8)
≥60, N (%)	1505 (50.3)	1493 (49.8)	2998 (50.1)
≥90	237 (7.9)	231 (7.7)	468 (7.8)
60 to <90	1268 (42.4)	1262 (42.1)	2530 (42.3)
<60, N (%)	1484 (49.6)	1504 (50.2)	2988 (49.9)
45 to <60	773 (25.8)	792 (26.4)	1565 (26.1)
30 to <45	550 (18.4)	564 (18.8)	1114 (18.6)
<30, N (%)	161 (5.4)	. ,	
		148 (4.9)	309 (5.2)
20 to <30	152 (5.1)	142 (4.7)	294 (4.9)
<20	9 (0.3)	6 (0.2)	15 (0.3)
UACR [mg/g], N (%)			
Normal (<30)	1747 (58.4)	1727 (57.6)	3474 (58.0)
Microalbuminuria (30 to \leq 300)	921 (30.8)	939 (31.3)	1860 (31.1)
Macroalbuminuria (>300)	311 (10.4)	318 (10.6)	629 (10.5)
Patients with a history of atrial fibrillation or flutter ¹ ,	1559 (52.1)	1576 (52.6)	3135 (52.4)
, N (%)			
Investigator-reported medical history			
Atrial fibrillation, N (%)	1510 (50.5)	1543 (51.5)	3053 (51.0)
Atrial flutter, N (%)	200 (6.7)	206 (6.9)	406 (6.8)
Baseline ECG, N (%)	1016 (34.0)	1064 (35.5)	2080 (34.7)
Atrial flutter, N (%)	41 (1.4)	54 (1.8)	95 (1.6)
Atrial fibrillation, N (%)	986 (33.0)	1033 (34.5)	2019 (33.7)
Patients with history of atrial fibrillation 1 , N (%)	1514 (50.6)	1543 (51.5)	3057 (51.1)
Diabetes status, N (%)			
Without diabetes, N (%)	1519 (50.8)	1531 (51.1)	3050 (50.9)
Without diabetes or pre-diabetes, N (%)	540 (18.1)	530 (17.7)	1070 (17.9)
With pre-diabetes ² , N (%)	979 (32.7)	1001 (33.4)	1980 (33.1)
With diabetes, N (%)	1472 (49.2)	1466 (48.9)	2938 (49.1)
T2DM ³ , N (%)	1467 (49.0)	1461 (48.7)	2928 (48.9)
Investigator-reported medical history, N (%)	1329 (44.4)	1322 (44.1)	2651 (44.3)
Previously undiagnosed diabetes, N (%)	138 (4.6)	139 (4.6)	277 (4.6)
T1DM ⁴ , N (%)	5 (0.2)	5 (0.2)	10 (0.2)
HbA _{1c} [%], mean (SD)	7.27 (1.52)	7.24 (1.47)	7.26 (1.50)
Patients with missing information are not shown; refer		03238, Tables 15.1.4: 2	2 and 4 to 8] for these

Patients with missing information are not shown; refer to [CTR 1245.110, c31803238, Tables 15.1.4: 2 and 4 to 8] for these data.

Heart failure-related medical history

To qualify for this trial, patients had to have chronic HF with preserved ejection fraction as defined in the inclusion criteria of the trial protocol.

Most patients were in NYHA class II (81.5%). About 30% of patients had been diagnosed with HF more than 5 years before the trial. The cause of HF was ischaemic for 35.4% of patients and hypertensive for 36.5% of patients. With regard to conditions met for inclusion into the trial, the majority of patients (77.1%) had structural heart disease only, 6.4% of patients had HHF within 12 months of screening only, and 16.4% of patients met both of these conditions (Table 8.).

	Placebo	Empa 10 mg	Total
Number of patients, N (%)	2991 (100.0)	2997 (100.0)	5988 (100.0)
NYHA class at baseline, N (%)			
I	1 (<0.1)	3 (0.1)	4 (0.1)
II	2451 (81.9)	2432 (81.1)	4883 (81.5)
III	531 (17.8)	552 (18.4)	1083 (18.1)
IV	8 (0.3)	10 (0.3)	18 (0.3)
Time since diagnosis of HF [years], mean (SD)	4.3 (5.0)	4.5 (5.2)	4.4 (5.1)
≤1, N (%)	782 (26.1)	730 (24.4)	1512 (25.3)
>1 to 5, N (%)	1325 (44.3)	1368 (45.6)	2693 (45.0)
>5 to 10, N (%)	553 (18.5)	550 (18.4)	1103 (18.4)
>10, N (%)	331 (11.1)	349 (11.6)	680 (11.4)
Cause of HF, N (%)			
Ischaemic	1038 (34.7)	1079 (36.0)	2117 (35.4)
Hypertensive	1120 (37.4)	1066 (35.6)	2186 (36.5)
Valvular heart disease	168 (5.6)	187 (6.2)	355 (5.9)
Diabetic	58 (1.9)	67 (2.2)	125 (2.1)
Alcoholism	7 (0.2)	6 (0.2)	13 (0.2)
Idiopathic	262 (8.8)	289 (9.6)	551 (9.2)
Other	338 (11.3)	302 (10.1)	640 (10.7)
HHF within 12 months before screening and/or structural	heart		
disease ¹ , N (%)			
HHF within 12 months before screening only	187 (6.3)	199 (6.6)	386 (6.4)
Structural heart disease only	2317 (77.5)	2297 (76.6)	4614 (77.1)
Both	482 (16.1)	499 (16.6)	981 (16.4)

Table 8. Heart failure-related medical history in 1245.110 - RS

Patients with information missing are not shown; refer to [CTR 1245.110, c31803238,Tables 15.1.4: 3 and 4] for these data. ¹ Evidence of HF as defined in inclusion criterion 6 Source data: [CTP 1245 110, c31803238, Section 10.4]

Source data: [CTR 1245.110, c31803238, Section 10.4]

Concomitant therapies

Concomitant therapies at baseline

¹ Investigator-reported medical history or baseline ECG finding

² Including patients with no investigator-reported medical history of diabetes and pretreatment HbA_{1c} \geq 5.7% and <6.5%, or patients stratified to the group of pre-diabetes via IRT and pretreatment HbA_{1c} <6.5% (if available), or patients stratified to the group of no diabetes via IRT and pretreatment HbA_{1c} \geq 5.7% and <6.5%

 $[\]overline{}^{3}$ Patients without T1DM and with investigator-reported medical history of diabetes or patients with previously undiagnosed diabetes (pretreatment HbA_{1c} \geq 6.5%)

⁴ Patients with investigator-reported medical history of diabetes and the type was T1DM Source data: [CTR 1245.110, c31803238, Section 10.4]

A total of 78.6% of patients used ACE inhibitors/ARBs at baseline, and 2.2% used ARNi, 86.3% used betablockers, and 86.2% used diuretics, including 37.5% who used MRAs and 67.7% who used loop or high ceiling diuretics (Table 9.).

Table 9. Patients taking drugs used in heart failure, other anti-hypertensives, lipid-lowering drugs, or anti-thrombotic drugs at baseline in 1245.110 – RS

	Placebo	Empa 10 mg	Total
	N (%)	N (%)	N (%)
Number of patients	2991 (100.0)	2997 (100.0)	5988 (100.0)
Drugs used in heart failure	2972 (99.4)	2985 (99.6)	5957 (99.5)
ACE inhibitors/ARBs/ARNi	2404 (80.4)	2428 (81.0)	4832 (80.7)
ACE inhibitors/ARBs	2338 (78.2)	2367 (79.0)	4705 (78.6)
ARNi	69 (2.3)	65 (2.2)	134 (2.2)
Beta-blockers	2569 (85.9)	2598 (86.7)	5167 (86.3)
Diuretics	2600 (86.9)	2563 (85.5)	5163 (86.2)
Mineralocorticoid receptor antagonists (MRAs)	1125 (37.6)	1119 (37.3)	2244 (37.5)
Loop or high ceiling diuretics	2024 (67.7)	2030 (67.7)	4054 (67.7)
Ivabradine	31 (1.0)	40 (1.3)	71 (1.2)
Cardiac glycosides	263 (8.8)	293 (9.8)	556 (9.3)
Nitrates	338 (11.3)	408 (13.6)	746 (12.5)
Hydralazine	74 (2.5)	82 (2.7)	156 (2.6)
Other anti-hypertensives	883 (29.5)	943 (31.5)	1826 (30.5)
Lipid-lowering drugs	2139 (71.5)	2103 (70.2)	4242 (70.8)
Anti-thrombotic drugs	2609 (87.2)	2631 (87.8)	5240 (87.5)

ARB: excluding valsartan when taken with sacubitril, because sacubitril/valsartan is shown as ARNi.

Source data: [CTR 1245.110, c31803238, Section 10.4]

Concomitant therapies during the trial

Concomitant therapies at baseline or any time up to the end of the planned treatment period were balanced across the treatment groups (Table 10.).

Table 10. Patients taking drugs used in heart failure, other anti-hypertensives, lipid-lowering drugs, or anti-thrombotic drugs at baseline or any time up to the end of the planned treatment period in 1245.110 – RS

	Placebo	Empa 10 mg	Total
	N (%)	N (%)	N (%)
Number of patients	2991 (100.0)	2997 (100.0)	5988 (100.0)
Drugs used in heart failure	2984 (99.8)	2994 (99.9)	5978 (99.8)
ACE inhibitors/ARBs/ARNi	2535 (84.8)	2539 (84.7)	5074 (84.7)
ACE inhibitors/ARBs	2467 (82.5)	2481 (82.8)	4948 (82.6)
ARNi	148 (4.9)	116 (3.9)	264 (4.4)
Beta-blockers	2661 (89.0)	2686 (89.6)	5347 (89.3)
Diuretics	2746 (91.8)	2703 (90.2)	5449 (91.0)
MRAs	1395 (46.6)	1360 (45.4)	2755 (46.0)
Loop or high ceiling diuretics	2293 (76.7)	2227 (74.3)	4520 (75.5)
Ivabradine	52 (1.7)	51 (1.7)	103 (1.7)
Cardiac glycosides	361 (12.1)	377 (12.6)	738 (12.3)
Nitrates	536 (17.9)	548 (18.3)	1084 (18.1)
Hydralazine	129 (4.3)	131 (4.4)	260 (4.3)

Other anti-hypertensives	1142 (38.2)	1136 (37.9)	2278 (38.0)
Lipid-lowering drugs	2268 (75.8)	2232 (74.5)	4500 (75.2)
Anti-thrombotic drugs	2710 (90.6)	2728 (91.0)	5438 (90.8)

ARB: excluding valsartan when taken with sacubitril, because sacubitril/valsartan is shown as ARNi.

Source data: [CTR 1245.110, c31803238, Section 10.4]

Intensification of diuretic therapy after baseline was less frequent in the empagliflozin group vs placebo (16.1 vs 20.4% of patients), while a decrease of diuretic therapy was more frequent in the empagliflozin group vs placebo (14.1 vs 12.0%)

Extent of exposure

Median observation time up to the end of the planned treatment period was about 26 months in both treatment groups, with 94% of patients observed for at least 1 year (Table 11.).

Table 11. Observationa	I period up to the end	of the planned treatment peri	od in 1245.110 - RS
------------------------	------------------------	-------------------------------	---------------------

	Placebo	Empa 10 mg	Total
Number of patients, N (%)	2991 (100.0)	2997 (100.0)	5988 (100.0)
Observation time categories, N (%)			
≥12 weeks	2952 (98.7)	2973 (99.2)	5925 (98.9)
≥26 weeks	2899 (96.9)	2913 (97.2)	5812 (97.1)
≥52 weeks	2814 (94.1)	2816 (94.0)	5630 (94.0)
≥78 weeks	2248 (75.2)	2230 (74.4)	4478 (74.8)
≥104 weeks	1673 (55.9)	1663 (55.5)	3336 (55.7)
≥156 weeks	405 (13.5)	403 (13.4)	808 (13.5)
Observation time [month]			
Median (Q1, Q3)	26.1 (18.2, 33.0)	26.2 (18.0, 33.1)	26.2 (18.1, 33.1)
Mean (SD)	25.6 (9.3)	25.6 (9.4)	25.6 (9.3)
Total observation time [year]	6293.4	6304.8	12598.2

Source data: [CTR 1245.110, c31803238, Section 10.5]

Median exposure to study medication was the same (about 23 months) in both treatment groups, with 84% of patients treated for at least 1 year (Table 12.).

	Dia a sha	E main 10 mm	Tabal
	Placebo	Empa 10 mg	Total
Number of patients, N (%)	2989 (100)	2996 (100.0)	5985 (100.0)
Exposure categories, N (%)			
≥12 weeks	2830 (94.7)	2854 (95.3)	5684 (95.0)
≥26 weeks	2699 (90.3)	2726 (91.0)	5425 (90.6)
≥52 weeks	2511 (84.0)	2524 (84.2)	5035 (84.1)
≥78 weeks	1930 (64.6)	1911 (63.8)	3841 (64.2)
≥104 weeks	1389 (46.5)	1379 (46.0)	2768 (46.2)
≥156 weeks	308 (10.3)	303 (10.1)	611 (10.2)
Duration of exposure [month]			
Median (Q1, Q3)	23.3 (15.3, 31.4)	23.3 (15.4, 31.4)	23.3 (15.4, 31.4)
Mean (SD)	22.7 (10.8)	22.7 (10.7)	22.7 (10.7)
Total exposure [year]	5569.5	5595.3	11164.7

Table 12. Exposure to study medication in 1245.110 - TS

Exposure was calculated as date of last intake of study medication minus date of first intake, plus 1 day.

Source data: [CTR 1245.110, c31803238, Section 10.5]

Outcomes and estimation

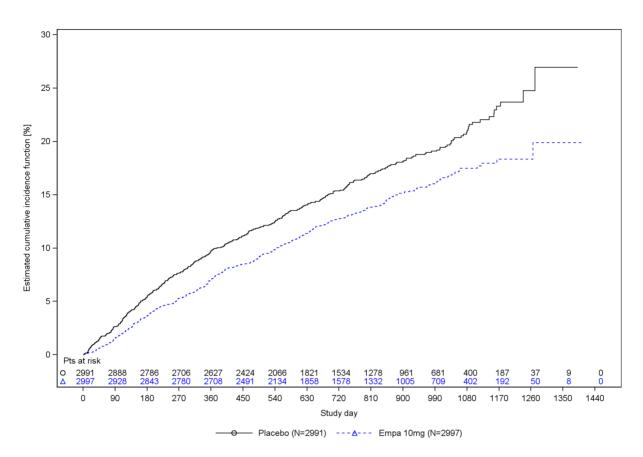
Primary outcome, CV death or HHF

The primary endpoint was the time to the first event of adjudicated CV death or adjudicated hospitalisation for heart failure.

CV death or HHF occurred in a lower proportion of patients in the empagliflozin group (415 of 2997 patients, 13.8%) than in the placebo group (511 of 2991 patients, 17.1%), and the risk of CV death or HHF was significantly reduced with empagliflozin treatment compared with placebo (HR empagliflozin vs placebo 0.79; 95% CI 0.69 to 0.90, p = 0.0003; Table 13.).

Table 13. Time to the first event of adjudicated CV death or HHF, Cox regression, trial 1245.110 - RS

	Placebo	Empa 10 mg	
Analysed patients, N (%)	2991 (100.0)	2997 (100.0)	
Patients with event, N (%)	511 (17.1)	415 (13.8)	
HHF as the first event	352 (11.8)	258 (8.6)	
CV death as the first event	159 (5.3)	156 (5.2)	
Both on the same day	0	1 (<0.1)	
Incidence rate per 100 years at risk	8.67	6.86	
Hazard ratio vs placebo (95% CI)		0.79 (0.69, 0.90)	
(95.03% CI) ¹		(0.69, 0.90)	
p-value		0.0003	


Cox regression model included factors age, baseline eGFR (CKD-EPI)cr, region, baseline diabetes status, sex, baseline LVEF, and treatment

1 Based on the reduced 2-sided a level of 0.0497 resulting from the interim analysis

Source data: [CTR 1245.110, c31803238, Section 11.1]

The separation of the estimated cumulative incidence of CV death or first HHF (considering non-CV death as a competing risk) between empagliflozin and placebo started shortly after randomisation and was maintained throughout the trial (0). The cumulative probability for censoring of patients without endpoint events was similar between treatment groups. The number of patients with a HHF or CV death during the 30 days after treatment discontinuation was similar in each treatment arm (empagliflozin: 147 patients, 5.1%; placebo: 153 patients, 5.3%).

Time to the first event of adjudicated CV death or HHF, estimated cumulative incidence function (considering non-CV death as a competing risk), trial 1245.110 – RS

Source data: [CTR 1245.110, c31803238, Section 11.1]

Key secondary outcomes, first and recurrent HHF and eGFR slope

Key secondary endpoint 1: first and recurrent HHF

The first key secondary endpoint in the hierarchical testing procedure was the occurrence of adjudicated HHF (first and recurrent).

The primary analysis consisted of a joint frailty model that accounted for the dependence between recurrent HHF and CV death and was based on all data up to the end of the planned treatment period from all randomised patients.

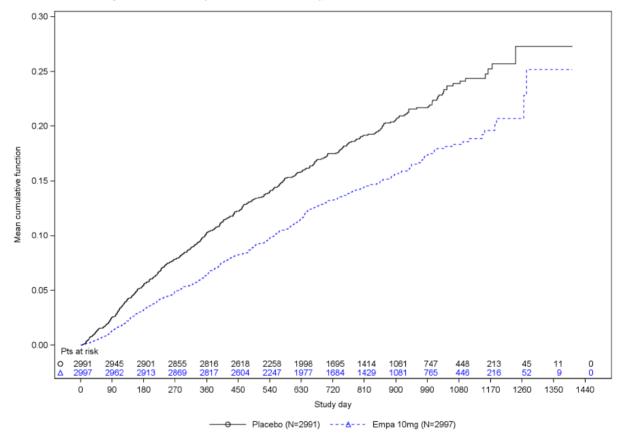
Adjudicated HHF occurred in fewer patients in the empagliflozin group than in the placebo group. The total number of HHF events (first and recurrent) was also lower in the empagliflozin group than in the placebo group. The risk of recurrent HHF was significantly reduced for empagliflozin versus placebo (HR 0.73, 95.03% CI 0.61 to 0.88, p = 0.0009). The hazard of recurrent HHF was positively correlated to that of CV death (indicated by a frailty exponent >0). For further information, refer to Table 14.

	Placebo	Empa 10 mg
alysed patients, N (%)	2991 (100.0)	2997 (100.0)
ents with HHF, N (%)	352 (11.8)	259 (8.6)
ients with HHF then CV death	85 (2.8)	63 (2.1)
ients with HHF only	267 (8.9)	196 (6.5)
ients with CV death only, N (%)	159 (5.3)	156 (5.2)
al number of HHF events	541	407

Table 14. Adjudicated HHF and CV death, joint frailty model, trial 1245.110 - RS

Hazard ratio vs placebo of recurrent HHF (95% CI)	0.73 (0.61, 0.88)
(95.03% CI) ¹	(0.61, 0.88)
p-value	0.0009
Hazard ratio vs placebo of CV death (95% CI)	0.89 (0.71, 1.12)
Frailty exponent (alpha) ²	1.02

Joint frailty model included factors age, baseline eGFR (CKD-EPI)cr, region, baseline diabetes status, sex, baseline LVEF, treatment; variance of frailty (omega) 5.09


1 Based on the reduced 2-sided a level of 0.0497 resulting from the interim analysis

2 Positive correlation between the hazards for the recurrent (HHF) and terminal events (CV death) if alpha is >0

Source data: [CTR 1245.110, c31803238, Section 11.1]

The mean cumulative number of HHF events in the empagliflozin and placebo groups started to diverge shortly after randomisation and continued to separate over the course of the trial (0).

Occurrence of adjudicated HHF (first and recurrent), mean cumulative function, trial 1245.110 - RS

Source data: [CTR 1245.110, c31803238, Section 11.1]

The results of the sensitivity analyses were consistent with the results of the primary analysis for the occurrence of adjudicated HHF (first and recurrent).

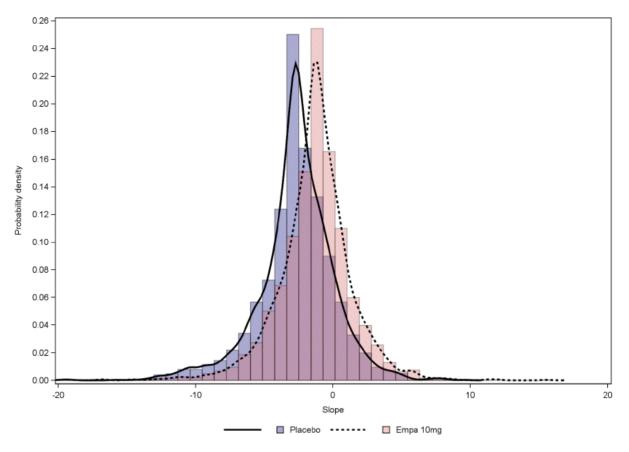
Key secondary endpoint 2: eGFR slope

The second key secondary endpoint in the hierarchical testing procedure was eGFR (CKD-EPI)_{cr} slope of change from baseline. The primary analysis was a random coefficient model allowing for random intercept and random slope per patient. Only `on-treatment' data (based on TS and using measurements up to 1 day after the last intake of study medication) were included.

In the empagliflozin group, there was an initial dip in eGFR [mL/min/1.73 m²] (intercept -3.016, 95% CI - 3.280, -2.752). Thereafter, the estimated slope was -1.253 per year (95% CI -1.465, -1.041). In the placebo group, eGFR declined more steeply over time, with an estimated slope of -2.616 per year (95% CI -2.827, -2.405). Over the treatment period, eGFR decline in the empagliflozin group was significantly slower than in the placebo group, with an estimated difference in slope of 1.363 per year (99.9% CI 0.861, 1.865; 95% CI 1.064, 1.662; p<0.0001); see Table 15.

Table 15. eGFR (CKD-EPI)_{cr} [ml/min/1.73 m²] slope of change from baseline, random intercept random slope model, trial 1245.110 – TS (on-treatment)

	Placebo	Empa 10 mg
Analysed patients	2911	2925
Intercept, estimate (95% CI)	-0.180 (-0.445, 0.084)	-3.016 (-3.280, -2.752)
Slope [/year], estimate (95% CI)	-2.616 (-2.827, -2.405)	-1.253 (-1.465, -1.041)
Difference vs placebo (95% CI)		1.363 (1.064, 1.662)
(99.9% CI) ¹		(0.861, 1.865)
p-value		<0.0001


Model included factors age, baseline eGFR (CKD-EPI)cr, region, baseline diabetes status, sex, baseline LVEF, baseline eGFR (CKD-EPI)cr-by-time interaction, treatment-by-time interaction, and treatment. Intercept and slope allowed to vary randomly between patients.

1 Based on 2-sided a level of 0.001

Source data: [CTR 1245.110, c31803238, Section 11.1]

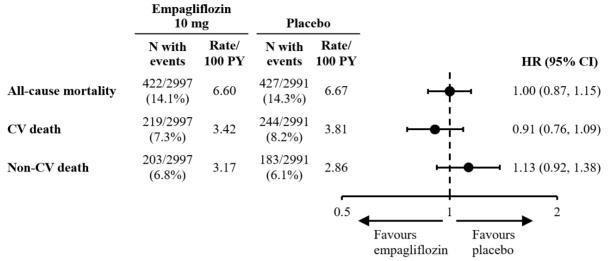
A histogram of the individual patient slopes showed a uniform shift in the empagliflozin group to slower eGFR decline compared with the placebo group, supporting that the effect of empagliflozin vs placebo treatment was observed across the population (0).

Distribution of individual patient eGFR (CKD-EPI)_{cr} $[mL/min/1.73\ m^2]$ slopes of change from baseline, trial 1245.110 – TS

Source data: [CTR 1245.110, c31803238, Section 11.1]

See below for renal outcome endpoints, including sustained eGFR.

The change of eGFR slope from baseline was a key secondary endpoint and showed a slower decline in eGFR in the empagliflozin group, with an estimated difference in slope of 1.363 mL/min/1.73 m2 per year vs placebo (99.9% CI 0.861 to 1.865; p<0.0001). The Applicant also analysed change form baseline using ANCOVA, comparable to the previous application for the HFrEF indication. This will be discussed below (Secondary/Exploratory endpoints).


As discussed above, the effect on the renal composite endpoint is actually preferred for the evaluation of renal effects. Results on this endpoint will be discussed below. The effect on slope data should support the effect on the renal composite endpoint and will be evaluated in conjunction. If this confirms the overall treatment effect on GFR change, the primary analysis model can be reported in section 5.1 of the product information; however, the complete model should be presented, i.e. change in intercept and slope, to inform the prescriber on both the initial dip and subsequent change in slope.

Mortality endpoints

Fewer patients were reported with CV death and more patients were reported with non-CV death in the empagliflozin group than in the placebo group, and the treatment differences were not significant. The incidence of all-cause mortality was similar between treatment groups (0).

A little more than half of all deaths (55% total) were due to CV causes and most of the CV deaths were classified as sudden cardiac death (empagliflozin: 99 patients, 3.3%; placebo: 114 patients, 3.8%) and

heart failure death (empagliflozin: 40 patients, 1.3%; placebo: 51 patients, 1.7%), as expected in a population with heart failure.

Time to all-cause mortality, CV death, and non-CV death, Cox regression, trial 1245.110 - RS

Source data: [CTR 1245.110, c31803238, Section 11.1.2.4]

All-cause mortality was similar in both treatment groups (HR 1.00, 95%CI 0.87 – 1.15). The number of non-CV death was larger with empagliflozin, but this difference was not statistically significant (empagliflozin 203/2997, placebo 183/2991, HR 1.13, 95%CI 0.92 – 1.38). The Applicant provided an evaluation of the causes of non-CV death and could not show a specific increase in a cause of death during empagliflozin treatment.

Secondary/Exploratory endpoints

Other HHF-related endpoints

Exploratory HHF-related endpoints corroborated the treatment benefit of empagliflozin on reducing the risk of first and recurrent HHF (0).

HHF-related endpoints, trial 1245.110 - RS

	Empagl 10 n		Plac	ebo				
	N with events	Rate/ 100 PY	N with events	Rate/ 100 PY	,		HR (95%	⁄0 CI)
First and recurrent HHF ¹ (confirmatory)	407 HHF	events	541 HHI	events		••••	0.73 (0.61)	, 0.88)
First HHF ²	259/2997 (8.6%)	4.28	352/2991 (11.8%)	5.97			0.71 (0.60	, 0.83)
First investigator- defined HHF ²	362/2997 (12.1%)	6.11	485/2991 (16.2%)	8.48		⊢ ●	0.72 (0.63	, 0.82)
					0.5	1 1	>	2
						Favours empagliflozin	Favours placebo	

1 Key secondary endpoint; joint frailty model that accounts for the dependence between occurrence of HHF and CV death

2 Cox regression, time-to-event analysis

Source data: [CTR 1245.110, c31803238, Sections 11.1.2.1 and 11.1.2.3]

The HHF results were supported by a higher win ratio for empagliflozin vs placebo (1.25, 95% CI 1.08, 1.42) when accounting for clinical hierarchies, where CV death was considered more important than HHF.

In line with the improvements in HF outcomes, there was a decrease in NT-proBNP levels in the empagliflozin group compared with placebo (adjusted gMean ratio of the relative change to baseline at Week 52 for empagliflozin vs placebo 0.95, 95% CI 0.91, 0.99).

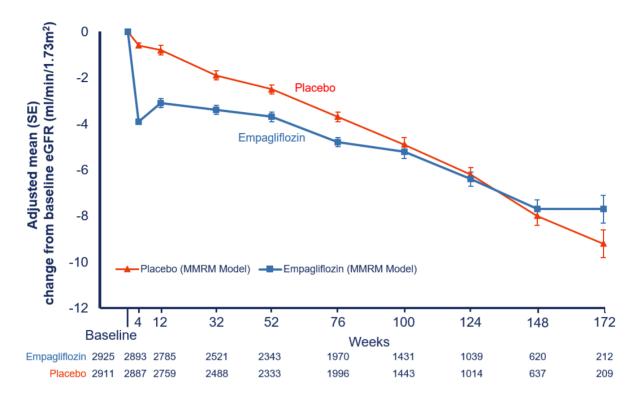
Hospitalisation endpoints

The total number of hospitalisation events was lower with empagliflozin treatment than with placebo. Treatment with empagliflozin reduced the risk of all-cause hospitalisations based on the time to the first event (0). The treatment effect of empagliflozin started to appear after about 90 days after randomisation and was maintained throughout the trial.

Hospitalisation endpoints, trial 1245.110 - RS

	Empagli 10 n		Plac	ebo			
	N with events	Rate/ 100 PY	N with events	Rate/ 100 PY	7	HR	(95% CI)
First and recurrent all-cause hospitalisation ¹	2566 hospit	alisations	2769 hospi	talisation	IS I	0.93 (0.	85, 1.01)
First all-cause hospitalisation ²	1271/2997 (42.4%)	26.85	1340/2991 (44.8%)	29.18		0.92 (0.	85, 0.99)
First all-cause mortality or all-cause hospitalisation ²	1356/2997 (45.2%)	28.65	1431/2991 (47.8%)	31.16		0.92 (0.	85, 0.99)
First investigator- defined CV hospitalisation ²	669/2997 (22.3%)	12.15	765/2991 (25.6%)	14.31	- -	0.85 (0.	77, 0.94)
				0.5	1		2
					Favours empagliflozin	Favours placebo	

1 Joint frailty model that accounts for the dependence between occurrence of all-cause hospitalisation and all-cause mortality


2 Cox regression, time-to-event analysis

Source data: [CTR 1245.110, c31803238, Section 11.1.2.5]

Further eGFR analyses

An exploratory MMRM analysis of eGFR change from baseline including on-treatment values showed a similar trend of slowing of eGFR decline over time, consistent with the results of the slope analysis.

In the empagliflozin group, there was an initial dip in eGFR at Week 4 of about 4 mL/min/1.73 m². Thereafter, a slower decrease in the empagliflozin group compared with placebo was observed. Due to the initial dip, the slower decrease in eGFR in the empagliflozin group resulted in a higher mean eGFR than in the placebo group only after about 148 weeks (Figure 9).

eGFR (CKD-EPI)_{cr} [mL/min/1.73 m²] value over time MMRM results, trial 1245.110 – TS (OC-OT)

The graphical display excludes Week 196, when only 26 patients were analysed; in the underlying MMRM model, all time points were included in the analysis

Source data: [CTR 1245.110, c31803238, Section 11.1.3.7]

In an analysis of patients with valid baseline, last-value-on-treatment, and follow-up values, eGFR partially returned towards the baseline level in the empagliflozin group at the follow-up visit, about 30 days after treatment stop, while the decrease in eGFR in the placebo group persisted. The placebo-corrected eGFR change over the total study duration, i.e. from pre-treatment (baseline) to post-treatment (follow-up visit), was 2.4 mL/min/1.73 m² for empagliflozin (95% CI 1.6, 3.2; Table 16).

Table 16. ANCOVA results for eGFR (CKD-EPI)cr [mL/min/1.73 m²] change from baseline to last value ontreatment and follow-up, trial 1245.110 – TS-FU

	Placebo	Empa 10 mg
Analysed patients	1608	1568
Baseline, mean (SE)	62.6 (0.5)	62.4 (0.5)
Last value on-treatment, adjusted mean (95% CI)	56.5 (56.0, 57.1)	56.1 (55.6, 56.7)
Change from baseline	-6.0 (-6.5, -5.4)	-6.4 (-6.9, -5.8)
Comparison vs placebo		-0.4 (-1.2, 0.3)
Follow-up, adjusted mean (95% CI)	56.8 (56.3, 57.4)	59.2 (58.7, 59.8)
Change from baseline	-5.7 (-6.2, -5.1)	-3.3 (-3.8, -2.7)
Comparison vs placebo		2.4 (1.6, 3.2)

Including only patients with valid baseline, last value on-treatment, and follow-up values; patients who took open-label SGLT-2 inhibitors in the follow-up period were excluded

Adjusted with a model including baseline value, age, and baseline LVEF as linear covariates, and region, baseline diabetes status, sex, and treatment as fixed effects

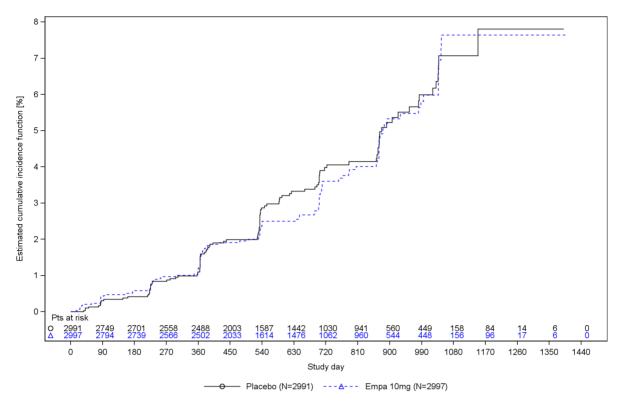
Source data: [CTR 1245.110, c31803238, Section 11.1.3.7]

Further renal outcomes

The composite renal endpoint (chronic dialysis, renal transplant, or sustained reduction in eGFR) occurred in similar proportions of patients in both groups. For most patients, the first recorded renal event was a sustained reduction in eGFR from a baseline of \geq 40% (Table 17.).

Table 17.	Time to the first event	of the composite rena	I endpoint, Cox regression	, trial 1245.110 – RS
-----------	-------------------------	-----------------------	----------------------------	-----------------------

	Placebo	Empa 10 mg
Analysed patients, N (%)	2991 (100.0)	2997 (100.0)
Patients with the composite renal endpoint, N (%)	112 (3.7)	108 (3.6)
Only sustained eGFR reduction \geq 40% as the first event	102 (3.4)	95 (3.2)
Chronic dialysis as the first event	8 (0.3)	10 (0.3)
Sustained eGFR reduction \geq 40% and sustained eGFR <1	5 2 (0.1)	3 (0.1)
mL/min/1.73 m ² (baseline \geq 30) or <10 mL/min/1.73 m	2	
(baseline <30) as the first event		
Incidence rate per 100 years at risk	2.23	2.13
Hazard ratio vs placebo (95% CI)		0.95 (0.73, 1.24)
Nominal p-value		0.7243


The composite renal endpoint: chronic dialysis (with a frequency of twice per week or more for at least 90 days), renal transplant, sustained reduction in eGFR from baseline of \geq 40%, sustained eGFR <15 mL/min/1.73 m2 for patients with baseline eGFR \geq 30 mL/min/1.73 m2, or sustained eGFR <10 mL/min/1.73 m2. For patients with baseline eGFR <30 mL/min/1.73 m2. Sustained was determined by two or more consecutive post-baseline central laboratory measurements separated by at least 30 days (the first to last of the consecutive eGFR values)

Cox regression model included factors age, baseline eGFR (CKD-EPI)cr, region, baseline diabetes status, sex, baseline LVEF, and treatment

Source data: [CTR 1245.110, c31803238, Section 11.1.2.6]

The estimated cumulative incidence function graph for the first event of the composite renal endpoint is shown in Figure 10. It is noted that the median follow-up for this endpoint was about 90 weeks (630 days).

Time to the first event of the composite renal endpoint, estimated cumulative incidence function (considering all-cause mortality as a competing risk), trial 1245.110 - RS

Source data: [CTR 1245.110, c31803238, Figure 15.2.3.1: 1]

Albuminuria

In this trial, 629 patients (10.5%) had macroalbuminuria (UACR >300 mg/g), 1860 patients (31.1%) had microalbuminuria (30 to \leq 300 mg/g), and 3474 patients (58.0%) had normoalbuminuria (<30 mg/g) at baseline. There were improvements in the empagliflozin group versus placebo with regard to progression to or reversal of macroalbuminuria. Fewer patients in the empagliflozin group (220 of 2666 patients, 8.3%) than in the placebo group (267 of 2668 patients, 10.0%) progressed to macroalbuminuria from normo- or microalbuminuria at baseline (HR 0.82, 95% CI 0.68, to 0.98). More patients in the empagliflozin group (123 of 318 patients, 38.7%) than in the placebo group (96 of 311 patients, 30.9%) reversed from macroalbuminuria to sustained normo- or microalbuminuria (HR 1.40, 95% CI 1.06, 1.83).

An initial dip in eGFR was observed with empagliflozin treatment, followed by a slower decrease in eGFR over time. This is in line with other trials performed with SGLT2i. As described above, the key secondary renal endpoint was the eGFR slope, but the effect on slope can only be interpreted if seen in conjunction with intercept. The applicant, therefore, provided an analysis of change from baseline using ANCOVA. This resulted in a larger of similar decrease in eGFR for empagliflozin vs placebo (change from baseline: empagliflozin -6.4, placebo -6.0, comparison -0.4 (-1.2, 0.3)). But after the 30 day follow up period after treatment stop, the decrease in eGFR was smaller for the empagliflozin group (change from baseline: empagliflozin -3.3, placebo -5.7, comparison 2.4 (1.6, 3.2)), supporting that the initial dip is reversible.

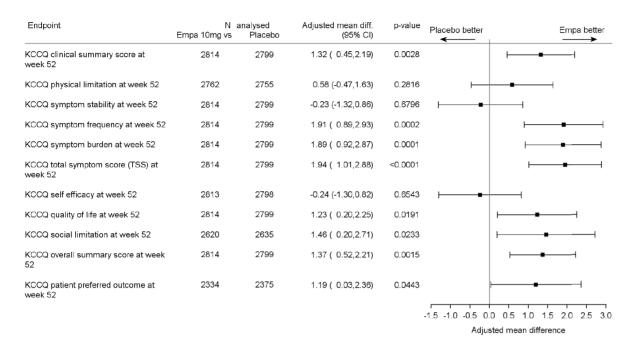
As described above, the effect on the renal composite endpoint is preferred to evaluate renal effects. The effect of empagliflozin on the eGFR slope is not supported or confirmed by the observed effects on the composite renal endpoint (i.e. chronic dialysis, renal transplant, or sustained reduction in eGFR), as the results are similar for empagliflozin vs. placebo (empagliflozin 108/2997 (3.6%), placebo 112/2991 (3.7%), HR 0.95 95%CI 0.73, 1.24). The effect on renal endpoints are therefore not robust. However, the proportion

of patients progressing to macroalbuminuria was less with empagliflozin vs. placebo, but this is also as expected from other trials with SGLT2i.

Patient-reported outcomes measured by KCCQ at Week 52

The KCCQ comprises 7 domains and 3 summary scores as shown in 0Each patient was also asked to identify the domain that was the most difficult to cope with at baseline (patient-preferred outcome). The scores of the KCCQ domains and summary scores range from 0 to 100, with higher score indicating better outcome.

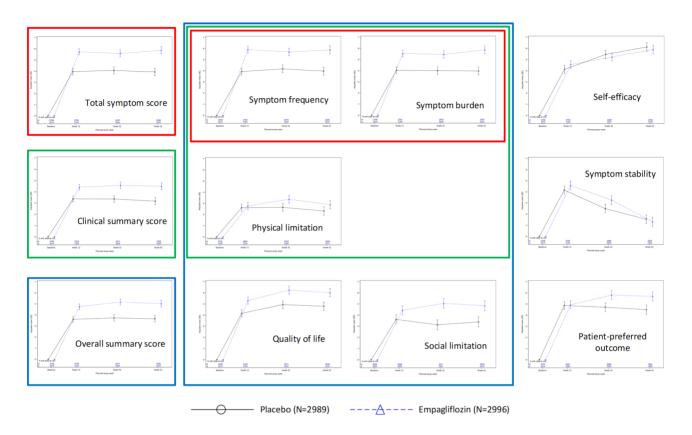
KCCQ individual domains and summary scores


KCCQ domains			
Symptom frequency -			
Symptom burden	Total symptom score	Clinical summary score —	
Physical limitation -		, -	
Quality of life —			Overall summary score
Social limitation —			
Symptom stability			
Self-efficacy			

Treatment with empagliflozin improved the KCCQ clinical summary score (an exploratory secondary endpoint) from baseline to Week 52 compared with placebo (placebo-corrected adjusted mean change from baseline 1.32, 95% CI 0.45 to 2.19; 0). The score was higher at the first post-baseline assessment (Week 12) in the empagliflozin group than the placebo group, and the difference was sustained up to the last assessment (Week 52; 0 green box).

At Week 52, more patients in the empagliflozin group (1126 patients, 41.7%) than in the placebo group (1034 patients, 38.7%) showed a clinically meaningful improvement in KCCQ clinical summary score of at least 5 points from baseline (odds ratio empagliflozin vs placebo 1.120, 95% CI 0.996, 1.259). Consistently, a lower proportion of patients in the empagliflozin group (820 patients, 30.3%) than in the placebo group (906 patients, 33.9%) showed clinically meaningful deterioration of at least 5 points from baseline (odds ratio 0.852, 95% CI 0.759, 0.957).

The favourable effect of empagliflozin vs placebo in clinical summary score was mainly driven by the domains symptom frequency and symptom burden; a positive trend in favour of empagliflozin was observed for the third component domain, physical limitation. Supportive analyses of other KCCQ summary scores (overall summary score and total symptoms score) were in line with these results (Figure 12 and Figure 13).


KCCQ individual domains and summary scores change from baseline at Week 52 MMRM, trial 1245.110 - TS (on-treatment)

Source data: [CTR 1245.110, c31803238, Section 11.1.2.7]

The improvement in HF symptoms was in line with the HF clinical outcome results and consistent with the observed improvements in NYHA class with empagliflozin treatment. More patients in the empagliflozin group (609 patients, 22.6%) than in the placebo group (490 patients, 18.3%) improved in NYHA class from baseline to Week 52, and fewer patients in the empagliflozin group (92 patients, 3.4%) than in the placebo group (130 patients, 4.8%) worsened.

KCCQ summary scores and domains change from baseline MMRM results, trial 1245.110 - TS (on-treatment)

The summary scores were based on the domains enclosed by the matching coloured boxes, also see 0.

The change from baseline in KCCQ clinical summary score at Week 52 was a secondary/exploratory endpoint. The mean treatment difference in change was 1.32, 95% CI 0.45 to 2.19. Although statistically significant, the treatment difference appears modest, and the clinical relevance is questionable. The Applicant also provided the proportion of patients achieving a clinically relevant change (i.e. 5 points). This endpoint was not defined as a secondary endpoint but resulted in a larger proportion of patients with clinically relevant change (empagliflozin 1126 patients, 41.7%; placebo 1034 patients, 38.7%), but the difference in percentage is small. For other KCCQ scores, a treatment difference was also observed, supporting a consistent finding. Nevertheless, the treatment differences are again considered small and not clinically relevant.

Other efficacy endpoints

Diabetes-related endpoints

The onset of DM in patients with pre-DM occurred in fewer patients in the empagliflozin group (120 of 1001 patients, 12.0%) than in the placebo group (137 of 979 patients, 14.0%; HR 0.84, 95% CI 0.65, 1.07). A reduction in HbA_{1c} of about 0.2% was only seen in the empagliflozin group compared with placebo in patients with diabetes at baseline. The results for the onset of DM in patients with pre-DM and in patients without DM in the meta-analysis of the EMPEROR trials showed consistent favourable trends for empagliflozin.

Other clinical cardiovascular outcome events

The following clinical events are described in this section:

• 3-point MACE (adjudicated CV death, adjudicated non-fatal MI, or adjudicated nonfatal

stroke)

- Adjudicated MI (fatal or non-fatal)
- Composite of adjudicated CV death or adjudicated non-fatal MI
- Adjudicated stroke (fatal or non-fatal)
- Composite of adjudicated CV death or adjudicated non-fatal stroke
- Adjudicated TIA
- Time to new onset of atrial fibrillation (as ECG findings or as AEs with PT "atrial fibrillation")

The results for both treatment groups were similar for all endpoints as based on Cox

regression analysis and estimated cumulative incidence analysis; see Table 18.

	Placebo	Empa 10 mg
Analysed patients, N (%)	2991 (100.0)	2997 (100.0)
Patients with 3-point MACE, N (%)	331 (11.1)	319 (10.6)
Incidence rate per 100 years at risk	5.38	5.17
Hazard ratio vs placebo (95% CI)		0.97 (0.83, 1.13)
Nominal p-value		0.6744
Patients with CV death or non-fatal MI, N (%)	273 (9.1)	254 (8.5)
Incidence rate per 100 years at risk	4.38	4.07
Hazard ratio vs placebo (95% CI)		0.94 (0.79, 1.11)
Nominal p-value		0.4423
Patients with MI (fatal or non-fatal), N (%)	40 (1.3)	49 (1.6)
Incidence rate per 100 years at risk	0.64	0.78
Hazard ratio vs placebo (95% CI)		1.23 (0.81, 1.86)
Nominal p-value		0.3375
Patients with CV death or non-fatal stroke, N (%)	302 (10.1)	287 (9.6)
Incidence rate per 100 years at risk	4.86	4.62
Hazard ratio vs placebo (95% CI)		0.96 (0.81, 1.12)
Nominal p-value		0.5809
Patients with stroke (fatal or non-fatal), N (%)	84 (2.8)	92 (3.1)
Ischaemic	74 (2.5)	83 (2.8)
Haemorrhagic	8 (0.3)	7 (0.2)
Unclassified	2 (0.1)	2 (0.1)
Incidence rate per 100 years at risk	1.35	1.48
Hazard ratio vs placebo (95% CI)		1.10 (0.82, 1.47)
Nominal p-value		0.5393
Patients with TIA, N (%)	27 (0.9)	20 (0.7)
Incidence rate per 100 years at risk	0.43	0.32
Hazard ratio vs placebo (95% CI)		0.74 (0.41, 1.32)
Nominal p-value		0.3050
Patients without baseline or history of Afib ¹ , N (%)	1477 (100.0)	1454 (100.0)
Patients with new onset of atrial fibrillation as ECG findings or as AEs, N (%)	119 (8.1)	116 (8.0)
Incidence rate per 100 years at risk	4.04	3.95
Hazard ratio vs placebo (95% CI)		1.00 (0.77, 1.29)
Nominal p-value		0.9790

Table 18. Time to 3-point MACE, MI, stroke, TIA, and new onset of atrial fibrillation, Cox regression, trial 1245.110 – RS

Cox regression model included factors age, baseline eGFR (CKD-EPI)_{cr}, region, baseline diabetes status, sex, baseline LVEF, and treatment

¹ Based on investigator-reported medical history or baseline ECG

Source data: [CTR 1245.110, c31803238, Section 11.1]

NYHA class change from baseline

More patients in the empagliflozin group (609 patients, 22.6%) than in the placebo group (490 patients, 18.3%) had an improved NYHA class at Week 52 compared with baseline, and fewer patients in the empagliflozin group (92 patients, 3.4%) than in the placebo group (130 patients, 4.8%) had a worsened NYHA class.

Body weight change from baseline

There was a small decrease in body weight in the empagliflozin group, with a placebo-corrected adjusted mean change at Week 52 from baseline of -1.28 kg (95% CI -1.54, -1.03).

Blood pressure change from baseline

There was no marked change in blood pressure in the empagliflozin group, with a placebo-corrected adjusted mean change at Week 52 from baseline of -1.2 mmHg (95% CI -2.1, -0.3) for SBP and -0.2 mmHg (95% CI -0.7, 0.3) for DBP.

The effects of empagliflozin were accompanied by effects on body weight, improvement in NYHA classification and reduction in systolic blood pressure. This is in line with previous observations with SGLT2i treatment. The HR > 1 for myocardial infarction and strokes will be discussed in the safety section.

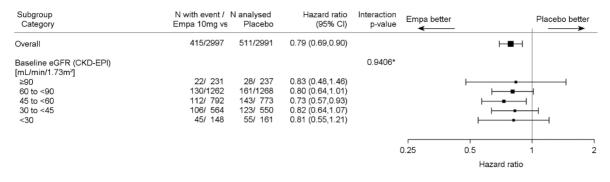
Ancillary analyses

Subgroup analyses

Primary endpoint: CV death or HHF

The consistency of the treatment effect was investigated in predefined subgroups by demographics, baseline characteristics, and baseline medications. The results were consistent across the subgroups, with the interaction p-values above 0.05 for all analysed subgroups, including diabetes status and LVEF (0 and 0). Note that the subgroup analyses were not adjusted for multiple testing and that effects observed in small subgroups are more prone to random variation. Age (interaction p-value = 0.5162), eGFR (interaction p-value = 0.6331), or LVEF (interaction p-value = 0.4333) analysed as a continuous variable had no relevant impact on the results of the primary analysis. (Figure 14, 15 and 16)

Subgroup analyses	for t	the time	to	the	first	event	of	adjudicated	CV	death	or	HHF,	Cox	regressi	on,
trial 1245.110 - RS															

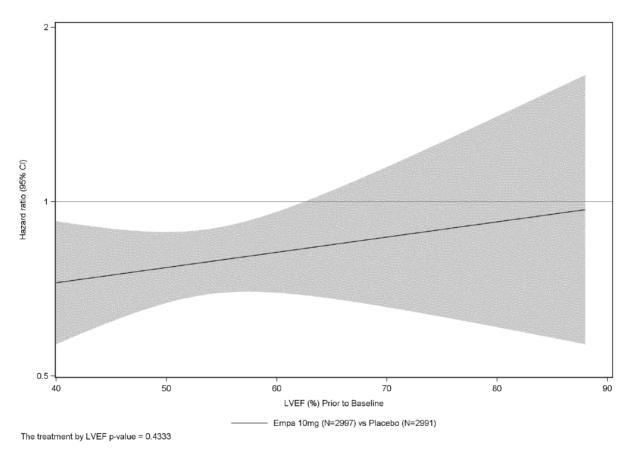

ubgroup Category	N with event / N Empa 10mg vs	l analysed Placebo	Hazard ratio (95% CI)	Interaction p-value	Empa better	Placebo bette
verall	415/2997	511/2991	0.79 (0.69,0.90)		H∎H	
aseline Diabetes Status				0.9224		
Diabetic	239/1466	291/1472	0.79 (0.67,0.94)		⊢■→	
Non-Diabetic	176/1531	220/1519	0.78 (0.64,0.95)		⊢■┤	
ge [years]				0.2548		
<70	134/1066	152/1084	0.88 (0.70,1.11)		⊢ ∎–1	
270	281/1931	359/1907	0.75 (0.64,0.87)		┝┻┤	
ex				0.5360		
Aale	253/1659	297/1653	0.81 (0.69,0.96)		. ⊢ ■-	
emale	162/1338	214/1338	0.75 (0.61,0.92)		⊢⊷⊣	
ace				0.5783		
Vhite	310/2286	370/2256	0.81 (0.69,0.94)		┞═┤	
Black/ African-American	24/ 133	28/ 125	0.73 (0.42,1.25)		⊢ - _+	
sian	54/ 413	77/ 411	0.65 (0.46,0.92)		⊢_ -	
Other including mixed race	27/ 164	36/ 198	0.95 (0.58,1.57)		⊢ •	-
seline BMI [kg/m²]				0.3208		
30	223/1654	292/1642	0.74 (0.62,0.88)		⊢∎⊣│	
30	192/1343	219/1349	0.85 (0.70,1.03)		┝╼╢	
seline eGFR (CKD-EPI)				0.7673		
L/min/1.73m ²]					.	
60	152/1493	189/1505	0.81 (0.65, 1.00)			
60	263/1504	321/1484	0.78 (0.66,0.91)		┝┻┤	
seline SBP (≥ median¹)</td <td></td> <td></td> <td></td> <td>0.5841</td> <td></td> <td></td>				0.5841		
median	200/1496	249/1474	0.76 (0.63,0.91)		⊢∎⊣∣	
median	215/1501	262/1517	0.82 (0.68,0.98)		⊢∎┥	
story of atrial fibrillation				0.9588		
atrial flutter						
10	170/1417	219/1427	0.78 (0.64,0.95)			
es	244/1576	292/1559	0.78 (0.66,0.93)		┝━┤	
aseline LVEF [%]				0.2098*		
:50	145/ 995	193/ 988	0.71 (0.57,0.88)		⊢■┤│	
0 to <60	138/1028	173/1030	0.80 (0.64,0.99)		⊢∎-1.	
60	132/ 974	145/ 973	0.87 (0.69,1.10)		⊢■┼	
story of HHF (in the last 12				0.4441		
onths)	050/0000	040/0004	0.04 (0.00.0.05)			
lo ′es	258/2298 157/ 699	319/2321 192/ 670	0.81 (0.68,0.95) 0.73 (0.59,0.90)		┝╋┤ │┝╼╌┤	
			,			
seline NYHA ^	075/0405	361/0450	0.75 (0.64.0.97)	0.3081	⊦∎⊣	
I/IV	275/2435 140/ 562	361/2452 150/ 539	0.75 (0.64,0.87) 0.86 (0.68,1.09)		- ■ - - ■ -	
	146, 652		0.00 (0.00, 1.00)			
aseline NT-proBNP [pg/mL]				0.8887		
/≥median² by atrial rillation/flutter status)						
median	126/1477	168/1508	0.76 (0.61,0.96)		⊢ ∎_1	
median	288/1516	341/1476	0.78 (0.67,0.91)		· − + - -	
aseline uric acid [mg/dL]				0.2367*		
rtiles ³)				U.2367*		
T1	96/ 963	147/ 975	0.65 (0.50,0.84)		⊢⊷⊣│	
T1 and <t2< td=""><td>130/1032</td><td>132/ 966</td><td>0.92 (0.72, 1.17)</td><td></td><td>· · · · ·</td><td></td></t2<>	130/1032	132/ 966	0.92 (0.72, 1.17)		· · · · ·	
T2	184/ 970	226/1018	0.81 (0.67,0.98)		┝╼┤	
seline use of ACE-inhibitor,				0.6939		
RB or ARNi						
No (ac	90/ 569	121/ 587	0.75 (0.57,0.99)		⊢ -	
fes	325/2428	390/2404	0.80 (0.69,0.93)		┝═┤	
seline use of MRA				0.2169		
lo	233/1878	306/1866	0.73 (0.62,0.87)		⊦∎⊣∣	
	182/1119	205/1125	0.87 (0.71,1.06)		⊢ ∎-+1	
es	162/1119	200/11/20	0.07 (0.71,1.00)			1 1

Interaction p-values are nominal. The subgroup analyses were not adjusted for multiple testing.

* Trend test. Other footnotes are explained in [CTR 1245.110, c31803238, Figure 15.2.1.3: 1].

Source data: [CTR 1245.110, c31803238, Section 11.1]

Subgroup analysis for the time to the first event of adjudicated CV death or HHF by baseline eGFR (5 categories), Cox regression, trial 1245.110 – RS



The subgroup analysis was not adjusted for multiple testing.

* Trend test nominal p-value

Source data: [CTR 1245.110, c31803238, Appendix 16.1.13.2, Figure 1.3.3]

Hazard ratio for time to first event of adjudicated HHF or CV death by baseline LVEF [%] (continuous), trial 1245.110 – RS

Source data: [CTR 1245.110, c31803238, Figure 15.2.1.3.3: 1]

Key secondary endpoint 1: first and recurrent HHF

In general, the subgroup analyses of first and recurrent HHF showed similar trends to those observed for the primary endpoint. Forest plots of the subgroup analyses are presented in Figure 17 and 0 Interaction p-values of <0.05 were observed in the subgroup analyses by LVEF and the use of MRAs.

Patients with LVEF <60% at baseline appeared to have a greater effect of empagliflozin versus placebo than patients with LVEF values \geq 60%. When the time to first HHF was analysed (i.e. not including recurrent events), this trend was less pronounced. With regard to the use of MRAs, patients taking MRAs at baseline showed a smaller effect of empagliflozin vs placebo than patients who were not taking MRAs. However, the HR was below 1 for both subcategories, and there was considerable overlap in the confidence intervals. Subgroup analyses for the time to the occurrence of adjudicated HHF (first and recurrent), joint frailty model, trial 1245.110 – RS

Subgroup Category	Total HHF / N Empa 10mg vs	l analysed Placebo	Hazard ratio (95% Cl)	Interaction p-value	Empa better	Placebo bette
verall	407/2997	541/2991	0.73 (0.61,0.88)		⊢∎⊣	
aseline diabetes status				0.9697		
Diabetic	250/1466	335/1472	0.73 (0.57,0.94)	0.0001		
Non-Diabetic	157/1531	206/1519	0.74 (0.56,0.97)			
ge [years]				0.0832		
<70	141/1066	159/1084	0.92 (0.67,1.26)		⊢_ ∎ _ _1	
≥70	266/1931	382/1907	0.65 (0.52,0.82)		┝╼┥	
ex	252/4650	200/4052	0.75 (0.50,0.05)	0.7800		
Male Female	253/1659 154/1338	308/1653 233/1338	0.75 (0.59,0.95) 0.71 (0.53,0.94)		┝╼┻╌┥ │┝─┻─┤	
				0.4070		
ace White	282/2286	368/2256	0.74 (0.59,0.92)	0.4276	⊢ ∎-1	
Black/ African-American	27/ 133	21/ 125	1.30 (0.55,3.11)		· - ·	
Asian	76/ 413	119/ 411	0.58 (0.37,0.91)		⊢	
Other including mixed race	22/ 164	33/ 198	0.79 (0.37,1.69)		⊢ • 	4
aseline BMI [kg/m²]				0.0749		
<30	211/1654	312/1642	0.63 (0.49,0.81)		⊢■→┤	
230	196/1343	229/1349	0.88 (0.67,1.15)		⊢ ∎1	
aseline eGFR (CKD-EPI)				0.1369		
nL/min/1.73m²]						
:60 :60	150/1493 257/1504	178/1505 363/1484	0.88 (0.66,1.18) 0.66 (0.52,0.85)		┝╌╋┼┤ ┝╌╋┼┤	
			(,,			
aseline SBP (≥ median¹)<br ≤ median	04544400	000/4474	0.74 (0.57.0.05)	0.9094		
median	215/1496 192/1501	290/1474 251/1517	0.74 (0.57,0.95) 0.72 (0.55,0.94)		┝╼╋╾┥	
			,	0.0404		
story of atrial fibrillation atrial flutter				0.9424		
10	164/1417	223/1427	0.72 (0.54,0.95)		⊢	
Yes	243/1576	318/1559	0.73 (0.57,0.94)		┝╼╾┥	
aseline LVEF [%]				0.0077*		
<50	122/ 995	209/ 988	0.57 (0.42,0.79)		⊢-■1	
50 to <60	129/1028	182/1030	0.66 (0.48,0.91)		⊢	
:60	156/ 974	150/ 973	1.06 (0.76,1.46)		F==-1	
story of HHF (in the last 12				0.6868		
onths) No	200/2298	271/2321	0.70 (0.56,0.88)		⊢■→	
/es	200/2230	270/ 670	0.76 (0.56,1.04)		 +	
aseline NYHA				0.2899		
^	235/2435	347/2452	0.67 (0.54,0.83)	0.2000	⊢∎⊣	
II/IV	172/ 562	194/ 539	0.84 (0.59, 1.19)		· ⊢ - + - + - + - + - + + + + + + + + + +	
aseline NT-proBNP [pg/mL]				0.7560		
/≥median² by atrial						
rillation/flutter status) ≤ median	404/4477	150/1500	0.60 (0.54.0.64)			
≤ median ≥ median	104/1477 303/1516	152/1508 388/1476	0.69 (0.51,0.94) 0.73 (0.58,0.93)			
			,	0.0101		
aseline uric acid [mg/dL] ertiles³)				0.6194*		
<t1< td=""><td>92/ 963</td><td>131/ 975</td><td>0.67 (0.47,0.95)</td><td></td><td>⊢_∎ </td><td></td></t1<>	92/ 963	131/ 975	0.67 (0.47,0.95)		⊢_ ∎	
≥T1 and <t2< td=""><td>99/1032</td><td>124/ 966</td><td>0.82 (0.58, 1.16)</td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td></t2<>	99/1032	124/ 966	0.82 (0.58, 1.16)		· · · · · · · · · · · · · · · · · · ·	
T2	213/ 970	281/1018	0.75 (0.56,0.99)		┝━━┤	
aseline use of ACE-inhibitor,				0.8612		
RB or ARNI						
No Yes	117/ 569 290/2428	151/ 587 390/2404	0.71 (0.48,1.04) 0.74 (0.60,0.91)		┝╼━─┤ ┝╼┳─┤	
	230/2420	000/2404	0.74 (0.00,0.91)		. – .	
aseline use of MRA No	004/4070	200/4000	0.60 (0.47.0.77)	0.0379		
vo /es	201/1878 206/1119	308/1866 233/1125	0.60 (0.47,0.77) 0.90 (0.68,1.19)			
	200/1119	200/1120	0.00 (0.00, 1.19)		· · · · · · · · · · · · · · · · · · ·	1 1
					0.125 0.25 0.5 1	2 4
					Hazard ratio	

Interaction p-values are nominal. The subgroup analyses were not adjusted for multiple testing.

The footnotes are explained in [CTR 1245.110, c31803238, Figure 15.2.2.1.3: 1].

Source data: [CTR 1245.110, c31803238, Section 11.1]

Subgroup analysis for the time to the occurrence of adjudicated HHF (first and recurrent) by baseline eGFR (5 categories), joint frailty model, trial 1245.110 - RS

Empa 10mg vs	Placebo	(95% CI)	p-value	Empa better		Placebo better
407/2997	541/2991	0.73 (0.61,0.88)			⊢∎	
			0.4654*			
19/ 231	31/ 237	0.79 (0.38,1.64)		H	e	
131/1262	147/1268	0.90 (0.66, 1.22)			⊢∎	+
94/ 792	157/773	0.56 (0.39,0.81)				
112/ 564	134/ 550	0.82 (0.56,1.21)				+1
51/ 148	72/ 161	0.63 (0.33,1.23)		ŀ		
				ſ	1	
				0.25 ().5	1
	407/2997 19/ 231 131/1262 94/ 792 112/ 564	407/2997 541/2991 19/ 231 31/ 237 131/1262 147/1268 94/ 792 157/ 773 112/ 564 134/ 550	407/2997 541/2991 0.73 (0.61,0.88) 19/ 231 31/ 237 0.79 (0.38,1.64) 131/1262 147/1268 0.90 (0.66,1.22) 94/ 792 157/ 773 0.56 (0.39,0.81) 112/ 564 134/ 550 0.82 (0.56,1.21)	407/2997 541/2991 0.73 (0.61,0.88) 0.4654* 19/ 231 31/ 237 0.79 (0.38,1.64) 131/1262 147/1268 0.90 (0.66,1.22) 94/ 792 157/ 773 0.56 (0.39,0.81) 112/ 564 134/ 550 0.82 (0.56,1.21) 51/ 148 72/ 161 0.63 (0.33,1.23)	407/2997 541/2991 0.73 (0.61,0.88) 0.4654* 19/231 31/237 0.79 (0.38,1.64) 131/1262 147/1268 0.90 (0.66,1.22) 94/792 157/773 0.56 (0.39,0.81) 112/564 134/550 0.82 (0.56,1.21) 51/148 72/161 0.63 (0.33,1.23)	407/2997 541/2991 0.73 (0.61,0.88) 0.4654* 19/231 31/237 0.79 (0.38,1.64) 131/1262 147/1268 0.90 (0.66,1.22) 94/792 157/773 0.56 (0.39,0.81) 112/564 134/550 0.82 (0.56,1.21) 51/148 72/161 0.63 (0.33,1.23)

The subgroup analysis was not adjusted for multiple testing.

* Trend test nominal p-value

Source data: [CTR 1245.110, c31803238, Appendix 16.1.13.2, Figure 1.3.4]

Post hoc analyses of HF outcomes by LVEF

The Applicant analysed subgroups by LVEF in more detail for the HF outcomes, using a 5% increment of LVEF to categorise patients. Patients with LVEF \geq 70% (N = 319; max 88%) were grouped together to avoid very small subgroups. No consistent trend by LVEF is observed for any endpoint analysed, with all trend test p-values >0.05, indicating that the results for the subgroups were consistent with the results in the overall trial population. However, only for patients with LVEF of 65 to <70%, was the HR above 1 for the first HHF and the occurrence of HHF (first and recurrent). The HR for CV death was consistent across the subgroups. As the majority of the primary endpoint events were HHF, accordingly the HR for the primary endpoint in the subgroup with LVEF of 65 to <70% for HHF or CV death was also above 1 (Figure 19). For the analysis of the first HHF, a numerically higher proportion of patients in the empagliflozin arm (33 of 263, 12.5%) than in the placebo arm (22 of 283, 7.8%) had an event in the subgroup with LVEF of 65 to <70%, while it was the opposite for all other subgroups (e.g. in the subgroup with LVEF ≥70%: 15 of 165 patients, 9.1% in the empagliflozin arm and 23 of 154 patients, 14.9% in the placebo arm had HHF). The incidence rates per 100 patient-years among the subgroups were similar within the respective treatment arm (ranging from 3.67 to 4.44 in the empagliflozin arm and 5.55 to 7.75 in the placebo arm), except in the subgroup with LVEF of 65 to <70%. In this subgroup, the incidence rate was highest (6.49) among all subgroups in the empagliflozin arm while lowest (3.96) among all subgroups in the placebo arm (Figure 19).

Subgroup analyses of HF outcomes by baseline LVEF - RS, post hoc

			CV death	or HHF		
s on conserve	and the second second	Incidence	rate/100 PY	Hazard ratio		
Baseline LVEF	N of patients	Empa	Placebo	(95% CI)		
Overall	5988	6.86	8.67	0.79 (0.69, 0.90)		
<45%	772	8.06	10.08	0.80 (0.57, 1.12)	++-+	
45 to <50%	1211	6.63	9.90	0.66 (0.50, 0.87)		
50 to <55%	1049	7.48	9.00	0.86 (0.64, 1.16)		
55 to <60%	1009	5.86	7.90	0.74 (0.53, 1.03)		
60 to <65%	1082	6.52	8.00	0.81 (0.59, 1.10)	IBI	
65 to <70%	546	8.07	5.76	1.35 (0.85, 2.14)	P	
≥70%	319	5.63	9.44	0.57 (0.32, 1.02)		
Trend test p	= 0.3851			(25 0.5 1 2 4	5
			First H	IHF		
		Incidence	rate/100 PY	Universities No.		
Baseline LVEF	N of patients	Empa	Placebo	Hazard ratio (95% CI)		
Overall	5988	4.28	5.97	0.71 (0.60, 0.83)		
<45%	772	4.03	6.72	0.59 (0.38, 0.92)		
45 to <50%	1211	3.67	6.38	0.58 (0.40, 0.83)		
50 to <55%	1049	4.33	5.84	0.78 (0.53, 1.14)		
55 to <60%	1009	4.06	6.13	0.64 (0.43, 0.95)		
60 to <65%	1082	4.26	5.55	0.75 (0.51, 1.10)	· · · · ·	
65 to <70%	546	6.49	3.96	1.57 (0.92, 2.70)	+	
≥70%	319	4.44	7.75	0.65 (0.29, 1.06)		
		(Occurrence of first and reci			
		Total H	-IF events	Hazard ratio		
Baseline LVEF	N of patients	Empa	Placebo	(95% CI)		
Overall	5988	407	541	0.73 (0.61, 0.88)	-0-	
<45%	772	55	82	0.77 (0.47, 1.27)		
45 to <50%	1211	67	127	0.47 (0.31, 0.70)		
50 to <55%	1049	58	91	0.71 (0.45, 1.11)		
55 to <60%	1009	71	91	0.62 (0.40, 0.97)		
60 to <65%	1082	69	70	1.04 (0.66, 1.65)		
65 to <70%	546	64	37	1.86 (1.03, 3.35)		-
≥70%	319	23	43	0.42 (0.20, 0.88)		
Trend test p	= 0.0575				0.25 0.5 1 2	4
			CV de	ath		
		Incidence	rate/100 PY	Hazard ratio		
Baseline LVEF	N of patients	Empa	Placebo	(95% CI)		
Overall	5988	3.42	3.81	0.91 (0.76, 1.09)		
<45%	772	5.53	4.60	1.24 (0.81, 1.91)		
45 to <50%	1211	3.65	4.82	0.73 (0.50, 1.07)		
50 to <55%	1049	3.56	4.51	0.81 (0.54, 1.24)		
55 to <60%	1009	2.49	3.05	0.85 (0.51, 1.41)		
60 to <65%	1082	3.21	2.86	1.15 (0.72, 1.84)		
65 to <70%	546	2.66	2.72	0.93 (0.46, 1.89)	· · · · · · · · · · · · · · · · · · ·	

Favours empagliflozin Favours placebo

ż

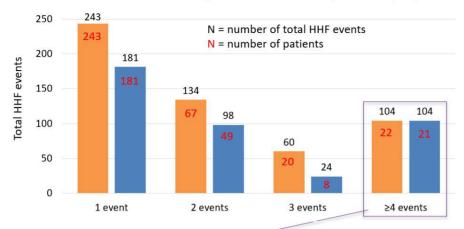
0.5

Overall, for patients who had HHF events, fewer in the empagliflozin arm had 1, 2, and 3 HHF events, but a similar number had 4 or more HHF events compared with placebo (Figure 20 upper part). For patients who had 4 or more events, in the subgroup of LVEF of 65 to <70%, 6 patients in the empagliflozin arm had 31 events while 1 patient in the placebo arm had 5 events, which substantially contributed to the imbalance in the analysis of the first and recurrent HHF in this subgroup (Figure 20 lower part).

0.66 (0.26, 1.67)

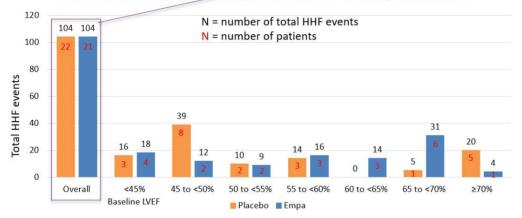
0.25

319


2.22

3.12

≥70%


Trend test p = 0.7999

Contribution of HHF events by number of events experienced per patient (upper) and from patients with 4 or more events by baseline LVEF subgroups (lower)

Contribution of HHF events by number of events experienced per patient

Contribution of HHF events from patients with ≥4 events by baseline LVEF

Key secondary endpoint 2: eGFR slope

The results for the eGFR slope analysis were generally consistent across the predefined subgroups by demographics, baseline characteristics, and baseline medications (Figure 21. and 0). Patients with diabetes showed a larger effect of empagliflozin vs placebo than patients without diabetes. However, in both of these subgroups, the eGFR decline was slower with empagliflozin treatment than with placebo.

Subgroup analyses for eGFR (CKD-EPI)cr $[mL/min/1.73 m^2]$ slope of change from baseline, random intercept random slope model, trial 1245.110 – TS (on-treatment)

Subgroup Category	Na Empa 10mg vs	nalysed Placebo	Estimate (95% CI)	Heterogeneity p-value	
Overall	2925	2911	1.363 (1.064,1.662)		⊢∎⊣
Baseline Diabetes Status				0.0103	
Diabetic	1429	1430	1.766 (1.336,2.195)	0.0100	⊢-∎
Non-Diabetic	1496	1481	0.983 (0.567,1.398)		
Age [years]				0.7076	
<70	1043	1056	1.289 (0.795, 1.783)		
≥70	1882	1855	1.408 (1.032,1.784)		
Sex	1604	1609	1 299 (0 900 1 696)	0.5684	
Male Female	1624 1301	1608 1303	1.288 (0.890,1.686) 1.463 (1.012,1.914)		
	1001	1000			
Race White	2232	2198	1.398 (1.050,1.745)	0.5738	
Black/ African-American	129	121	2.067 (0.549,3.586)		
Asian	404	401	1.063 (0.335, 1.792)		
Other including mixed race	159	191	0.922 (-0.300,2.143)	ł	· · · · · · · · · · · · · · · · · · ·
Baseline BMI [kg/m²]				0.7437	
<30	1607	1594	1.411 (1.009, 1.813)	0.1401	│
≥30	1318	1317	1.311 (0.864, 1.758)		
Baseline eGFR (CKD-EPI)				0.8586	
[mL/min/1.73m ²]				0.0000	
≥60	1454	1468	1.390 (0.976, 1.803)		┝─■─┤
<60	1471	1443	1.335 (0.902, 1.768)		⊢
Baseline SBP (≥ median)¹</td <td></td> <td></td> <td></td> <td>0.7579</td> <td></td>				0.7579	
< median	1465	1438	1.413 (0.989,1.837)		⊨
≥ median	1460	1473	1.319 (0.897, 1.740)		⊢
History of atrial fibrillation				0.9887	
or atrial flutter					
No	1381	1384	1.372 (0.940,1.804)		
Yes	1540	1523	1.368 (0.955, 1.780)		┝─■─┤
Baseline LVEF [%]				0.1238*	
<50	973	954	1.611 (1.092,2.130)		⊢
50 to <60	1001	1002	1.436 (0.924,1.949)		
≥60	951	955	1.034 (0.512,1.555)		
History of HHF (in the last 12				0.9622	
months) No	2245	2264	1 260 (1 021 1 609)		
Yes	680	647	1.360 (1.021,1.698) 1.377 (0.739,2.015)		
Deschart NVLA				1 0000	
Baseline NYHA	2386	2390	1.362 (1.035,1.688)	1.0000	
 III/IV	539	521	1.362 (0.616,2.107)		
Peneline NT repNID (pr/ml.)				0 7004	
Baseline NT-proBNP [pg/mL] (≥median by atrial</td <td></td> <td></td> <td></td> <td>0.7361</td> <td></td>				0.7361	
fibrillation/flutter status) ²					
< median	1440	1477	1.421 (1.011,1.832)		┝━━━┥
≥ median	1481	1429	1.319 (0.884,1.753)		 -1
Baseline uric acid [mg/dL]				0.7248*	
(tertiles) ³					
<t1< td=""><td>941</td><td>952</td><td>1.299 (0.777, 1.822)</td><td></td><td></td></t1<>	941	952	1.299 (0.777, 1.822)		
≥T1 and <t2 >T2</t2 	1004 951	942 988	1.301 (0.788,1.813)		
≥T2	501	300	1.434 (0.906,1.962)		
Baseline use of ACE-inhibitor,				0.4137	
ARB or ARNi	550	567	1 633 / 0 030 0 33 *		
No Yes	558 2367	567 2344	1.633 (0.932,2.334) 1.310 (0.979,1.641)		
	2007				. – .
Baseline use of MRA				0.2322	
No Yes	1836 1089	1807 1104	1.504 (1.127, 1.882)		
	1003	1104	1.127 (0.638,1.617)		-+
				-0.5	0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.
					Difference in slope estimate [/year]

Difference in slope estimate [/year]

Interaction p-values are nominal. The subgroup analyses were not adjusted for multiple testing.

* Trend test. Other footnotes are explained in [CTR 1245.110, c31803238, Figure 15.2.2.2.2: 1].

Source data: [CTR 1245.110, c31803238, Section 11.1]

Subgroup analysis for eGFR (CKD-EPI)_{cr} [mL/min/1.73 m²] slope of change from baseline by baseline eGFR (5 categories), random intercept random coefficient model, trial 1245.110 – TS (on-treatment)

Subgroup		nalysed		Heterogeneity	
Category	Empa 10mg vs	Placebo	(95% CI)	p-value	
Overall	2925	2911	1.363 (1.064,1.662)		⊢ ∎-1
Baseline eGFR (CKD-EPI)				0.4892*	
[mL/min/1.73m ²]					
≥90	229	228	1.140 (0.094,2.187)		—
60 to <90	1225	1240	1.435 (0.984,1.885)		
45 to <60	776	753	1.557 (0.975,2.140)		-
30 to <45	554	536	1.258 (0.541,1.974)		
<30	141	154	0.224 (-1.299,1.746)		⊦ · · _ · · · · · · · · · · · · · ·
					-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

The subgroup analysis was not adjusted for multiple testing.

* Trend test nominal p-value

Source data: [CTR 1245.110, c31803238, Appendix 16.1.13.2, Figure 1.3.6]

Primary endpoint sensitivity analyses

The sensitivity analyses were exploratory, and the results were generally consistent with the results of the primary analysis. The treatment effect was more pronounced for the period before COVID-19 outbreak, i.e. before the dates specified in the TSAP (01 Dec 2019 for China and 01 Jan 2020 for all other countries). As shown by the sensitivity analyses including events after the end of treatment until individual trial completion, the modification of the primary analysis had no impact on the results (0).

Sensitivity analyses for the primary endpoint: time to the first event of adjudicated CV death or HHF, trial 1245.110

	N with event / N Empa 10mg vs	N analysed Placebo	Hazard ratio (95% Cl)	Empa better	Placebo better
Primary endpoint	415/2997	511/2991	0.79 (0.69,0.90)	⊢	
Sensitivity analyses					
Analysis repeated with no covariate adjustment - RS	415/2997	511/2991	0.79 (0.70,0.90)	⊢-■	
Treated patients while on treatment + 30 days - TS	361/2996	439/2989	0.80 (0.69,0.91)	⊢_∎	
Multiple imputation for lost to follow-up - RS*	/2997	/2991	0.79 (0.70,0.90)	⊢_∎	
Based on investigator defined events - RS	516/2997	642/2991	0.77 (0.69,0.87)	⊢−■−−┤	
Competing risk model by Fine-Gray - RS	415/2997	511/2991	0.78 (0.69,0.89)	⊢∎→	
Until individual trial completion - RS	431/2997	525/2991	0.79 (0.70,0.90)	⊢-■	
Excluding events without documented physical	396/2997	486/2991	0.79 (0.69,0.90)	⊢ ∎	
signs/symptoms - RS					
Including additional prognostic covariates - RS	415/2997	511/2991	0.76 (0.67,0.87)	⊢-∎	
Including only events before COVID-19 outbreak - RS	226/2946	316/2950	0.70 (0.59,0.83)	⊢ ∎−−−1	
Including time-dependent covariate for onset	415/2997	511/2991	0.79 (0.69,0.90)	⊢ ∎	
of COVID-19 outbreak - RS					
Treatment effect before and after COVID-19 outbreak					
Before COVID-19 outbreak - RS	226/2946	316/2950	0.70 (0.59,0.83)	⊢ ∎−−−1	
After COVID-19 outbreak - RS	189/2663	195/2577	0.93 (0.76,1.13)	⊢ ■	
Including events up to 7 days prior to	415/2997	507/2991	0.79 (0.70,0.90)	⊢-∎	
SARS-Cov2 infection - RS					
			C	D.5 1	
				Hazard	ratio

COVID-19 onset dates are 01 Dec 2019 for China and 01 Jan 2020 for all other countries.

SARS-CoV-2 infection was defined by broad scope BIcMQ SARS-CoV-2 infection including PT 'Suspected Covid-19'.

* There is no single definition of number of patients with an event because each imputation can produce a different number of events; 88 patients in the placebo group and 84 patients in the empagliflozin groups were lost to follow-up for the primary endpoint (prematurely discontinued trial) and had imputed data [CTR 1245.110, c31803238, Tables 10.1: 2 and 15.2.1.2: 3].

In the sensitivity analyses the treatment effect for the primary endpoint appears larger before vs. after COVID-19 outbreak (before HR 0.70, 95%CI 0.59-0.83; after HR 0.93, 95%CI 0.76-1.13), with a similar number of subjects included before and after. The treatment difference may, at least partly, be explained by that during COVID outbreak, less patients were accepted for hospitalisation, but this is speculative.

Summary of main study(ies)

The following table summarise the efficacy results from the main studies supporting the present application. These summaries should be read in conjunction with the discussion on clinical efficacy as well as the benefit risk assessment (see later sections).

Title: EMPEROR-preserved						
	Study identifier trial 1245.110					
Design	Phase III international, multi-centre, double-blind, parallel-group, placebo-					
5	controlled, event-driven trials					
	Duration of main	phase:	event driven, median follow up of 23 months of treatment			
	Duration of Run-i	n phase:	4-28 days			
	Duration of Exten	sion phase:	30 days			
Hypothesis	Superiority					
Treatments groups	Empagliflozin 10r	ng	Empagliflozin 10mg once daily during study duration (median follow up of 23 months of treatment), n=2997 randomized			
	placebo		Placebo during study duration (median follow up of 23 months of treatment), n=2991 randomized			
Endpoints and definitions	Primary endpoint	CV death or HHF	Time to the first event of adjudicated CV death or adjudicated hospitalisation for heart failure			
	Key Secondary endpoint	first and recurrent HHF eGFR slope, change from baseline	Occurrence of adjudicated HHF (first or recurrent) eGFR (CKD-EPI) _{cr} slope of change from baseline			
	Secondary/	CV death	Time to adjudicated CV death			
	Exploratory endpoint	All-cause mortality	Time to all-cause mortality			
		Composite	Time to the first event in the composite renal			
		renal event	endpoint: chronic dialysis ¹ , renal transplant, or sustained ² reduction in eGFR (CKD-EPI) ³			
		All-cause hospitalisation	Occurrence of all-cause hospitalisation (first and recurrent)			
		Patient reported outcome	Change from baseline in KCCQ clinical summary score ⁴ at Week 52			
Database lock	<date></date>					
	Results and Analysis					
Analysis description	on Primary Anal	ysis				
Analysis population						
and time poi description	nt					

Table 19.	Summary	of Efficacy	for trial	1245.110
-----------	---------	-------------	-----------	----------

Descriptive and	statistics estimate	Treatment group	Empagliflozin 10 mg	placebo
variability		Number of subject	2297	2291
		CV death or HHF, n (%)	415 (13.8)	511 (17.1)
		empagliflozin vs. placebo HR,	0.79 0.69 to 0.90	
		95% CI, p-value	P = 0.0003	
		first and recurrent HHF, n	407	541
		HR, 95% CI, p-value	0.73 0.61 to 0.88	
			P=0.0009	
		eGFR slope, change	-1.253 (-1.465,	-2.616 (-2.827,
		from baseline,	-1.041)	-2.405)
		Slope2 [/year],		
		estimate (95% CI)	1.363	
			1.064 to 1.662	
			P<0.0001	
		CV death, n (%)	219 (7.3)	244 (8.7)
		HR (95% CI)	0.91 (0.76 to 1.09)	211(0.7)
		All-cause mortality, n (%)	422 (14.1)	427 (14.3)
		HR (95% CI)	HR 1.00 (0.87 - 1.15)	L
		Composite renal event, n (%)	108 (3.6)	112 (3.7)
		HR (95% CI)	0.95 (0.73 to 1.24)	L
		First all-cause	1271 (42.4)	1340 (44.8)
		hospitalization, n (%)		
		HR (95% CI)	0.92 (0.85 to 0.99)	
		KCCQ clinical	4.73 (3.89 to 5.12)	3.26 (2.57 tot 3.80)
		summary score,		
		change from baseline (95% CI)		
		mean diff. (95% CI)	1.32 (0.45 to 2.19)	

¹ Chronic dialysis was defined as dialysis with a frequency of twice per week or more for at least 90 days

² Sustained was determined by two or more consecutive post-baseline central laboratory measurements separated by at least 30 days (the first to last of the consecutive eGFR values)

³ Reduction in eGFR (CKD-EPI)cr was defined as reduction in eGFR from baseline of ≥40%, eGFR <15 mL/min/1.73 m2 for patients with baseline eGFR ≥30 mL/min/1.73 m2, or eGFR <10 mL/min/1.73 m2 for patients with baseline eGFR <30 mL/min/1.73 m2

⁴ KCCQ, Kansas City cardiomyopathy questionnaire; clinical summary score measures HF symptoms (frequency and burden) and physical limitations

Analysis performed across trials (pooled analyses and meta-analysis)

Meta-analysis of EMPEROR trials (1245.121 and 1245.110)

The two outcome trials were conducted globally in 24 countries. A total of 9718 randomised patients from the two trials were included in this meta-analysis. Vital status was known for 99.4% of the randomised patients. The median observation time (Q1, Q3) up to the end of the planned treatment period was about 21 (15, 29) months. Disposition, demographics, and baseline characteristics were balanced between the treatment groups; some differences were observed between EMPEROR-Preserved and EMPEROR-Reduced studies. The meta-analysis was carried out using individual patient data after both trials had been completed. The methods in the meta-analysis were consistent with those used at trial level.

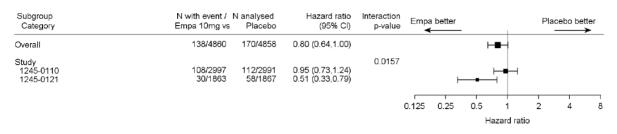
Endpoints

The following endpoints were pre-specified for the meta-analysis:

- Primary endpoint (confirmatory): the time to the first event in the composite renal endpoint
- Key secondary endpoints (confirmatory):
 - o Time to adjudicated CV death

o Time to onset of diabetes mellitus (DM; defined as HbA1c \geq 6.5% or as diagnosed by the investigator) in patients with pre-DM (defined as no history of DM and no HbA1c \geq 6.5% before treatment, and a pre-treatment HbA1c value of \geq 5.7% and <6.5%)

- o Time to all-cause mortality
- Other secondary endpoints (exploratory):
 - o Time to the first event in the composite renal endpoint and all-cause mortality
 - o Time to onset of DM in non-diabetic patients (including pre-DM and normal)
 - o eGFR (CKD-EPI)cr slope of change from baseline (chronic slope)
 - o eGFR annualised change from baseline (pre-treatment) to FU value (post-treatment) (true slope)


Results

Since empagliflozin was superior to placebo based on all confirmatory endpoints in the hierarchical testing in both trials, all alpha of the final analysis from the 2 trials (0.0496 from 1245.121 and 0.0497 from 1245.110) was transferred to this meta-analysis. The actual a for the meta-analysis was 0.0496 (2-sided).

In this meta-analysis, the hierarchical testing stopped after the primary endpoint (the composite renal endpoint), which did not show a statistically significant difference between empagliflozin and placebo. The 3 key secondary endpoints were therefore analysed in an exploratory manner.

For the primary endpoint, the pooled HR estimates are considered not meaningful as the 2 EMPEROR trials showed different results (treatment-by-trial interaction p = 0.0157; Figure 24). The risk was reduced with empagliflozin compared with placebo in trial 1245.121 (HFrEF) but not in 1245.110 (HFpEF; also see Figure 16), which may be attributed to differences in patient characteristics between the two studies.

Time to composite renal endpoint, overall and by trial – RS

Estimates for the trial level results in the pooled analysis could differ slightly from the results in the individual trial reports due to the combined analysis and different covariate adjustments.

Source data: [MA report, c31556490, Appendix 10, Figure 2.1.4.1.1]

For the 3 key secondary endpoints (exploratory), there was no interaction in the by-trial subgroup analyses and the pooled results showed that CV death or onset of diabetes (in patients with pre-diabetes) occurred in numerically fewer patients in the empagliflozin group than in the placebo group. The results for all-cause mortality were similar between empagliflozin and placebo.

As a secondary endpoint (exploratory), the onset of diabetes in patients without diabetes also occurred in numerically fewer patients in the empagliflozin group than in the placebo group (HR 0.85, 95% CI 0.70, 1.02), which was consistent between trials.

As another secondary endpoint (exploratory), eGFR [mL/min/1.73 m2] decline (i.e. chronic slope) was shown to be slower in the empagliflozin group than in the placebo group (difference to placebo 1.45 per year, 95% CI 1.18, 1.73), which was supported by a weighted ANCOVA analysis (difference to placebo 1.03 per year, 95% CI 0.71, 1.34) of annualised change from pre-treatment (baseline) to post-treatment (follow-up). These results were consistent between the trials.

A meta-analysis of the EMPEROR-reduced and -preserved was performed, with as primary endpoint the time to the first event in the composite renal endpoint. The hierarchical testing stopped after the primary endpoint, which did not show a statistically significant difference between empagliflozin and placebo. The Applicant describes that the pooled HR estimates are considered not meaningful as the 2 EMPEROR trials showed different results (treatment-by-trial interaction p = 0.0157). Based on the additional data provided by the Applicant, there is a smaller treatment effect of empagliflozin on the eGFR slope in EMPEROR-Preserved compare to in the EMPEROR-Reduced. Explanations for this finding are speculative but may be related to the higher SBP in patients with HFpEF, which may lead to different vessel architecture or intrarenal patho-mechanisms such as less inflammation. This could be important in view of anti-inflammatory effects being proposed for SGLT2i.

Clinical studies in special populations

A subgroup analysis based on age was performed (see above). This showed a similar or possible larger treatment effect on the primary endpoint for patients \geq 70 years vs <70 years (<70 years HR 0.88, 95%CI 0.70 - 1.11; \geq 70 years HR 0.75, 95%CI 0.64 - 0.87).

The applicant was requested to discuss if the recommendation in section 4.2 and 4.4 of the SmPC for the population aged \geq 85 years is still suitable based on the efficacy and safety data collected for empagliflozin and if this may differ per indication. In the response, the applicant provided the efficacy data below.

As pre-specified in the individual EMPEROR CTRs, the subgroup analyses showed consistent results for the confirmatory endpoints by age categories (< and \geq 65 years in EMPEROR-Reduced; < and \geq 70 years in EMPEROR-Preserved). Moreover, age analysed as a continuous variable had no relevant impact on the results of the primary endpoint (treatment-by-age interaction p = 0.2366 for EMPEROR-Reduced and 0.5162 for EMPEROR-Preserved).

In the two EMPEROR trials, a meaningful number of patients aged \geq 85 years were included (a total of 483 patients), with fewer patients from EMPEROR-Reduced (58 patients in the empagliflozin group and 41 patients in the placebo group) than EMPEROR-Preserved (178 and 206 patients) [CTR 1245.121, c28576542, Table 15.1.4: 1; CTR 1245.110, c31803238, Table 15.1.4: 1].

In order to increase the sample size for more precise estimations in smaller subgroups, the two trials were pooled for the analyses by age using 5 categories. The results showed that the beneficial effects of empagliflozin treatment compared with placebo were independent of age (see Figure 25).

Figure 25. Efficacy endpoints by age categories in pooled EMPEROR trials (*post hoc*)

Primary endpoint: time to the first CV death or HHF and components, Cox regression, RS

	N with event / N Empa 10mg vs	l analysed Placebo	Hazard ratio (95% Cl)	Interaction p-value	Empa bette	er	Placebo better
Adjudicated HHF or CV death				0.6933*			
Age [Years] (5 cat.): <50	32/ 188	50/ 234	0.77 (0.49,1.20)			⊢−− +−1	
Age [Years] (5 cat.): 50 to <65	167/1081	228/1111	0.74 (0.61,0.91)			⊢∎⊣∣	
Age [Years] (5 cat.): 65 to <75	270/1807	310/1723	0.79 (0.67,0.93)			⊢∎⊣	
Age [Years] (5 cat.): 75 to <85	257/1548	327/1543	0.76 (0.65,0.89)			⊢∎⊣	
Age [Years] (5 cat.): ≥85	50/ 236	58/ 247	0.83 (0.57,1.21)			⊢ •++	
CV death				0.4625*			
Age [Years] (5 cat.): <50	12/ 188	16/ 234	1.01 (0.48,2.13)			⊢	
Age [Years] (5 cat.): 50 to <65	81/1081	90/1111	0.96 (0.71,1.30)			· • • • •	
Age [Years] (5 cat.): 65 to <75	151/1807	149/1723	0.95 (0.76,1.19)			⊢ ∎–⊣	
Age [Years] (5 cat.): 75 to <85	133/1548	156/1543	0.86 (0.68,1.09)			⊢∎∔≀	
Age [Years] (5 cat.): ≥85	29/ 236	35/ 247	0.84 (0.52,1.38)				ł
Adjudicated HHF				0.7970*			
Age [Years] (5 cat.): <50	24/ 188	37/ 234	0.74 (0.44,1.24)				
Age [Years] (5 cat.): 50 to <65	114/1081	175/1111	0.66 (0.52,0.84)			⊢-∎	
Age [Years] (5 cat.): 65 to <75	172/1807	211/1723	0.74 (0.61,0.91)			⊢∎⊣	
Age [Years] (5 cat.): 75 to <85	163/1548	231/1543	0.68 (0.56,0.83)			⊢∎⊣	
Age [Years] (5 cat.): ≥85	32/ 236	40/ 247	0.76 (0.47,1.21)				
					0.25	0.5 1	2
						Hazard ratio)

Key secondary endpoint: HHF (first and recurrent), joint frailty model, RS

Subgroup Category	Total HHF / Empa 10mg vs		Hazard ratio (95% Cl)	Interaction p-value	Empa better		Placebo better
Overall	795/4860	1094/4858	0.72 (0.63,0.82)			⊢∎⊣	
Age [Years] (5 cat.)				0.6210*			
<50	39/ 188	58/ 234	0.75 (0.40,1.38)		F		
50 to <65	180/1081	289/1111	0.72 (0.55,0.95)		•		4 [.]
65 to <75	280/1807	324/1723	0.81 (0.65, 1.02)			⊢∎	
75 to <85	243/1548	362/1543	0.62 (0.49,0.79)				
≥85	53/ 236	61/ 247	0.81 (0.46,1.42)			⊢	
					Γ	1	
					0.25	0.5	1 2
						Hazard ratio	

Key secondary endpoint: eGFR [mL/min/1.73 m2] slope, random intercept random slope model, TS (on-treatment)

Subgroup Category	N a Empa 10mg vs	nalysed Placebo		Heterogeneity p-value		Placet better		Empa better		
Overall	4724	4703	1.455 (1.181,1.729)					F	∎⊣	
Age [Years] (5 cat.)				0.2469*						
<50	185	224	-0.135 (-1.601,1.330)		H				4	
50 to <65	1045	1075	1.797 (1.202,2.393)					F		
65 to <75	1763	1682	1.194 (0.747, 1.641)						-	
75 to <85	1503	1488	1.693 (1.218,2.168)					ŀ		
≥85	228	234	1.732 (0.473,2.990)					—	-	
							_	1	1	
					-2	-1	0	1	2	3
* - Trand test seress all subgroup						Differen	ce in s	lope estin	nate [/year]	

* = Trend test across all subgroups.

For renal function subgroup analyses have also been performed, described above, showing a similar result across eGFR subgroups.

Supportive study(ies)

EMPA-VISION (trial 1245.1480)

Trial 1245.148 (EMPA-VISION) was a randomised, placebo-controlled, double-blind, parallel-group, 12week trial to assess the effect of empagliflozin on cardiac physiology and metabolism. A total of 72 patients were randomised, with 36 each in the HFrEF cohort (LVEF \leq 40%) or the HFpEF cohort (LVEF \geq 50%), in a 1:1 ratio to empagliflozin 10 mg or placebo within the cohort. The primary endpoint was the change from baseline to Week 12 in phosphocreatine to adenosine triphosphate (PCr/ATP) ratio in the resting state measured by 31P cardiac magnetic resonance spectroscopy. The primary analysis was based on the perprotocol set of patients with PCr/ATP measurements at baseline and Week 12, and using an ANOVA model.

In the HFrEF cohort, 17 patients in the empagliflozin group and 18 in the placebo group were assessed for the primary endpoint. There was no significant difference between empagliflozin and placebo, with an adjusted mean change of -0.179 (SE 0.117) for empagliflozin vs 0.068 (SE 0.114) for placebo. The adjusted mean treatment difference was -0.247 (95% CI: -0.582, 0.087; p = 0.1418).

In the HFpEF cohort, 13 patients in the empagliflozin group and 11 in the placebo group were assessed for the primary endpoint. The most common reason for missing data at Week 12, and consequent exclusion from the primary analysis, was that due to COVID-19 pandemic restrictions, patients were unable to attend face-to-face visits from 24 Mar 2020 onwards. There was no significant difference between empagliflozin and placebo, with an adjusted mean change of 0.100 (SE 0.143) for empagliflozin vs 0.259 (SE 0.156) for placebo. The adjusted mean treatment difference was -0.159 (95% CI: -0.604, 0.286; p = 0.4650).

Imbalances in important baseline characteristics, a study population with fewer than expected patients with a history of diabetes, along with fewer patients than planned contributing to the HFpEF analysis (due to COVID-19 restrictions), may have limited the efficacy findings of interest in this trial.

EMPERIAL-preserved (1245.167)

The EMPERIAL-preserved trial (1245.167) was described in a previous application for the indication chronic heart failure with reduced ejection fraction. Trial 1245.167 was a randomised, placebo-controlled, double-blind, parallel-group, 12-week trial to assess the effect of empagliflozin on functional capacity. The eligibility criteria in the EMPERIAL-preserved trial were generally similar to those in the EMPEROR-preserved trial. The additional EMPERIAL trial was comparable regarding the screening and treatment, except for the treatment duration. The EMPERIAL trials were not event-driven but were designed to investigate the short-term (12 weeks) effect of empagliflozin on functional capacity, signs and symptoms of heart failure, and quality of life. Therefore, a treatment duration of 12 weeks was implemented. The EMPERIAL-preserved trial included 315 subjects.

The following endpoints were pre-specified:

Primary endpoint:

• change from baseline to Week 12 in the 6-minute-walk test (6MWT) distance

Key secondary endpoints:

- Change from baseline to Week 12 in KCCQ-TSS (, total symptom score)
- Change from baseline to Week 12 in CHQ-SAS (chronic heart failure questionnaire selfadministered standardised format) dyspnoea score

In 1245.167, of the 315 randomised patients treated with study medication, 301 (95.6%) completed the trial, and 291 (92.4%) completed the treatment with study medication. There were no relevant differences between the treatment groups.

The primary endpoint (change from baseline to Week 12 in the 6MWT distance) did not show a statistically significant difference between empagliflozin and placebo. The two key secondary endpoints (change from baseline to Week 12 in KCCQ-TSS and in CHQ-SAS dyspnoea score) were therefore tested in an exploratory fashion. No meaningful differences between treatment groups were observed in the efficacy endpoints in 1245.167 (HFpEF).

The EMPERIAL-preserved trial was designed to evaluate the effect of empagliflozin 10 mg versus placebo on functional capacity and HF-related symptoms. The results of these studies address whether symptomatology improves after short-term treatment. The primary endpoint (change from baseline to Week 12 in the 6MWT distance) did not show a statistically significant difference between empagliflozin and placebo. This, therefore, does not support a beneficial effect of empagliflozin on functional capacity. The EMPA-VISION was a trial to assess the effect of empagliflozin on cardiac physiology and metabolism and included a small number of subjects (empagliflozin n=17, placebo n=18). In this trial also, there was no significant difference between empagliflozin and placebo. The Applicant describes that imbalances in important baseline characteristics and the small number of subjects may have hampered the efficacy results.

2.4.3. Discussion on clinical efficacy

Design and conduct of clinical studies

The Applicant states that the trial was performed in accordance with the principles of the Declaration of Helsinki, in accordance with the ICH GCP.

No dose finding study has been performed. This is considered acceptable based on the data for the indication of T2DM and HFrEF, but it cannot be excluded that a lower dose than 10 mg is effective for the current indication.

The EMPEROR-preserved trial (1245.110) is a pivotal outcome trial and is an international, multi-centre, placebo-controlled, randomised (empagliflozin 10 mg to placebo 1:1), double-blind, and parallel-group by design in patients with HFpEF with or without T2DM. The aim of the trial is to demonstrate superiority of empagliflozin 10 mg versus placebo (empagliflozin 10 mg to placebo 1:1) in reducing the risk of hospitalisation for HF and of cardiovascular death in patients with symptomatic, chronic HF and preserved ejection fraction (LVEF > 40%) under stable treatment of HF symptoms. The trial consisted of an event-driven study duration, followed by a 30-days period off study-drug. The design of the trial is acceptable and in line with the EMA guideline "Clinical investigation of medicinal products in the treatment of chronic heart failure" (CPMP/EWP/235/95, Rev.2).

The inclusion criteria consisted of age \geq 18 years, eGFR \geq 20 and a LVEF >40%. Although HFpEF has been defined from a LVEF >40%, the range between 40 and 50% is currently considered HFmEF and this group of patients may differ in the aetiology and treatment response compared to patients with LVEF >50%/HFpEF. Retrospective analyses have suggested that the benefits of neurohormonal antagonists in patients with HFrEF extend to those with a mildly reduced ejection fraction (Dewan P et al. Eur J Heart Fail 2020). This may affect the interpretation of the overall efficacy results. However, stratified randomisation was performed for LVEF subgroups (i.e. LVEF <50%, LVEF 50-<60% and LVEF \geq 60%).

Known causes for HFpEF are infiltrative diseases, such as amyloidosis, but this was an exclusion criteria. The Applicant has put forward several reasons for excluding these subjects from the study (diagnosis made quite late, poor prognosis or [Takotsubo cardiomyopathy] could completely resolve). It was assessed that patients known to have one of these conditions would have a substantially different risk of a primary outcome event than the rest of the study population. This implies that the B/R could be quite different from the rest of the study population and it has not been studied specifically. The Applicant included a warning in section 4.4 of the SmPC, describing that efficacy in these patients has not been established. This is acceptable.

The other described exclusion criteria are in general reasonable and do not seem to hamper the translation of the trial results to the general HFrEF population at large in clinical practice.

The primary endpoint, i.e. combined CV endpoint of adjudicated CV death or adjudicated HHF, is considered adequate for the current application and in line with the EMA guideline (CPMP/EWP/235/95, Rev.2). For the key secondary renal endpoint, the eGFR (CKD-EPI)cr slope of change from baseline was analysed. This endpoint has the limitation that a long treatment period, i.e. more than 2 years, is considered needed to confirm a beneficial effect. A combined renal endpoint (i.e. chronic dialysis, renal transplant, or sustained reduction in eGFR) would have been preferred, although it is acknowledged that an analysis based on this clinical endpoint is difficult in this population with a broad eGFR range and considering the time frame and number of patients needed to demonstrate any reasonable effect.

COVID-19 had effect on the conduct of the study as 31.8% of patients had at least one visit affected by COVID-19 and these visits were often performed by phone instead of on-site. It is not considered likely that this affected the primary endpoint or other endpoints related to HHF or CV death/all-cause mortality. The adjudication of outcome events by the CEC was performed based on uploaded source documents. The adjudicated endpoints were therefore protected from being impacted. Also, for the other endpoints, it is not considered likely that it affected the outcome, as data are considered to be missing completely at random.

Statistical methods

The statistical analyses in the trial design are based on an intention to treat analysis, and the primary analysis was a Cox regression with adjudicated CV death or HHF as the primary endpoint with non-CV death as a competing event. This is acceptable. The secondary endpoint of recurrent hospitalisations is analysed using a joint frailty model. This will adjust the analysis of recurrent hospitalisations for the competing event of CV death and is acceptable. The MAH performed additional analyses testing the influence of using CV or overall mortality in the primary and key secondary composite endpoints, and the effect of the analysis model incorporating recurrent events in the secondary endpoint.

Cumulative incidence function curves that account for competing risks (i.e. non-CV deaths) and Kaplan-Meier curves of time to censoring were displayed.

The secondary endpoint eGFR slope is analysed with a random coefficient model. Since this allows for a random intercept, testing a difference in the (random) slope will not reflect the overall treatment effect, since the initial dip will be largely incorporated in the intercept. As a sensitivity analysis, an ANCOVA was performed to analyse the overall treatment effect of the change from baseline ignoring the path taken and this is considered acceptable.

Efficacy data and additional analyses

Trial 1245.110 included a large number of subjects (n=5988). Demographics and baseline characteristics were balanced between the treatment groups. The proportion of female subjects (44.7%) is remarkably

larger compared to trials performed with HFrEF and the EMPEROR-reduced trial (i.e. 23.9% female). This is not unexpected, as HFpEF is more common than HFrEF in female patients. The average age was 71.9 years (SD 9.4) and the majority of patients was White; 75.9% White, 13.8% Asian, and 4.3% Black/African American. About half of patients (48.9%) had T2DM, 10 patients (0.2%) had T1DM. Half of the patients (49.9%) had an eGFR of <60 mL/min/1.73 m2 and half of the subjects had atrial fibrillation (51.0%). The majority of the patients were in NYHA class II (81.5%) and the cause of HF was hypertensive (36.5%) or ischaemic (35.4%). This appears in line with the target population, supporting external validity of the results.

The distribution of patients between the LVEF subgroups was also equal between the three subgroups (LVEF <50% n=1983 (33.1%), LVEF 50%-<60% n=2058 (34.4%), LVEF >60% n=1947 (32.5%)). As the group of LVEF <50% may be considered as HFmEF and not comparable to the higher LVEF subgroups, it is relevant that the higher LVEF subgroups consist of a large proportion of the overall sample size.

Median exposure to study medication was about 23 months in both treatment groups, with 84% of patients treated for at least 1 year. This is an acceptable duration to evaluate the treatment effects on efficacy and safety for this application.

CV death or HHF (primary endpoint) occurred in a lower proportion of patients in the empagliflozin group than in the placebo group (empagliflozin 415/2997, 13.8%; placebo 511/2991, 17.1%), and the risk of CV death or HHF was reduced with empagliflozin treatment compared with placebo (HR empagliflozin vs placebo 0.79; 95%CI 0.69 to 0.90, p = 0.0003). This effect appears similar to the effect of empagliflozin in patients with HFrEF in the EMPEROR-reduced trial (HR 0.75, 95%CI 0.65 - 0.86), but with higher NNT (EMPEROR-preserved NNT 31, EMPEROR-reduced NNT 19). The separation of the estimated cumulative incidence of CV death or first HHF between empagliflozin and placebo started shortly after randomisation and was maintained throughout the trial. These findings support a beneficial effect of treatment with empagliflozin. The difference in treatment effect appears mainly due to the decrease in HHF, as CV death as the first did not differ between the treatment groups (empagliflozin n=156 (5.2%), placebo n=159 (5.3%)), but the total number of CV death (described below) was lower with empagliflozin vs placebo, but the difference was not statistically significant (empagliflozin 219/2997, placebo 244/2991, HR 0.91, 95%CI 0.76 – 1.09).

All-cause mortality was similar in both treatment groups (HR 1.00, 95%CI 0.87 – 1.15). The number of non-CV death was larger with empagliflozin, but this difference was not statistically significant (empagliflozin 203/2997, placebo 183/2991, HR 1.13, 95%CI 0.92 – 1.38). The Applicant provided an evaluation of the causes of non-CV death, and this did not show a specific increase in a cause of death during empagliflozin treatment.

An initial dip in eGFR was observed with empagliflozin treatment, followed by a slower decrease in eGFR over time. This is in line with results in previous trials performed with SGLT2i. The change of eGFR slope from baseline was a key secondary endpoint and showed a slower decline in eGFR in the empagliflozin group, with an estimated difference in slope of 1.363 mL/min/1.73 m2 per year vs placebo (99.9% CI 0.861 to 1.865; p<0.0001). But the effect on slope can only be interpreted if seen in conjunction with intercept. The applicant also provided an analysis of change from baseline using ANCOVA, similar to the previous application for the HFrEF indication. This resulted in a larger or similar decrease in eGFR for empagliflozin vs. placebo (change from baseline: empagliflozin -6.4, placebo -6.0, comparison -0.4 (-1.2, 0.3)). But after the 30 day follow-up period after stop of treatment, the decrease in eGFR was smaller for the empagliflozin group (change from baseline: empagliflozin -3.3, placebo -5.7, comparison 2.4 (1.6, 3.2)), supporting that the initial dip is reversable. The effect on the renal composite endpoint is, however, considered preferred for evaluation of renal effects. In the current trial, the effect of empagliflozin on the eGFR slope is not supported or confirmed by the observed effects on the composite renal endpoint (i.e. chronic dialysis, renal transplant, or sustained reduction in eGFR), as the results are similar for empagliflozin vs. placebo

(empagliflozin 108/2997 (3.6%), placebo 112/2991 (3.7%), HR 0.95 95%CI 0.73, 1.24). However, the Applicants supports the findings with other additional pre-specified analyses, i.e. eGFR change from pre-treatment (baseline) to post-treatment (follow-up; FU) analysed with ANCOVA, "true slope" (annualised change from pre-treatment to post-treatment weighted by time of FU squared) and progression to or reversal from macro-albuminuria. Although all exploratory, these findings indicate a consistent finding and this appears clinical relevant.

A meta-analysis of the EMPEROR-reduced and -preserved was performed with as primary endpoint the time to the first event in the composite renal endpoint. The hierarchical testing stopped after the primary endpoint, which did not show a statistically significant difference between empagliflozin and placebo. The Applicant describes that the pooled HR estimates are considered not meaningful as the 2 EMPEROR trials showed different results (treatment-by-trial interaction p = 0.0157). This composite of major adverse renal outcomes was significantly lower in the EMPEROR-Preserved trial than in the EMPEROR-Reduced trial. Based on the additional data provided by the Applicant, there is a smaller treatment effect of empagliflozin on the eGFR slope in EMPEROR-Preserved than in EMPEROR-Reduced. Explanations for this finding are speculative but may be related to the higher SBP in patients with HFpEF.

The effects of empagliflozin were accompanied by effects on body weight, improvement in NYHA classification and reduction in systolic blood pressure. This is in line with previous observations with SGLT2i treatment.

The change from baseline in KCCQ clinical summary score at Week 52 was a secondary/exploratory endpoint. The mean treatment difference in change was 1.32, 95% CI 0.45 to 2.19. Although statistically significant, the treatment difference appears modest, and the clinical relevance is questionable. The Applicant also provided the proportion of patients achieving a clinically relevant change (i.e. 5 points). This endpoint resulted in a larger proportion of patients with clinically relevant change (empagliflozin 1126 patients, 41.7%; placebo 1034 patients, 38.7%), but the difference in percentage is small. For other KCCQ scores, a treatment difference was also observed, supporting a consistent finding, but the treatment differences are again considered small and not clinically relevant.

Subgroup analyses were performed for the primary and key secondary endpoints. Important is the subgroup analyses for LVEF. Although p for interaction was not significant (p=0.2098) for the primary endpoint (CV death or HHF), the effect was more pronounced in patients with LVEF <50% compared to \geq 60%, but was positive for all LVEF subgroups and still significant for the group LVEF 50-<60% (LVEF <50% empagliflozin 145/995, placebo 193/988, HR 0.71, 95%CI 0.57-0.88; LVEF 50-<60% empagliflozin 138/1028, placebo 173/1030, HR 0.80, 95%CI 0.64-0.99; LVEF >60% empagliflozin 132/974, placebo 145/973, HR 0.87, 95%CI 0.69-1.10). As the effect of empagliflozin on the primary endpoint was beneficial for all LVEF subgroups, the indication for the treatment of heart failure in patients with HFpEF is acceptable. As the indication for the treatment of heart failure is for all types of heart failure, the wording "*for the treatment of symptomatic chronic heart failure."* is considered acceptable.

It could, however, be suggested that there is a modification of the treatment effect in subjects with higher LVEF for the key secondary endpoint, i.e. adjudicated HHF (first and recurrent), where the point estimate for the subgroup LVEF \geq 60% is HR 1.06 (95%CI 0.76-1.46) and p for interaction 0.0077. This could indicate that patients with LVEF \geq 60% benefit less from treatment with empagliflozin. The Applicant performed additional post-hoc analyses with subgroups by LVEF in more detail for the HF outcomes, using a 5% increment of LVEF to categorise patients for this secondary endpoint and for the primary endpoint. For first HHF in the subgroup LVEF 60 to <65% the hazard ratio was 0.75 (95%CI 0.51 – 1.10). The HR was >1 in subgroup LVEF 65 to <70% (HR 1.57, 95%CI 0.92 – 2.70), but in subgroup LVEF \geq 70% the HR was again <1 (HR 0.55, 95%CI 0.29 to 1.06). Notably, the number of subjects is low in this latter subgroup (subjects n=319), but the lower HR in the subgroup \geq 70%, contradicts the suggestions of a decrease in effect in higher LVEF subgroup. For the analyses of total occurrence of HHF (first and

recurrent), the HR was >1 for two subgroups, i.e. subgroup LVEF 60 to <65% (HR 1.04, 95%CI 0.66 – 1.65) and LVEF 65 to <70% (HR 1.86, 95%CI 1.03 – 3.35). But again, the subgroup LVEF \geq 70% had a HR <1 (HR 0.42, 95%CI 0.20 - 0.88). The recurrent HHF appears to mainly contribute to the finding of a higher hazard ratio for the subgroup LVEF \geq 60% in the secondary endpoint. The analyses on the contribution of HHF events by number of events experienced per patient showed that for patients who had 4 or more events, in the subgroup of LVEF of 65 to <70% 6 patients in the empagliflozin arm had 31 events while 1 patient in the placebo arm had 5 events. This may contribute to the imbalance in the analysis of the recurrent HHF in this subgroup. This may be related to chance. Based on these findings it is not considered supported that there is a decrease in efficacy in patients with higher LVEF.

Although effectiveness of treatment with ACEi/ARB, MRA's and/or ARNI's have not been demonstrated in patients with HFpEF, the majority of the patients used these treatments during the trial, i.e. ACEi/ARB's, 82.6%, MRA's 46.0%, ARNI's 4.4%. Empagliflozin was, therefore, evaluated on top of these medication, but these medications are not registered for the treatment of HFpEF. The Applicant described the baseline use of these agents in the trial population in Section 5.1 of the SmPC. The subgroup analysis for baseline use of ACEi/ARB/ARNI's and/or MRA's resulted in a similar risk reduction with empagliflozin vs. placebo for the primary and key secondary endpoints for patients using these agents compared to patients not using these agents, it is acceptable that the indication for the treatment of HFpEF is independent of the baseline use of these agents.

In elderly patients, i.e. age \geq 70 years, the point estimate of treatment effect was larger compared to patients < 70 for the primary endpoint (age \geq 70 years HR 0.75, 95%CI 0.64-0.95, age <70 years HR 0.88, 95%CI 0.70-1.11) and key secondary endpoint (HHF) (age \geq 70 years HR 0.65, 95%CI 0.52-0.82, age <70 years HR 0.92, 95%CI 0.67-1.26). This supports a beneficial effect in elderly patients.

In the sensitivity analyses the treatment effect for the primary endpoint appears larger before vs. after COVID-19 outbreak (before HR 0.70, 95%CI 0.59-0.83; after HR 0.93, 95%CI 0.76-1.13), with a similar number of subjects included before and after. The treatment difference may, at least partly, be explained by that during COVID outbreak, less patients were accepted for hospitalisation, but this is speculative.

The EMPERIAL-preserved trial (n=315) was designed to evaluate the effect of empagliflozin 10 mg versus placebo on functional capacity and HF-related symptoms. The results of these small sized studies address whether symptomatology improves after short-term treatment. The primary endpoint (change from baseline to Week 12 in the 6MWT distance) did not show a statistically significant difference between empagliflozin and placebo. This, therefore, does not support a beneficial effect of empagliflozin on functional capacity.

2.4.4. Conclusions on the clinical efficacy

The results of the well-designed pivotal outcome trial 1245.110 showed a risk reduction with empagliflozin vs. placebo in patients with HFpEF for the combined cardiovascular endpoint (HHF or CV death). For the primary endpoint, this was observed across the LVEF subgroups. The wording of indication is considered acceptable. The Applicant included a warning in section 4.4 of the SmPC, describing that efficacy in patients with infiltrative diseases has not been established. This is acceptable.

2.5. Clinical safety

Introduction

Currently, empagliflozin is registered for the treatment of T2DM and for chronic heart failure with reduced ejection fraction. Based on the placebo-controlled trials and post-marketing experience, known side-effects of treatment with empagliflozin are o.a. genital infections, keto-acidosis, hypoglycaemia, volume depletion and urinary tract infections. See also the table below from Section 4.8 of the current SmPC of Jardiance (Table 20).

Table 20.	Tabulated list of adverse reactions (MedDRA) from reported placebo-controlled studies and from
post-marke	eting experience

System organ class	Very common	Common	Uncommon	Rare
Infections and infestations		Vaginal moniliasis, vulvovaginitis, balanitis and other genital infection Urinary tract infection (including pyelonephritis and urosepsis)		Necrotising fasciitis of the perineum (Fournier's gangrene) ^a
Metabolism and nutrition disorders	Hypoglycaemia (when used with sulphonylurea or insulin)	Thirst		Diabetic ketoacidosis
Gastrointestin al disorders		Constipation		
Skin and subcutaneous tissue disorders		Pruritus (generalised) Rash	Urticaria Angioedema	
Vascular disorders	Volume depletion			
Renal and urinary disorders		Increased urination	Dysuria	
Investigations		Serum lipids increased	Blood creatinine increased/ Glomerular filtration rate decreased Haematocrit increased	

a In the EMPEROR-Reduced heart failure study, one case (<0.1%) of necrotising fasciitis of the perineum (Fournier's gangrene) was observed in a patient with heart failure and diabetes mellitus treated with empagliflozin.

The main objective of the below described safety evaluation is to present and evaluate safety data on the clinical use of empagliflozin in patients with chronic heart failure. The trials included patients with and without T2DM.

The described safety analyses followed the "treatment-emergent" principle and included all treated patients (TS). Unless otherwise specified, treatment was assigned as randomised and the analyses of AEs were based on the number of patients with AEs. AE analyses were restricted to "on-treatment" AEs, defined as

AEs with an onset date between the first trial medication intake and 7 days after the last intake, unless otherwise stated. Exposure-adjusted AEs were also displayed as incidence rates per 100 patient-years.

In addition to the safety analyses of trials 1245.110 (EMPEROR-Preserved) and 1245.148 (EMPA-VISION) presented in CTRs, safety data of 5 trials in patients with chronic HF were pooled as "SAF-HF1", regardless of LVEF category.

Patient exposure

In SAF-HF1, 10408 patients were treated. The majority of the patients were from the two EMPEROR trials (Table 21).

	Placebo	Empa 10 mg	Total
	N (%)	N (%)	N (%)
SAF-HF1 – TS	5202 (100.0)	5206 (100.0)	10408 (100.0)
1245.110 (EMPEROR-Preserved)	2989 (57.5)	2996 (57.5)	5985 (57.5)
1245.121 (EMPEROR-Reduced)	1863 (35.8)	1863 (35.8)	3726 (35.8)
1245.148 (EMPA-VISION)	36 (0.7)	35 (0.7)	71 (0.7)
1245.167 (EMPERIAL-preserved)	158 (3.0)	157 (3.0)	315 (3.0)
1245.168 (EMPERIAL-reduced)	156 (3.0)	155 (3.0)	311 (3.0)
North America	703 (13.5)	695 (13.3)	1398 (13.4)
Latin America	1402 (27.0)	1399 (26.9)	2801 (26.9)
Europe	2233 (42.9)	2242 (43.1)	4475 (43.0)
Asia	587 (11.3)	591 (11.4)	1178 (11.3)
Other ¹	277 (5.3)	279 (5.4)	556 (5.3)

Table 21. Number of treated patients in SAF-HF1

1 Included the countries Australia, India, and South Africa

Source data: [SCS appendix 2, c35146126, Tables 1.1.1 and 1.1.2]

Of the 10408 treated patients in SAF-HF1, 7472 patients (71.8%) completed treatment as planned, and 2936 patients prematurely discontinued study medication (28.2%, including patients who died). The most common reason for premature discontinuation of study medication was AE (17.7%, including fatal events; Table 22).

Table 22. Disposition of treated patients in S.	SAF-HF1
---	---------

	Placebo	Empa 10 mg	Total
	N (%)	N (%)	N (%)
Screened			20309
Randomised			10417
Treated	5202 (100.0)	5206 (100.0)	10408 (100.0)
Completed treatment	3722 (71.5)	3750 (72.0)	7472 (71.8)
Prematurely discontinued study medication	1480 (28.5)	1456 (28.0)	2936 (28.2)
Adverse event	916 (17.6)	931 (17.9)	1847 (17.7)
Non-compliance with protocol	36 (0.7)	29 (0.6)	65 (0.6)
Lost to follow-up	17 (0.3)	34 (0.7)	51 (0.5)
Withdrawal by patient	432 (8.3)	378 (7.3)	810 (7.8)
Other reason	73 (1.4)	83 (1.6)	156 (1.5)
Reason missing	6 (0.1)	1 (<0.1)	7 (0.1)

Patients are presented as randomised except for trial 1245.148 (as treated).

In SAF-HF1, the median exposure to study medication was about 18 months in both treatment groups, with 70.2% of patients treated for at least 1 year (Table 23.).

	Placebo	Empa 10 mg	Total
Number of patients, N (%)	5202 (100.0)	5206 (100.0)	10408 (100.0)
Exposure categories, N (%)			
≥12 weeks	4825 (92.8)	4865 (93.4)	9690 (93.1)
≥26 weeks	4321 (83.1)	4370 (83.9)	8691 (83.5)
≥52 weeks	3644 (70.0)	3659 (70.3)	7303 (70.2)
≥78 weeks	2542 (48.9)	2520 (48.4)	5062 (48.6)
≥104 weeks	1603 (30.8)	1589 (30.5)	3192 (30.7)
≥156 weeks	308 (5.9)	303 (5.8)	611 (5.9)
Duration of exposure [months]			
Median (Q1, Q3)	17.87 (9.63, 26.63)	17.83 (9.87, 26.67)	17.83 (9.78, 26.63)
Mean (SD)	18.42 (10.95)	18.50 (10.86)	18.46 (10.90)
Total exposure [years]	7871.7	7912.4	15784.1

Table 23. Exposure to study medication in SAF-HF1 – TS

Exposure was calculated as the time from the date of first intake until the date of permanent discontinuation of study medication. Source data: [SCS appendix 2, c35146126, Table 1.3.1]

Adverse events

In SAF-HF1, the frequencies of patients with at least one AE, severe AEs, and AEs leading to treatment discontinuation were similar between empagliflozin and placebo. The frequency of investigator-defined drug-related AEs was higher in the empagliflozin group than in the placebo group. The frequency of patients with SAEs was lower in the empagliflozin group than in the placebo group (Table 24.). The most frequent events in these categories are described below.

Category of AEs	Placebo	Empa 10 mg
	N (%)	N (%)
Number of patients	5202 (100.0)	5206 (100.0)
Patients with any AEs	4234 (81.4)	4164 (80.0)
Severe AEs	1378 (26.5)	1265 (24.3)
Investigator defined drug-related AEs	669 (12.9)	810 (15.6)
AEs leading to discontinuation of study medication	899 (17.3)	912 (17.5)
Serious AEs	2502 (48.1)	2250 (43.2)
Results in death	481 (9.2)	472 (9.1)
Is life threatening	206 (4.0)	199 (3.8)
Persistent or significant disability/incapacity	61 (1.2)	78 (1.5)
Requires or prolongs hospitalisation	1912 (36.8)	1735 (33.3)
Other medically important serious event	1129 (21.7)	970 (18.6)

Table 24. Overall summary of adverse events in SAF-HF1 - TS

Percentages calculated using total number of patients per treatment as the denominator.

A patient may be counted in more than 1 seriousness criterion.

Source data: [SCS, c35218777, Section 2.1.1]

Most frequently reported AEs

Adverse events were most frequently reported in the SOCs cardiac disorders (empagliflozin 1548 patients, 29.7% vs placebo 1822 patients, 35.0%), infections and infestations (1700 patients, 32.7% vs 1732 patients, 33.3%), and metabolism and nutrition disorders (1241 patients, 23.8% vs 1446 patients, 27.8%) (Table 25). On the PT level, the most frequently reported AE were cardiac failure (795 patients, 15.3% vs 1065 patients, 20.5%), hypotension (372 patients, 7.1% vs 313 patients, 6.0%), and renal impairment (320 patients, 6.1% vs 312 patients, 6.0%). Preferred terms with a higher frequency in the empagliflozin group than in the placebo group were urinary tract infection and hypotension. Adverse events with PTs reported in \geq 5.0% of patients in at least one group are summarised in the table below

MedDRA SOC	Placebo		Empa 10 mg	
MedDRA PT	N (%)	Rate/100	N (%)	Rate/100 pt-
		pt-yrs		yrs
Number of patients	5202 (100.0)		5206 (100.0)	
Total with adverse events	4234 (81.4)	157.84	4164 (80.0)	142.94
Cardiac disorders	1822 (35.0)	29.17	1548 (29.7)	23.39
Cardiac failure	1065 (20.5)	15.20	795 (15.3)	10.78
Atrial fibrillation	318 (6.1)	4.14	283 (5.4)	3.66
Infections and infestations	1732 (33.3)	28.31	1700 (32.7)	27.23
Urinary tract infection	259 (5.0)	3.35	314 (6.0)	4.07
Pneumonia	291 (5.6)	3.77	257 (4.9)	3.29
Metabolism and nutrition disorders	1446 (27.8)	22.93	1241 (23.8)	18.76
Hyperkalaemia	330 (6.3)	4.33	282 (5.4)	3.66
Hyperuricaemia	329 (6.3)	4.35	197 (3.8)	2.54
Diabetes mellitus	263 (5.1)	3.43	191 (3.7)	2.45
Renal and urinary disorders	904 (17.4)	12.64	907 (17.4)	12.66
Renal impairment	312 (6.0)	4.05	320 (6.1)	4.15
Vascular disorders	899 (17.3)	12.74	847 (16.3)	11.89
Hypotension	313 (6.0)	4.09	372 (7.1)	4.87
Hypertension	299 (5.7)	3.92	264 (5.1)	3.43
Injury, poisoning and procedural complications	568 (10.9)	7.73	609 (11.7)	8.23
Fall	249 (4.8)	3.24	261 (5.0)	3.37

Table 25. Patients with adverse events in SAF-HF1 (frequency \geq 5.0% in at least one treatme	ent group at
the PT level) – TS	

Source data: [SCS appendix 2, c35146126, Table 2.1.1.3]

The number of AEs and severe AEs were similar for empagliflozin compared to placebo, but the number of cardiac events is lower for empagliflozin vs. placebo, and the similar number of total AEs could therefore result in a larger number of other AEs. Based on the most frequently reported AEs, this number of events is also similar for empagliflozin compared to placebo, except for hypotension (empagliflozin 372 (7.1%) placebo 313 (6.0%)) and urinary tract infections (empagliflozin 314 (6.0%) placebo 259 (5.0%)). Hypotension is a known side-effect for SGLT2i treatment and can be related to other symptoms, such as syncope and fall, discussed below. Urinary tract infections are also known side effects of SGLT2i treatment.

AEs by worst intensity

Adverse events were primarily of mild or moderate intensity (Table 26). The frequencies of patients with severe AEs were similar between treatment groups. On the PT level, proportions of patients with AEs of

severe intensity with a frequency \geq 1.0% in at least one treatment group were also similar between groups and are summarised in the table below

Table 26. Patients with AEs by worst intensity and the most frequent severe AEs (frequency >1.0% in at least one treatment group at the PT level) in SAF-HF1 – TS

	Placebo	Empa 10 mg
	N (%)	N (%)
Number of patients	5202 (100.0)	5206 (100.0)
Patients with any AEs		
Mild	1167 (22.4)	1243 (23.9)
Moderate	1689 (32.5)	1656 (31.8)
Severe	1378 (26.5)	1265 (24.3)
Patients with severe AEs		
MedDRA SOC		
MedDRA PT		
Cardiac disorders	692 (13.3)	561 (10.8)
Cardiac failure	398 (7.7)	293 (5.6)
Infections and infestations	248 (4.8)	271 (5.2)
Pneumonia	90 (1.7)	76 (1.5)
General disorders and administration site	138 (2.7)	144 (2.8)
Death ¹	65 (1.2)	76 (1.5)
Renal and urinary disorders	147 (2.8)	121 (2.3)
Acute kidney injury	69 (1.3)	49 (0.9)

1 Deaths not attributed to another PT by the investigator. The frequencies of patients with fatal AEs were balanced between treatment. Source data: [SCS appendix 2, c35146126, Table 2.1.1.4]

The number of AEs with worst intensity were not more frequent during empagliflozin treatment compared to placebo.

Adverse events of special interest (AESIs) and specific AEs

The safety analyses were also focused on AESIs and specific AEs that represent specific medical concepts of interest with all relevant PTs analysed together.

In SAF-HF1, the overall frequencies of patients with acute renal failure, ketoacidosis, AEs leading to LLA, confirmed hypoglycaemic events, bone fractures, and urinary tract malignancies were similar in the empagliflozin group and in the placebo group (Table 27). Urinary tract infections, genital infections, and volume depletion, including hypotension, were more common in the empagliflozin group than in the placebo group. Fewer patients in the empagliflozin group had hepatic injury events. The frequencies of patients with AEs leading to treatment discontinuation were below 1% in any category of AESIs or specific AEs except for acute renal failure (which was balanced between groups).

Category of AESIs and specific AEs	Placebo		Empa 10 mg	
	N (%)	Rate/100	N (%)	Rate/100
		pt-yrs		pt-yrs
Number of patients	5202 (100.0)		5206 (100.0)	
Acute renal failure (narrow SMQ)	587 (11.3)	7.82	547 (10.5)	7.27
Serious	262 (5.0)	3.36	184 (3.5)	2.33

Table 27. Overall summary of AESIs and specific AEs in SAF-HF1 – TS

	-		1	
Leading to discontinuation	61 (1.2)	0.77	54 (1.0)	0.68
Hepatic injury (narrow SMQs)	248 (4.8)	3.20	197 (3.8)	2.51
Serious	60 (1.2)	0.76	46 (0.9)	0.58
Leading to discontinuation	12 (0.2)	0.15	10 (0.2)	0.12
Up to 30 days after treatment discontinuation	256 (4.9)	3.20	205 (3.9)	2.53
Ketoacidosis (broad BIcMQ)	77 (1.5)	0.97	63 (1.2)	0.79
Ketoacidosis (narrow BIcMQ)	6 (0.1)	0.08	4 (0.1)	0.05
AEs leading to LLA up to trial completion	33/4852 (0.7)	0.37	29/4859 (0.6)	0.32
(investigator-defined) ^{1, 2}				
Urinary tract infection (BIcMQ)	335 (6.4)	4.37	402 (7.7)	5.27
Complicated	62 (1.2)	0.78	78 (1.5)	0.98
Leading to discontinuation	21 (0.4)	0.26	34 (0.7)	0.42
Genital infection (BIcMQ)	35 (0.7)	0.44	101 (1.9)	1.28
Complicated	14 (0.3)	0.18	14 (0.3)	0.18
Leading to discontinuation	2 (<0.1)	0.03	15 (0.3)	0.19
Volume depletion (narrow BIcMQ)	483 (9.3)	6.44	566 (10.9)	7.59
Hypotension (BIcMQ, subset of vol. depl.)	430 (8.3)	5.69	499 (9.6)	6.64
Serious	77 (1.5)	0.97	101 (1.9)	1.27
Leading to discontinuation	15 (0.3)	0.19	25 (0.5)	0.31
Symptomatic hypotension (investigator-defined) $^{\!\!\!\!\!\!^2,}$ $_{\!\!\!\!_3}$	262/5166 (5.1)	3.40	309/5171 (6.0)	4.02
Confirmed hypoglycaemic events ⁴	108 (2.1)	1.38	101 (1.9)	1.28
In patients with T1DM ²	1/5 (20.0)	18.81	2/5 (40.0)	24.29
In patients with T2DM ²	89/2574 (3.5)	2.33	82/2565 (3.2)	2.15
In patients with pre-diabetes ²	12/1708 (0.7)	0.46	10/1729 (0.6)	0.38
In patients without diabetes or pre-diabetes ²	6/912 (0.7)	0.43	7/904 (0.8)	0.50
Bone fracture (BIcMQ)	171 (3.3)	2.20	182 (3.5)	2.32
Serious	82 (1.6)	1.04	91 (1.7)	1.15
Leading to discontinuation	3 (0.1)	0.04	6 (0.1)	0.07
Up to trial completion	196 (3.8)	2.20	212 (4.1)	2.38
Urinary tract malignancy up to trial completion	22 (0.4)	0.24	28 (0.5)	0.31
(BIcMQ)				
Patients with ≥ 6 months of exposure only ²	14/4302 (0.3)	0.23	18/4343 (0.4)	0.29

SMQ, standardised MedDRA query; BIcMQ, Boehringer Ingelheim customised MedDRA query

1 Data collected only in 1245.110 and 1245.121

2 Patients with events/patients in subgroup (%)

3 Data collected only in 1245.110, 1245.121, 1245.167, 1245.168

4 Hypoglycaemic AEs with a plasma glucose value of \leq 70 mg/dL or where assistance was required

Source data: [SCS appendix 2, c35146126, Tables 2.1.1.10, 2.2.1.5, 2.2.1.6, 2.2.2.4, 2.2.2.5, 2.2.2.6, 2.2.4.3, 2.2.5.5, 2.2.5.6, 2.2.7.5, 2.2.7.6, 2.2.9.1, 2.2.9.7, 2.2.9.8, 2.2.10.14, 2.2.11.5, 2.2.11.6, 2.2.11.7, 2.2.12.2, 2.2.12.3]

Decreased renal function

The frequencies of patients with acute renal failure (narrow SMQ) were similar in the empagliflozin group and in the placebo group; see Table 28. The most frequently reported PT within the SMQ was renal impairment. Of note, the PT acute kidney injury was reported for a lower proportion of patients in the empagliflozin group than in the placebo group.

The frequency of patients with SAEs of acute renal failure was also lower in the empagliflozin group than in the placebo group. Adverse events leading to discontinuation of study medication were reported with similar frequencies in the empagliflozin group and in the placebo group.

MedDRA PT	Placebo		Empa 10 mg	
	N (%)	Rate/100 pt-	N (%)	Rate/100 pt-
		yrs		yrs
Number of patients	5202 (100.0)		5206 (100.0)	
Acute renal failure (narrow SMQ)	587 (11.3)	7.82	547 (10.5)	7.27
Renal impairment	312 (6.0)	4.05	320 (6.1)	4.15
Acute kidney injury	166 (3.2)	2.11	118 (2.3)	1.49
Renal failure	141 (2.7)	1.80	131 (2.5)	1.66
Azotaemia	4 (0.1)	0.05	0	0
Nephropathy toxic	3 (0.1)	0.04	0	0
Oliguria	3 (0.1)	0.04	2 (<0.1)	0.02
Anuria	1 (<0.1)	0.01	0	0
Prerenal failure	1 (<0.1)	0.01	1 (<0.1)	0.01
Serious	262 (5.0)	3.36	184 (3.5)	2.33
Leading to discont. of study medication	61 (1.2)	0.77	54 (1.0)	0.68

Table 28. Patients with acute renal failure (SMQ) in SAF-HF1 – TS

Source data: [SCS appendix 2, c35146126, Tables 2.2.1.4 to 6]

Subgroup analyses were performed by age, sex, race, and baseline eGFR, diabetes status, and use of certain medications (i.e. ACE-inhibitors/ARB/ARNi, diuretics, loop/high-ceiling diuretics).

Investigator-defined decreased renal function (reported as AESI) was reported for 2.7% of patients (133 of 4894) in the empagliflozin group and 4.0% of patients (197 of 4888) in the placebo group.

In the analysis of safety laboratory parameters, the frequencies of patients with serum creatinine $\geq 2x$ the baseline value and above the normal range were 1.7% in the empagliflozin group and 2.1% in the placebo group.

Hepatic injury

The frequency of patients with hepatic injury (narrow SMQs) was lower in the empagliflozin group than in the placebo group (Table 29). The most frequent PTs were liver injury, hepatic function abnormal, and hepatic steatosis. All other PTs were reported for $\leq 0.2\%$ of patients in either treatment group.

Similar frequencies between groups or lower frequencies in the empagliflozin group than in the placebo group were observed for serious hepatic injury, for events leading to discontinuation of study medication, and for all hepatic injury events when considering a longer period of up to 30 days after treatment discontinuation. Patients with diabetes and patients without diabetes showed the same trend as the overall population.

Table 29. Patients with hepatic injury (SMQ; frequency $\geq 0.2\%$ in at least one treatment group at the PT level) in SAF-HF1 – TS

MedDRA PT	Placebo		Empa 10 mg	
	N (%)	Rate/100	N (%)	Rate/100
		pt-yrs		pt-yrs
Number of patients	5202 (100.0)		5206 (100.0)	

Hepatic injury (narrow SMQs)	248 (4.8)	3.20	197 (3.8)	2.51
Liver injury	28 (0.5)	0.35	19 (0.4)	0.24
Hepatic function abnormal	26 (0.5)	0.33	24 (0.5)	0.30
Hepatic steatosis	24 (0.5)	0.30	17 (0.3)	0.21
Liver disorder	11 (0.2)	0.14	7 (0.1)	0.09
Hepatomegaly	9 (0.2)	0.11	6 (0.1)	0.07
Hepatic cirrhosis	7 (0.1)	0.09	8 (0.2)	0.10
Hyperbilirubinaemia	6 (0.1)	0.08	9 (0.2)	0.11
Congestive hepatopathy	4 (0.1)	0.05	9 (0.2)	0.11
Hepatic injury (narrow SMQs), serious	60 (1.2)	0.76	46 (0.9)	0.58
Hepatic injury (narrow SMQs) leading to	12 (0.2)	0.15	10 (0.2)	0.12
discont. of study medication				
Hepatic injury (narrow SMQs) up to 30 days	256 (4.9)	3.20	205 (3.9)	2.53
after treatment discontinuation				
With diabetes	137/2579 (5.3)	3.61	113/2570 (4.4)	2.95
Without diabetes	111/2620 (4.2)	2.81	84/2633 (3.2)	2.10

For subgroups, patients in subgroup with events/all patients in subgroup (%) are shown.

Source data: [SCS appendix 2, c35146126, Tables 2.2.2.3 to 7]

The frequencies of patients with elevated liver enzyme values were balanced between treatment groups (Table 30.).

Table 30.	Patients	with	elevated	liver	enzyme	values,	up	to 30) days	after	treatment	discontinuat	ion in
SAF-HF1 -	TS												

Elevated liver enzymes criteria	Placebo	Empa 10 mg
	N (%)	N (%)
Number of patients	5202 (100.0)	5206 (100.0)
ALT and/or AST \geq 3x ULN	89 (1.7)	74 (1.4)
≥5x ULN	34 (0.7)	30 (0.6)
≥10x ULN	13 (0.2)	5 (0.1)
≥20x ULN	2 (<0.1)	2 (<0.1)
With total bilirubin $\geq 2x$ ULN ¹	5 (0.1)	4 (0.1)
Alkaline phosphatase <2x ULN ²	2 (<0.1)	4 (0.1)
Alkaline phosphatase $\geq 2x$ ULN ²	3 (0.1)	0

1 Total bilirubin elevation within 30 days after ALT and/or AST elevation

2 Maximum alkaline phosphatase value within 30 days after ALT and/or AST elevation

Source data: [SCS appendix 2, c35146126, Table 2.3.1.2]

Hepatic events (occurring up to 30 days after treatment discontinuation) were adjudicated; adjudication results with patient details are summarised in the CTRs. No hepatic events that met the criteria for adjudication were reported in trials 1245.168 and 1245.148.

Ketoacidosis

For a comprehensive analysis, ketoacidosis was investigated using both broad and narrow BIcMQs. Based on the broad BIcMQ, events suggestive of ketoacidosis were reported for 63 patients (1.2%) in the empagliflozin group and for 77 patients (1.5%) in the placebo group; see Table 31. . Metabolic acidosis was the most frequent PT of the broad BIcMQ; there was no relevant increase in frequency with empagliflozin treatment.

All events in the broad BIcMQ were adjudicated (except for the PTs 'abnormal blood bicarbonate' and 'decreased blood bicarbonate' in trial 1245.110, which were added to the broad BIcMQ as part of a MedDRA update while the trial was ongoing). One patient in each group had an event which was adjudicated as certain ketoacidosis by the independent CEC (both patients had T2DM at baseline). The event was of mild severity in the patient treated with empagliflozin and of moderate severity in the patient treated with placebo.

The narrow BIcMQ ketoacidosis included 4 patients (0.1%) in the empagliflozin group and 6 patients (0.1%) in the placebo group. Subgroups (by diabetes status and sex) and ketoacidosis leading to discontinuation of study medication were analysed based on the narrow BIcMQ (Table 31.)

MedDRA PT	Placebo		Empa 10 mg	
	N (%)	Rate/100 pt-	N (%)	Rate/100 pt-
		yrs		yrs
Number of patients	5202 (100.0)		5206 (100.0)	
Ketoacidosis (broad BIcMQ)	77 (1.5)	0.97	63 (1.2)	0.79
Metabolic acidosis	23 (0.4)	0.29	24 (0.5)	0.30
Diabetic metabolic decompensation	25 (0.5)	0.31	13 (0.2)	0.16
Blood bicarbonate decreased	19 (0.4)	0.24	18 (0.3)	0.23
Ketoacidosis	3 (0.1)	0.04	1 (<0.1)	0.01
Ketosis	3 (0.1)	0.04	0	0
Diabetic ketoacidosis	2 (<0.1)	0.03	3 (0.1)	0.04
Ketoacidosis (broad BIcMQ), serious	47 (0.9)	0.59	29 (0.6)	0.36
Ketoacidosis (narrow BIcMQ)	6 (0.1)	0.08	4 (0.1)	0.05
With T2DM	5/2574 (0.2)	0.13	4/2565 (0.2)	0.10
With pre-diabetes	1/1708 (0.1)	0.04	0/1729	0

Table 31. Patients with ketoacidosis (BIcMQ; frequency $\ge 0.1\%$ in at least one treatment group at the PT level) in SAF-HF1 – TS

For subgroups, patients in subgroup with events/all patients in subgroup (%) are shown. There were no patients with events in the 'T1DM' and 'Without diabetes or pre-diabetes' categories.

Source data: [SCS appendix 2, c35146126, Tables 2.2.3.4 to 6, 2.2.3.9]

AEs leading to lower limb amputation (LLA)

These events were only analysed for trials with a duration of longer than 12 weeks (i.e. 1245.110 and 1245.121). The frequencies of patients with investigator-defined AEs leading to LLA up to trial completion were similar in the empagliflozin group (29 patients, 0.6%) and in the placebo group (33 patients, 0.7%); see Table 27. . Amputations were mostly minor (e.g. toe[s]) rather than major (empagliflozin: 8 patients [0.2%], placebo: 7 patients [0.1%]; e.g. above the knee). Most common reasons for the first LLA were untreatable/necrotising infection and ischaemic reasons.

Investigator-defined AEs leading to LLA (reported as AESIs during the on-treatment period) were reported for 21 patients (0.4%) in the empagliflozin group and 23 patients (0.5%) in the placebo group.

Subgroups were analysed by baseline eGFR, diabetes status, presence of a previous amputation, and history of peripheral arterial occlusive disease. The results were consistent with the main analysis of AEs leading to LLA.

Urinary tract infection

The frequency of patients with urinary tract infection (narrow sub BIcMQ) was higher in the empagliflozin group than in the placebo group (Table 32.). The most frequently reported PT was urinary tract infection, which was mainly driving the difference between groups. Other PTs were reported with similar and/or low ($\leq 0.2\%$) frequencies in both treatment groups.

A similar trend as for urinary tract infection (narrow BIcMQ) was observed for the frequencies of patients with complicated urinary tract infections and patients with urinary tract infections leading to treatment discontinuation (Table 32.).

MedDRA PT	Placebo		Empa 10 mg	
	N (%)	Rate/100 pt-yrs	N (%)	Rate/100 pt-yrs
Number of patients	5202 (100.0)		5206 (100.0)	
Urinary tract infection (narrow BIcMQ)	335 (6.4)	4.37	402 (7.7)	5.27
Urinary tract infection	259 (5.0)	3.35	314 (6.0)	4.07
Cystitis	61 (1.2)	0.77	51 (1.0)	0.64
Urosepsis	12 (0.2)	0.15	17 (0.3)	0.21
Escherichia urinary tract	4 (0.1)	0.05	8 (0.2)	0.10
Urethritis	4 (0.1)	0.05	8 (0.2)	0.10
Pyelonephritis	3 (0.1)	0.04	7 (0.1)	0.09
Pyelonephritis acute	5 (0.1)	0.06	7 (0.1)	0.09
Urinary tract infection bacterial	3 (0.1)	0.04	7 (0.1)	0.09
Asymptomatic bacteriuria	6 (0.1)	0.08	5 (0.1)	0.06
Complicated	62 (1.2)	0.78	78 (1.5)	0.98
Leading to discont. of study medication	21 (0.4)	0.26	34 (0.7)	0.42

Table 32. Patients with urinary tract infection (BIcMQ; frequency $\geq 0.1\%$ in at least one treatment group
at the PT level) in SAF-HF1 – TS

Source data: [SCS appendix 2, c35146126, Tables 2.2.5.4 to 6]

Subgroup analyses were performed by age, sex, race, and baseline eGFR, diabetes status, and history of chronic or recurrent urinary tract infection. The results of the subgroup analyses were generally similar to the main analyses of urinary tract infections.

Investigator-defined urinary tract infections (including urosepsis and acute pyelonephritis) were reported for 403 patients (7.7%) in the empagliflozin group and 338 patients (6.5%) in the placebo group. Urinary tract infections were predominantly infections of the lower urinary tract (bladder and below) or asymptomatic bacteriuria. Most patients in both treatment groups had a single episode rather than multiple episodes of urinary tract infection.

The trend observed in the analysis, including the PT urosepsis and pyelonephritis based on the narrow sub BIcMQ (empagliflozin: 30 patients [0.6%], placebo: 21 patients [0.4%]; Table 33.) was similar to what was observed for urinary tract infection (narrow BIcMQ; presented above). Subgroup analyses by sex and diabetes status were performed for the PT urosepsis and pyelonephritis (narrow sub BIcMQ). The results showed an imbalance in female patients with urosepsis or pyelonephritis, with a higher frequency in the empagliflozin group than in the placebo group, and that events occurred in both patients with diabetes and patients without diabetes (Table 33.).

Table 33. Patients with acute pyelonephritis or urosepsis in SAF-HF1 – TS

MedDRA PT	Placebo	Empa 10 mg

	N (%)	Rate/100	pt-	N (%)	Rate/100	pt-
		yrs			yrs	
Number of patients	5202 (100.0)			5206		
				(100.0)		
Urosepsis (PT) or pyelonephritis (narrow	21 (0.4)	0.26		30 (0.6)	0.38	
sub BIcMQ)						
Urosepsis	12 (0.2)	0.15		17 (0.3)	0.21	
Pyelonephritis	3 (0.1)	0.04		7 (0.1)	0.09	
Pyelonephritis acute	5 (0.1)	0.06		7 (0.1)	0.09	
Pyelitis	2 (<0.1)	0.03		0	0	
Kidney infection	0	0		2 (<0.1)	0.02	
Male	15/3287	0.31		10/3311	0.20	
	(0.5)			(0.3)		
Female	6/1915 (0.3)	0.20		20/1895	0.65	
				(1.1)		
With diabetes	13/2579	0.33		15/2570	0.38	
	(0.5)			(0.6)		
Without diabetes	8/2620 (0.3)	0.20		15/2633	0.37	
				(0.6)		

For subgroups, patients in subgroup with events/all patients in subgroup (%) are shown.

Source data: [SCS appendix 2, c35146126, Tables 2.2.6.1 to 3]

Events of investigator-defined sepsis with source urinary tract infection or non-urinary tract infection were collected only in trials 1245.110, 1245.121, and 1245.148. Sepsis with an origin other than urinary tract infections (investigator-defined) was reported for 76 patients (1.6%) in the empagliflozin group and for 56 patients (1.1%) in the placebo group. The two EMPEROR trials contributed differently to the analysis of the pooled safety data (see below). No events were reported in trial 1245.148.

In trial 1245.121, sepsis with an origin other than urinary tract infections (investigator-defined, including those with missing origin) was reported for 28 patients (1.5%) in the empagliflozin group and for 14 patients (0.8%) in the placebo group. The difference in frequency could not be attributed to specific PTs. All cases were medically reviewed, and no clear pattern regarding the source of non-urinary tract infection sepsis could be observed. In trial 1245.110, the frequencies of patients with sepsis with an origin other than urinary tract infections (investigator-defined) were balanced between treatment groups (empagliflozin: 48 patients [1.6%], placebo: 43 patients [1.4%]).

Genital infection

Genital infections (based on narrow BICMQ) were reported for more patients in the empagliflozin group than in the placebo group (Table 34.). The most frequent PTs in the empagliflozin group were vulvovaginal mycotic and vulvovaginal candidiasis. Genital infections leading to treatment discontinuation were infrequent, although they showed the same trend. No difference between treatment groups was observed in the frequencies of patients with complicated genital infections (Table 34.).

Table 34.	Patients with genital	infection (BIcMQ; free	quency ≥0.2% in at lea	ast one treatment group at the
	n SAF-HF1 – TS			

MedDRA PT	Placebo		Empa 10 mg	
	N (%)	Rate/100 pt-yrs	N (%)	Rate/100 pt-yrs
Number of patients	5202 (100.0)		5206 (100.0)	
Genital infection (narrow BIcMQ)	35 (0.7)	0.44	101 (1.9)	1.28
Vulvovaginal mycotic	4 (0.1)	0.05	15 (0.3)	0.19

Vulvovaginal candidiasis	7 (0.1)	0.09	14 (0.3)	0.18
Genital infection fungal	0	0	11 (0.2)	0.14
Fungal balanitis	0	0	10 (0.2)	0.13
Balanoposthitis	0	0	9 (0.2)	0.11
Complicated	14 (0.3)	0.18	14 (0.3)	0.18
Leading to discont. of study medication	2 (<0.1)	0.03	15 (0.3)	0.19

Source data: [SCS appendix 2, c35146126, Tables 2.2.7.4 to 6]

Subgroup analyses were performed by age, sex, race, and baseline eGFR, diabetes status, and history of chronic or recurrent genital infection. The results of the subgroup analyses were consistent with the main analysis, showing higher frequencies in the empagliflozin group than in the placebo group (Table 35.).

Table 35. Patients with genital infection (BIcMQ) in subgroups in SAF-HF1 (by sex and diabetes status) – TS

Subgroup	Placebo		Empa 10 mg	
	n/N (%)	Rate/100 pt-yrs	n/N (%)	Rate/100 pt-yrs
All patients	35/5202 (0.7)	0.44	101/5206 (1.9)	1.28
Male	15/3287 (0.5)	0.31	53/3311 (1.6)	1.09
Female	20/1915 (1.0)	0.66	48/1895 (2.5)	1.59
With diabetes	19/2579 (0.7)	0.49	57/2570 (2.2)	1.48
Without diabetes	16/2620 (0.6)	0.40	44/2633 (1.7)	1.09

N, all patients in subgroup; n, patients in subgroup with analysed AE category

Source data: [SCS appendix 2, c35146126, Tables 2.2.7.4, 2.2.7.8, 2.2.7.11]

Investigator-defined genital infections were reported for 115 patients (2.2%) in the empagliflozin group and 32 patients (0.6%) in the placebo group. Most patients with genital infections had a single episode rather than multiple episodes.

Volume depletion and hypotension

The frequency of patients with volume depletion (narrow BIcMQ), including hypotension (BIcMQ, subset of volume depletion), was higher in the empagliflozin group than in the placebo group (Table 36.). The most frequently reported PT was hypotension, which was also analysed separately as BIcMQ. Hypotension based on the BIcMQ was reported for 499 patients (9.6%) in the empagliflozin group and for 430 patients (8.3%) in the placebo group. In the BIcMQ analysis, there was no other PT which predominantly accounted for the difference in frequencies. The same trend as in the analysis of all events was observed in the analysis of volume depletion (narrow BIcMQ) or hypotension (BIcMQ) leading to treatment discontinuation (which were infrequent) and in the analysis of serious volume depletion (narrow BIcMQ) or serious hypotension (BIcMQ; Table 36.).

Table 36.	Patients with volume depletion (narrow BIcMQ) and hypotension (BIcMQ) in SAF-HF1 (frequency
≥0.2% in a	at least one treatment group at the PT level) – TS

MedDRA PT	Placebo		Empa 10 mg	
	N (%)	Rate/100	N (%)	Rate/100 pt-
		pt-yrs		yrs
Number of patients	5202 (100.0)		5206 (100.0)	
Volume depletion (narrow BIcMQ)	483 (9.3)	6.44	566 (10.9)	7.59
Dehydration	71 (1.4)	0.90	87 (1.7)	1.10
Hypovolaemia	8 (0.2)	0.10	6 (0.1)	0.07
Hypotension (BIcMQ, subset of vol. depletion)	430 (8.3)	5.69	499 (9.6)	6.64

Hypotension	313 (6.0)	4.09	372 (7.1)	4.87
Orthostatic hypotension	32 (0.6)	0.40	37 (0.7)	0.46
Circulatory collapse	10 (0.2)	0.13	3 (0.1)	0.04
Syncope	81 (1.6)	1.03	98 (1.9)	1.24
Presyncope	13 (0.2)	0.16	22 (0.4)	0.28
Volume depletion (narrow BIcMQ), serious	91 (1.7)	1.15	113 (2.2)	1.43
Hypotension (BIcMQ), serious	77 (1.5)	0.97	101 (1.9)	1.27
Volume depletion (narrow BIcMQ) leading to	17 (0.3)	0.21	30 (0.6)	0.37
discont. of study medication				
Hypotension (BIcMQ) leading to discont. of study	15 (0.3)	0.19	25 (0.5)	0.31
medication				

Source data: [SCS appendix 2, c35146126, Tables 2.2.8.2 to 4, 2.2.9.6 to 8]

Subgroup analyses for hypotension (BIcMQ) were performed by age, sex, race, baseline eGFR, diabetes status, blood pressure, and use of certain medications. The results of the subgroup analyses were consistent with the main analysis of hypotension.

The results of the subgroup analyses for volume depletion (narrow BIcMQ; by age, sex, race, baseline eGFR, diabetes status, blood pressure, and use of certain medications) were consistent with the results of the main analysis of volume depletion and with those for hypotension.

The analysis of clinically relevant investigator-defined symptomatic hypotension events (Table 37.) showed the same trend as the analysis of hypotension (BIcMQ) presented above.

	Placebo		Empa 10 mg	
	N (%)	Rate/100	N (%)	Rate/100
		pt-yrs		pt-yrs
Number of patients	5166 (100.0)		5171 (100.0)	
Patients with investigator-defined symptomatic	262 (5.1)	3.40	309 (6.0)	4.02
hypotension events				
Serious events	43 (0.8)	0.54	49 (0.9)	0.62
Leading to discontinuation	12 (0.2)	0.15	17 (0.3)	0.21

Investigator-defined symptomatic hypotension events were only collected for 1245.110, 1245.121, 1245.167, and 1245.168

Source data: [SCS appendix 2, c35146126, Tables 2.2.9.1, 2.2.9.3, 2.2.9.4]

In cases of symptomatic hypotension episodes, the intensity of both diuretic and non-diuretic antihypertensive therapy was more often reduced in the empagliflozin group than in the placebo group (Table 38.).

	Placebo	Empa 10 mg
Number of patients, N	5166	5171
Number of episodes (episodes per 100 patient years at risk)	300 (3.77)	364 (4.55)
Intensity of diuretic therapy reduced	104 (1.31)	158 (1.98)
Intensity of non-diuretic anti-hypertensive therapy reduced	170 (2.14)	221 (2.76)

Investigator-defined symptomatic hypotension events were only collected for 1245.110, 1245.121, 1245.167, and 1245.168 Source data: [SCS appendix 2, c35146126, Table 2.2.9.5]

Hypoglycaemia

The frequencies of patients with confirmed hypoglycaemic events were balanced between treatment groups (Table 27.). No imbalance in confirmed hypoglycaemic events was observed in the subgroup analysis by diabetes status. The remaining subgroup analyses (i.e. by age, sex, race, and baseline eGFR) also showed no relevant difference between treatment groups.

Consistent results were obtained for the SMQ-based analysis: 124 patients (2.4%) in the empagliflozin group and 134 patients (2.6%) in the placebo group had hypoglycaemic events based on the narrow SMQ.

Investigator-defined hypoglycaemic events were reported for 122 patients (2.3%) in the empagliflozin group and 132 patients (2.5%) in the placebo group. Of those patients, similar proportions in both groups had hypoglycaemic events that required assistance (empagliflozin: 30 patients [0.6%], placebo: 28 patients [0.5%]). Most patients had 1 or 2 confirmed hypoglycaemic episodes rather than \geq 3 episodes). The severity of hypoglycaemic AEs (investigator-defined) was summarised by diabetes status. The proportions of patients with severe hypoglycaemic events that required assistance were similar between treatment groups, and the events occurred predominantly in patients with T2DM (empagliflozin: 28 patients [1.1%], placebo: 26 patients [1.0%]) rather than in patients with pre-diabetes (empagliflozin: 1 patient [0.1%], placebo: 2 patients [0.1%]) or in patients without (pre-) diabetes (empagliflozin: 1 patient [0.1%], placebo: none).

Symptomatic hypoglycaemic episodes with a blood glucose level <54 mg/dL and no assistance required were less frequently reported in the empagliflozin group (32 episodes, 0.40 episodes/100 pt-yrs) than in the placebo group (128 episodes, 1.61 episodes/100 pt-yrs). For other categories of symptomatic or asymptomatic hypoglycaemic episodes, there was no marked imbalance in the frequencies between treatment groups.

Bone fracture

The frequencies of patients with bone fracture (BIcMQ) were similar between treatment groups (Table 39.). No relevant difference between treatment groups was observed for bone fractures leading to discontinuation, or reported as SAEs, or when including the events up to trial completion (Table 27.). There were no relevant differences between treatment groups in subgroup analyses by age, sex, race, baseline eGFR, and diabetes status.

Investigator-defined bone fractures were reported for 179 patients (3.4%) in the empagliflozin group and for 171 patients (3.3%) in the placebo group. Bone fractures were more frequently classified as traumatic rather than as non-traumatic (Table 39.).

	Placebo		Empa 10 mg	
	N (%)	Rate/100 pt-	N (%)	Rate/100
		yrs		pt-yrs
Number of patients	5202 (100.0)		5206 (100.0)	
Patients with investigator-defined bone fracture	171 (3.3)	2.19	179 (3.4)	2.28
Traumatic	155 (3.0)	1.99	156 (3.0)	1.98
Non-traumatic	15 (0.3)	0.19	26 (0.5)	0.33

Table 39. Patients with investigator-defined bone fracture in SAF-HF1 – TS

Urinary tract malignancy

The frequencies of patients with urinary tract malignancies (broad sub BIcMQs) were similar between the empagliflozin group (18 patients, 0.4%) and the placebo group (14 patients, 0.3%; Table 27.) in patients with a cumulative exposure of ≥ 6 months when events up to trial completion were considered. Consistent results were obtained for the overall population regardless of exposure (empagliflozin: 28 patients [0.5%], placebo: 22 patients [0.4%]; analysis also considered events up to trial completion; Table 27.).

Constipation

In SAF-HF1, the PT constipation was reported for more patients in the empagliflozin group (153 patients, 2.9%) than in the placebo group (107 patients, 2.1%). Few patients had serious events or events leading to treatment discontinuation (Table 40.). The trend was generally observed in both EMPEROR trials and across all subgroups, including by diabetes status.

	SAF-HF	1			Trial 1245.110			Trial 1245.121				
					(EMPE	ROR-Pres	served)		(EMPE	ROR-Red	uced)	
	Placebo		Empa 1	0 mg	Placebo)	Empa 10) mg	Placebo)	Empa 1	0 mg
	N (%)	Rate/100	N (%)	Rate/100	N (%)	Rate/100	N (%)	Rate/100	N (%)	Rate/100	N (%)	Rate/100
		pt-yrs		pt-yrs		pt-yrs		pt-yrs		pt-yrs		pt-yrs
Number	of5202		5206		2989		2996		1863		1863	
patients	(100.0)		(100.0))	(100.0))	(100.0)		(100.0)		(100.0)	
PT	107	1.36	153	1.94	76	1.37	93 (3.1)	1.67	27	1.21	57	2.56
constipati	ion(2.1)		(2.9)		(2.5)				(1.4)		(3.1)	
Investigat	tor7 (0.1)	0.09	13	0.16	6 (0.2)	0.11	8 (0.3)	0.14	1 (0.1)	0.04	5 (0.3)	0.22
defined			(0.2)									
drug-												
related												
Leading	to1 (<0.1)0.01	2	0.02	1	0.02	0		0		2 (0.1)	0.09
treatment	t		(<0.1)		(<0.1)							
discont.												
Serious	2 (<0.1)0.03	4 (0.1)	0.05	1	0.02	1 (<0.1))0.02	1 (0.1)	0.04	3 (0.2)	0.13
					(<0.1)							

Table 40. Patients with the PT constipation in SAF-HF1 and in trials 1245.110 and 1245.121 – TS

Source data: [SCS appendix 2, c35146126, Tables 2.1.1.2, 5 to 7; CTR 1245.110, c31803238, Tables 15.3.1.1: 2, 5 to 7; CTR 1245.121, c28576542, Tables 15.3.1.1: 2, 5 to 7]

Unexpected AEs

Fall

Previously, in trial 1245.121 (EMPEROR-Reduced), the PT fall was reported for more patients in the empagliflozin group than in the placebo group. However, this imbalance was not observed in trial 1245.110 (EMPEROR-Preserved). When all 5 trials in patients with HF were pooled in SAF-HF1, the EMPEROR trials contributed almost all events of fall, and no obvious imbalance in fall was observed (Table 41.).

	SAF-HF	1			Trial 12	Trial 1245.110			Trial 1245.121			
					(EMPEF	ROR-Pres	erved)		(EMPEROR-Reduced)			
	Placebo		Empa 10) mg	Placebo		Empa 10) mg	Placebo		Empa 10	mg
	N (%)	Rate/10	N (%)	Rate/10	N (%)	Rate/10	N (%)	Rate/10	N (%)	Rate/10	N (%)	Rate/10
		0 pt-yrs		0 pt-yrs		0 pt-yrs		0 pt-yrs		0 pt-yrs		0 pt-yrs
Number	of 5202		5206		2989		2996		1863		1863	
patients	(100.0)		(100.0)		(100.0)		(100.0)		(100.0)		(100.0)	
PT fall	249	3.24	261	3.37	219	4.08	213	3.92	27 (1.4)	1.21	43 (2.3)	1.92
	(4.8)		(5.0)		(7.3)		(7.1)					
Investigat	tor 4 (0.1)	0.05	3 (0.1)	0.04	3 (0.1)	0.05	3 (0.1)	0.05	1 (0.1)	0.04	0	
defined												
drug-												
related												
Leading	to3 (0.1)	0.04	3 (0.1)	0.04	2 (0.1)	0.04	1 (<0.1))0.02	1 (0.1)	0.04	2 (0.1)	0.09
treatment	t											
discont.												
Serious	35 (0.7)	0.44	47 (0.9)	0.59	30 (1.0)	0.54	31 (1.0)	0.55	4 (0.2)	0.18	15 (0.8)	0.66

Table 41. Patients with the PT fall in SAFHF1 and in trials 1245.110 and 1245.121 - TS

Source data: [SCS appendix 2, c35146126, Tables 2.1.1.2, 5 to 7; CTR 1245.110, c31803238, Tables 15.3.1.1: 2, 5 to 7; CTR 1245.121, c28576542, Tables 15.3.1.1: 2, 5 to 7]

Considering the late divergence in falls between treatment groups (after about 8 months in trial 1245.121), the lack of a plausible pathophysiological cause related to empagliflozin's mode of action (e.g. via hypotension, volume depletion, hypoglycaemia), and the lack of consistency between the clinical trial results (of trials 1245.121 and 1245.25), the small numerical imbalance in the PT fall observed in trial 1245.121 was likely due to random variation associated with a large number of comparisons between treatment groups in the safety analyses.

No obvious pattern in the PT fall was observed in the subgroup analyses of the EMPEROR trials. Numerically more patients in the empagliflozin group than in the placebo group experienced fall in the Asian subgroup in both trials, while in the White and Black/African American subgroups of trial 1245.110, the trend was opposite with fewer patients in the empagliflozin group than in the placebo group (Table 42.).

	Trial 1245	-			Trial 124	-		
	(EMPEROR	-Preserve	d)		(EMPEROR-Reduced)			
	Placebo		Empa 10 mg		Placebo		Empa 10 mg	
	n/N	Rate/10	n/N	Rate/100	n/N	Rate/10	n/N	Rate/10
	(%)	0 pt-yrs	(%)	pt-yrs	(%)	0 pt-yrs	(%)	0 pt-yrs
All	219/2989	4.08	213/2996	3.92	27/1863	1.21	43/1863	1.92
	(7.3)		(7.1)		(1.4)		(2.3)	
White	173/2254	4.31	162/2285	3.92	24/1301	1.56	33/1325	2.11
	(7.7)		(7.1)		(1.8)		(2.5)	
Black/African American	10/125	4.85	7/133	3.01	1/134	0.64	4/123	2.71
	(8.0)		(5.3)		(0.7)		(3.3)	
Asian	26/411	3.31	39/413	5.06	1/334	0.23	6/337	1.36
	(6.3)		(9.4)		(0.3)		(1.8)	
Other including mixed	10/198	2.79	5/164	1.69	0/63		0 /51	
race	(5.1)		(3.0)					

Table 42. Subgroup analysis by race for the PT fall in trials 1245.110 and 1245.121 – TS

Source data: [CTR 1245.110, c31803238, Tables 15.3.1.2.2: 5, 15.3.1.1: 2; CTR 1245.121, c28576542, Tables 15.3.1.2.2: 5, 15.3.1.1: 2] In Asian patients, no event led to treatment discontinuation and serious events were infrequent (Table 43.).

	Trial 1245.	110			Trial 1245	.121			
	(EMPEROR	(EMPEROR-Preserved)				(EMPEROR-Reduced)			
	Placebo		Empa 10 mg		Placebo		Empa 10 mg		
	N (%)	Rate/	N (%)	Rate/10	N (%)	Rate/1	N (%)	Rate/1	
		100		0		00 pt-		00 pt-	
		pt-yrs		pt-yrs		yrs		yrs	
Number of Asian patients	411		413 (100.0)		334		337		
	(100.0)				(100.0)		(100.0)		
PT fall	26 (6.3)	3.31	39 (9.4)	5.06	1 (0.3)	0.23	6 (1.8)	1.36	
Leading to treatment	0		0		0		0		
discontinuation									
Serious	4 (1.0)	0.50	8 (1.9)	1.00	0		1 (0.3)	0.23	

Table 43. Asian patients with the PT fall in trials 1245.110 and 1245.121 - TS

Source data: [CTR 1245.110, c31803238, Tables 15.3.1.2.2: 5, 15.3.1.2.3: 5, 15.3.1.2.4: 5; CTR 1245.121, c28576542, Tables 15.3.1.2.2: 5, 15.3.1.2.3: 5, 15.3.1.2.4: 5]

In addition, each event of fall in the Asian patients of trial 1245.110 was extensively medically reviewed for the origin of the fall. The incidence of fall started to diverge between treatment groups after about 1 year. No plausible pathophysiological cause related to empagliflozin's mode of action (e.g. via hypotension, volume depletion, hypoglycaemia) could be identified. The imbalance appeared to be mainly due to accidental falls, i.e. reported by the investigator as "accidental fall" or "mechanical fall" which implied an external force (e.g. environmental) or due to other causes (e.g. "slipped", "stumbled", etc.).

In conclusion, considering the late divergence in falls between treatment groups, the lack of a plausible pathophysiological cause related to empagliflozin's mode of action, and the lack of consistency in other subgroups (including other races), the small numerical imbalance in the PT fall observed in Asian patients was likely due to random variation associated with a large number of comparisons between treatment groups and among subgroups in the safety analyses.

Serious adverse event/deaths/other significant events

The overall frequency of patients with SAEs was lower in the empagliflozin group than in the placebo group. Serious adverse events were most commonly reported in the SOC cardiac disorders. On the PT level, cardiac failure, pneumonia, acute kidney injury, atrial fibrillation, and cardiac failure congestive were most common. All other SAEs by PT were reported for <2.0% of patients in either group (Table 44.).

In addition, all-cause and HF-related hospitalisations and all-cause mortality were analysed as efficacy endpoints in the two EMPEROR trials. In both trials, the risks of heart failure hospitalisations, recurrent heart failure hospitalisations, and investigator-defined CV hospitalisations were reduced with empagliflozin treatment compared with placebo. Also, in both trials, the cause of each death was adjudicated by the CEC, and the incidences of all-cause mortality were similar between treatment groups.

Table 44. Patients with SAEs in SAF-HF1 (frequency $\geq 1.0\%$ in at least one treatment group at the PT level) – TS

MedDRA SOC

Empa 10 mg

MedDRA PT	N (%)	Rate/100	N (%)	Rate/100
		pt-yrs		pt-yrs
Number of patients	5202 (100.0)		5206 (100.0)	
Total with SAEs	2502 (48.1)	44.39	2250 (43.2)	37.35
Cardiac disorders	1552 (29.8)	23.67	1259 (24.2)	18.14
Cardiac failure	1064 (20.5)	15.18	792 (15.2)	10.74
Atrial fibrillation	127 (2.4)	1.62	118 (2.3)	1.50
Cardiac failure congestive	110 (2.1)	1.40	83 (1.6)	1.05
Ventricular tachycardia	60 (1.2)	0.76	77 (1.5)	0.97
Acute myocardial infarction	66 (1.3)	0.83	75 (1.4)	0.94
Cardiac failure chronic	62 (1.2)	0.78	43 (0.8)	0.54
Cardiac failure acute	58 (1.1)	0.73	32 (0.6)	0.40
Myocardial infarction	44 (0.8)	0.55	53 (1.0)	0.67
Infections and infestations	501 (9.6)	6.59	475 (9.1)	6.17
Pneumonia	182 (3.5)	2.32	155 (3.0)	1.96
COVID-19	50 (1.0)	0.63	50 (1.0)	0.63
Urinary tract infection	40 (0.8)	0.50	50 (1.0)	0.63
Nervous system disorders	264 (5.1)	3.40	299 (5.7)	3.83
Ischaemic stroke	55 (1.1)	0.69	61 (1.2)	0.77
Renal and urinary disorders	315 (6.1)	4.06	241 (4.6)	3.07
Acute kidney injury	166 (3.2)	2.11	118 (2.3)	1.49
Renal impairment	69 (1.3)	0.87	55 (1.1)	0.69
Respiratory, thoracic and mediastinal disorders	220 (4.2)	2.82	160 (3.1)	2.03
Chronic obstructive pulmonary disease	50 (1.0)	0.63	34 (0.7)	0.43
General disorders and administration site conditions	175 (3.4)	2.22	172 (3.3)	2.16
Death ¹	65 (1.2)	0.82	76 (1.5)	0.95

1 Deaths not attributed to another PT by the investigator. The frequencies of patients with fatal AEs were balanced between treatment groups (see **Error! Reference source not found.**)

Source data: [SCS appendix 2, c35146126, Table 2.1.1.7]

Laboratory findings

A summary of patients with elevated serum creatinine in SAF-HF1 is provided above (Decreased renal function). Renal function parameters were also analysed as efficacy endpoints in the long-term outcome trials. A summary of patients with elevated liver enzymes in SAF-HF1 is also provided above (Hepatic injury).

Safety laboratory analyses at trial level are presented in CTRs. In trials 1245.110 and 1245.121, haemoglobin and haematocrit values increased on treatment and then partially returned to baseline after treatment discontinuation in the empagliflozin group, with small decreases observed in the placebo group. There was a decrease in uric acid (urate) values in the empagliflozin group compared with the placebo group. After treatment discontinuation, uric acid values returned towards baseline in the empagliflozin group. There were no relevant alterations in the other safety laboratory parameters. In the 12-week trials, the trends were consistent with those observed in 1245.110 and 1245.121.

Vital sign, physical findings and other observation related to safety

No meaningful changes in blood pressure (systolic or diastolic) or in heart/pulse rate were observed with empagliflozin treatment compared with placebo in any of the HF trials. There were no relevant differences

in new ECG findings after baseline between empagliflozin and placebo. No pregnancy was reported other than a spontaneous abortion as an AE in trial 1245.121.

Safety in special populations

Subgroup analyses of AEs were carried out by demographic and baseline characteristics (age, sex, race, geographic region, ethnicity, diabetes status at baseline, baseline eGFR, baseline blood pressure, and baseline use of ACE-inhibitor/ARB/ARNi, diuretics, or loop/high-ceiling diuretics).

In SAF-HF1, the AE profile in subgroups was generally consistent with that of the overall population, including the subgroups by diabetes status and by eGFR categories at baseline (including patients with an eGFR of <30 mL/min/1.73 m²). No relevant difference in the AE profile was observed between patients with HFrEF and patients with HFpEF.

Age

Adverse events by age categories were generally consistent with the overall AE profile of the pooled safety data (Table 45.).

Category of AEs	Placebo		Empa 10 mg	
	N (%)	Rate/100 pt-	N (%)	Rate/100
		yrs		pt-yrs
Age <50 years	244 (100.0)		198 (100.0)	
Any AE	188 (77.0)	158.71	147 (74.2)	140.93
Leading to discont. of study medication	28 (11.5)	8.52	25 (12.6)	8.94
SAEs	101 (41.4)	43.04	72 (36.4)	32.78
Acute renal failure (SMQ)	18 (7.4)	5.71	15 (7.6)	5.53
Urinary tract infection (BIcMQ)	12 (4.9)	3.75	6 (3.0)	2.21
Genital infection (BIcMQ)	6 (2.5)	1.84	5 (2.5)	1.82
Volume depletion (BIcMQ)	22 (9.0)	7.14	17 (8.6)	6.38
Hypotension (BIcMQ)	20 (8.2)	6.48	15 (7.6)	5.60
Confirmed hypoglycaemic events ¹	5 (2.0)	1.55	0	0
Bone fracture (BIcMQ)	3 (1.2)	0.91	1 (0.5)	0.36
Age 50 to <65 years	1178 (100.0)		1154 (100.0)	
Any AE	917 (77.8)	149.31	869 (75.3)	124.81
Leading to discont. of study medication	185 (15.7)	10.66	160 (13.9)	9.44
SAEs	530 (45.0)	41.84	445 (38.6)	34.26
Acute renal failure (SMQ)	133 (11.3)	8.09	104 (9.0)	6.45
Urinary tract infection (BIcMQ)	49 (4.2)	2.90	63 (5.5)	3.82
Genital infection (BIcMQ)	8 (0.7)	0.46	19 (1.6)	1.13
Volume depletion (BIcMQ)	85 (7.2)	5.13	97 (8.4)	6.00
Hypotension (BIcMQ)	77 (6.5)	4.61	95 (8.2)	5.87
Confirmed hypoglycaemic events ¹	29 (2.5)	1.69	25 (2.2)	1.49
Bone fracture (BIcMQ)	22 (1.9)	1.28	20 (1.7)	1.19
Age 65 to <75 years	1852 (100.0)		1932 (100.0)	
Any AE	1493 (80.6)	144.16	1537 (79.6)	137.81
Leading to discont. of study medication	291 (15.7)	10.06	322 (16.7)	10.76
SAEs	853 (46.1)	40.22	818 (42.3)	35.61

Table 45. AEs by age in SAF-HF1 – TS

Acute renal failure (SMQ)	211 (11.4)	7.73	209 (10.8)	7.35
Urinary tract infection (BIcMQ)	117 (6.3)	4.18	133 (6.9)	4.60
Genital infection (BIcMQ)	10 (0.5)	0.34	32 (1.7)	1.07
Volume depletion (BIcMQ)	147 (7.9)	5.30	203 (10.5)	7.23
Hypotension (BIcMQ)	135 (7.3)	4.85	178 (9.2)	6.30
Confirmed hypoglycaemic events ¹	32 (1.7)	1.11	38 (2.0)	1.28
Bone fracture (BIcMQ)	49 (2.6)	1.71	69 (3.6)	2.35

Continued on the next page

AEs by age in SAF-HF1 – TS

Category of AEs	Placebo		Empa 10 mg	
	N (%)	Rate/100	N (%)	Rate/100
		pt-yrs		pt-yrs
Age 75 to <85 years	1653 (100.0)		1675 (100.0)	
Any AE	1406 (85.1)	180.04	1398 (83.5)	157.45
Leading to discont. of study medication	326 (19.7)	12.72	345 (20.6)	13.26
SAEs	870 (52.6)	49.94	777 (46.4)	40.13
Acute renal failure (SMQ)	188 (11.4)	7.70	188 (11.2)	7.72
Urinary tract infection (BIcMQ)	117 (7.1)	4.70	166 (9.9)	6.73
Genital infection (BIcMQ)	11 (0.7)	0.43	43 (2.6)	1.67
Volume depletion (BIcMQ)	196 (11.9)	8.19	212 (12.7)	8.73
Hypotension (BIcMQ)	172 (10.4)	7.12	178 (10.6)	7.25
Confirmed hypoglycaemic events ¹	39 (2.4)	1.54	35 (2.1)	1.35
Bone fracture (BIcMQ)	79 (4.8)	3.17	74 (4.4)	2.88
Age ≥85 years	275 (100.0)		247 (100.0)	
Any AE	230 (83.6)	172.59	213 (86.2)	195.01
Leading to discont. of study medication	69 (25.1)	17.55	60 (24.3)	15.82
SAEs	148 (53.8)	54.44	138 (55.9)	50.74
Acute renal failure (SMQ)	37 (13.5)	9.94	31 (12.6)	8.65
Urinary tract infection (BIcMQ)	40 (14.5)	10.98	34 (13.8)	9.63
Genital infection (BIcMQ)	0	0	2 (0.8)	0.52
Volume depletion (BIcMQ)	33 (12.0)	8.99	37 (15.0)	10.89
Hypotension (BIcMQ)	26 (9.5)	6.96	33 (13.4)	9.56
Confirmed hypoglycaemic events ¹	3 (1.1)	0.77	3 (1.2)	0.80
Bone fracture (BIcMQ)	18 (6.5)	4.74	18 (7.3)	4.91

1 Hypoglycaemic AEs with a plasma glucose value of \leq 70 mg/dL or where assistance was required

Source data: [SCS appendix 2, c35146126, Tables 2.1.2.2.1, 2.1.2.3.1, 2.1.2.4.1, 2.2.20.1]

Diabetes status at baseline

Adverse events by diabetes status at baseline were generally consistent with the overall AE profile of the pooled safety data (Table 46.).

Table 46. AEs	by	baseline	diabetes	status ir	SAF-HF1	– TS
---------------	----	----------	----------	-----------	---------	------

Category of AEs	Placebo		Empa 10 mg	
	N (%)	Rate/100 pt-	N (%)	Rate/100
		yrs		pt-yrs
With diabetes	2579 (100.0)		2570 (100.0)	
Any AE	2121 (82.2)	167.66	2086 (81.2)	151.31
Leading to discont. of study medication	475 (18.4)	12.21	477 (18.6)	12.26
SAEs	1287 (49.9)	47.71	1158 (45.1)	39.84
Acute renal failure (SMQ)	324 (12.6)	8.83	332 (12.9)	9.16
Hepatic injury (SMQ)	137 (5.3)	3.61	113 (4.4)	2.95
Ketoacidosis (narrow BIcMQ)	5 (0.2)	0.13	4 (0.2)	0.10
AEs leading to LLA ¹ (up to trial completion)	30/2397 (1.3)	0.68	27/2392 (1.1)	0.61
Urinary tract infection (BIcMQ)	184 (7.1)	4.91	208 (8.1)	5.59
Genital infection (BIcMQ)	19 (0.7)	0.49	57 (2.2)	1.48

	_		i i	
Volume depletion (BIcMQ)	226 (8.8)	6.11	271 (10.5)	7.36
Hypotension (BIcMQ)	198 (7.7)	5.31	235 (9.1)	6.35
Confirmed hypoglycaemic events ²	90 (3.5)	2.36	84 (3.3)	2.20
Bone fracture (BIcMQ)	81 (3.1)	2.11	89 (3.5)	2.32
Without diabetes	2620 (100.0)		2633 (100.0)	
Any AE	2112 (80.6)	149.08	2077 (78.9)	135.41
Leading to discont. of study medication	424 (16.2)	10.55	435 (16.5)	10.73
SAEs	1215 (46.4)	41.35	1092 (41.5)	35.04
Acute renal failure (SMQ)	263 (10.0)	6.86	215 (8.2)	5.52
Hepatic injury (SMQ)	111 (4.2)	2.81	84 (3.2)	2.10
Ketoacidosis (narrow BIcMQ)	1 (<0.1)	0.02	0	0
AEs leading to LLA ¹ (up to trial completion)	3/2455 (0.1)	0.07	2/2467 (0.1)	0.04
Urinary tract infection (BIcMQ)	151 (5.8)	3.86	194 (7.4)	4.96
Genital infection (BIcMQ)	16 (0.6)	0.40	44 (1.7)	1.09
Volume depletion (BIcMQ)	257 (9.8)	6.76	294 (11.2)	7.79
Hypotension (BIcMQ)	232 (8.9)	6.07	263 (10.0)	6.90
Confirmed hypoglycaemic events ²	18 (0.7)	0.45	17 (0.6)	0.42
Bone fracture (BIcMQ)	90 (3.4)	2.28	93 (3.5)	2.32

1 Data collected only in 1245.110 and 1245.121, shown as patients with events/patients in group (%)

2 Hypoglycaemic AEs with a plasma glucose value of \leq 70 mg/dL or where assistance was required

Baseline eGFR

The adverse event profile in each eGFR category was generally consistent with the overall AE profile of the pooled safety data (Table 47.).

Table 47. AEs by baseline eGFR in SAF-HF1 – TS

Category of AEs	Placebo		Empa 10 mg	
	N (%)	Rate/100	N (%)	Rate/100
		pt-yrs		pt-yrs
eGFR ≥90 mL/min/1.73 m²	481 (100.0)		482 (100.0)	
Any AE	360 (74.8)	129.13	346 (71.8)	107.08
Leading to discont. of study medication	51 (10.6)	6.90	62 (12.9)	8.32
SAEs	188 (39.1)	32.99	163 (33.8)	27.36
Acute renal failure (SMQ)	25 (5.2)	3.46	20 (4.1)	2.71
AEs leading to LLA^1 (up to trial completion)	3/457 (0.7)	0.36	2/460 (0.4)	0.24
Urinary tract infection (BIcMQ)	26 (5.4)	3.66	25 (5.2)	3.47
Genital infection (BIcMQ)	5 (1.0)	0.68	7 (1.5)	0.95
Volume depletion (BIcMQ)	30 (6.2)	4.20	35 (7.3)	4.89
Hypotension (BIcMQ)	27 (5.6)	3.77	35 (7.3)	4.89
Confirmed hypoglycaemic events ²	9 (1.9)	1.23	5 (1.0)	0.67
Bone fracture (BIcMQ)	10 (2.1)	1.36	12 (2.5)	1.63
eGFR 60 to <90 mL/min/1.73 m ²	2139 (100.0)		2141 (100.0)	
Any AE	1693 (79.1)	138.32	1661 (77.6)	126.79
Leading to discont. of study medication	313 (14.6)	9.30	317 (14.8)	9.43
SAEs	945 (44.2)	37.84	817 (38.2)	30.87
Acute renal failure (SMQ)	170 (7.9)	5.24	150 (7.0)	4.62
AEs leading to LLA ¹ (up to trial completion)	9/2006 (0.4)	0.24	9/2002 (0.4)	0.24
Urinary tract infection (BIcMQ)	106 (5.0)	3.22	145 (6.8)	4.47

Genital infection (BIcMQ)	14 (0.7)	0.42	49 (2.3)	1.47
Volume depletion (BIcMQ)	175 (8.2)	5.44	185 (8.6)	5.83
Hypotension (BIcMQ)	157 (7.3)	4.85	166 (7.8)	5.20
Confirmed hypoglycaemic events ²	38 (1.8)	1.14	24 (1.1)	0.72
Bone fracture (BIcMQ)	56 (2.6)	1.69	67 (3.1)	2.03
eGFR 45 to <60 mL/min/1.73 m ²	1326 (100.0)		1322 (100.0)	
Any AE	1091 (82.3)	159.68	1073 (81.2)	150.84
Leading to discont. of study medication	232 (17.5)	11.31	237 (17.9)	11.69
SAEs	655 (49.4)	45.06	609 (46.1)	40.26
Acute renal failure (SMQ)	152 (11.5)	7.84	139 (10.5)	7.26
AEs leading to LLA ¹ (up to trial completion)	11/1238 (0.9)	0.48	8/1224 (0.7)	0.35
Urinary tract infection (BIcMQ)	81 (6.1)	4.10	110 (8.3)	5.70
Genital infection (BIcMQ)	9 (0.7)	0.44	23 (1.7)	1.14
Volume depletion (BIcMQ)	121 (9.1)	6.22	182 (13.8)	9.70
Hypotension (BIcMQ)	109 (8.2)	5.57	161 (12.2)	8.52
Confirmed hypoglycaemic events ²	23 (1.7)	1.14	27 (2.0)	1.34
Bone fracture (BIcMQ)	48 (3.6)	2.39	47 (3.6)	2.36

Continued on the next page

AEs by baseline eGFR in SAF-HF1 – TS

Category of AEs	Placebo			Empa 10 mg		
	N (%)	Rate/100	pt-	N (%)	Rate/100	pt-
		yrs			yrs	
eGFR 30 to <45 mL/min/1.73 m ²	980 (100.0)			977 (100.0)		
Any AE	848 (86.5)	211.84		826 (84.5)	175.16	
Leading to discont. of study medication	210 (21.4)	14.78		212 (21.7)	14.74	
SAEs	543 (55.4)	60.15		487 (49.8)	48.11	
Acute renal failure (SMQ)	171 (17.4)	13.23		175 (17.9)	13.57	
AEs leading to LLA ¹ (up to trial completion)	8/898 (0.9)	0.48		6/909 (0.7)	0.36	
Urinary tract infection (BIcMQ)	93 (9.5)	6.84		91 (9.3)	6.58	
Genital infection (BIcMQ)	6 (0.6)	0.42		19 (1.9)	1.32	
Volume depletion (BIcMQ)	122 (12.4)	9.33		117 (12.0)	8.64	
Hypotension (BIcMQ)	108 (11.0)	8.18		101 (10.3)	7.37	
Confirmed hypoglycaemic events ²	22 (2.2)	1.55		24 (2.5)	1.68	
Bone fracture (BIcMQ)	47 (4.8)	3.37		46 (4.7)	3.24	
eGFR <30 mL/min/1.73 m²	273 (100.0)			283 (100.0)		
Any AE	240 (87.9)	253.80		258 (91.2)	269.67	
Leading to discont. of study medication	92 (33.7)	27.61		84 (29.7)	22.37	
SAEs	170 (62.3)	81.29		174 (61.5)	68.14	
Acute renal failure (SMQ)	69 (25.3)	23.03		63 (22.3)	18.94	
AEs leading to LLA ¹ (up to trial completion)	2/250 (0.8)	0.49		4/263 (1.5)	0.87	
Urinary tract infection (BIcMQ)	29 (10.6)	9.00		31 (11.0)	8.78	
Genital infection (BIcMQ)	1 (0.4)	0.30		3 (1.1)	0.80	
Volume depletion (BIcMQ)	35 (12.8)	11.09		47 (16.6)	13.94	
Hypotension (BIcMQ)	29 (10.6)	9.01		36 (12.7)	10.48	
Confirmed hypoglycaemic events ²	16 (5.9)	4.94		21 (7.4)	5.77	
Bone fracture (BIcMQ)	10 (3.7)	3.03		10 (3.5)	2.67	

Patients with missing information are shown in the source tables; this includes 1 patient in the empagliflozin group and 3 patients in the placebo group.

1 Data collected only in 1245.110 and 1245.121, shown as patients with events/patients in group (%)

2 Hypoglycaemic AEs with a plasma glucose value of ≤70 mg/dL or where assistance was required Source data: [SCS, c35218777, Section 5.1.6]

Use in pregnancy and lactation

The use of empagliflozin during pregnancy and lactation was not specifically studied in the HF trials. See the currently approved product information of empagliflozin for more information.

A spontaneous abortion was reported as an AE in trial 1245.121. No pregnancies were reported in trials 1245.168, 1245.167, 1245.148, or 1245.110.

Safety related to drug-drug interactions and other interactions

Drug interactions were not specifically studied in the HF trials. See the currently approved product information of empagliflozin for more information. For subgroup analyses by certain medications (i.e. ACE-inhibitors/ARB/ARNi, diuretics, loop/high-ceiling diuretics) at baseline, see below.

Baseline use of certain medications

Only acute renal failure (SMQ), volume depletion (BIcMQ), and hypotension (BIcMQ, subset of volume depletion) were included in subgroup analyses. Adverse events by baseline use of certain medications (i.e. ACE-inhibitors/ARB/ARNi, diuretics, loop/high-ceiling diuretics) showed trends similar to those observed for the overall population (Table 48.).

Category of AEs	Placebo		Empa 10 mg	
	N (%)	Rate/100	N (%)	Rate/100
		pt-yrs		pt-yrs
Without ACE-inhibitor, ARB or ARNi	856 (100.0)		851 (100.0)	
Acute renal failure (SMQ)	97 (11.3)	7.81	87 (10.2)	6.72
Volume depletion (BIcMQ)	83 (9.7)	6.79	90 (10.6)	7.04
Hypotension (BIcMQ)	75 (8.8)	6.09	80 (9.4)	6.20
With ACE-inhibitor, ARB or ARNi	4346 (100.0)		4355 (100.0)	
Acute renal failure (SMQ)	490 (11.3)	7.83	460 (10.6)	7.39
Volume depletion (BIcMQ)	400 (9.2)	6.37	476 (10.9)	7.70
Hypotension (BIcMQ)	355 (8.2)	5.62	419 (9.6)	6.73
Without ARNi	4684 (100.0)		4732 (100.0)	
Acute renal failure (SMQ)	530 (11.3)	7.61	509 (10.8)	7.23
Volume depletion (BIcMQ)	432 (9.2)	6.20	503 (10.6)	7.19
Hypotension (BIcMQ)	380 (8.1)	5.41	445 (9.4)	6.32
With ARNi	518 (100.0)		474 (100.0)	
Acute renal failure (SMQ)	57 (11.0)	10.61	38 (8.0)	7.86
Volume depletion (BIcMQ)	51 (9.8)	9.64	63 (13.3)	13.52
Hypotension (BIcMQ)	50 (9.7)	9.42	54 (11.4)	11.45
Without diuretics	510 (100.0)		579 (100.0)	
Acute renal failure (SMQ)	45 (8.8)	5.51	37 (6.4)	4.03
Volume depletion (BIcMQ)	30 (5.9)	3.69	40 (6.9)	4.37
Hypotension (BIcMQ)	27 (5.3)	3.30	34 (5.9)	3.70
With diuretics	4692 (100.0)		4627 (100.0)	
Acute renal failure (SMQ)	542 (11.6)	8.11	510 (11.0)	7.72
Volume depletion (BIcMQ)	453 (9.7)	6.77	526 (11.4)	8.04
Hypotension (BIcMQ)	403 (8.6)	5.98	465 (10.0)	7.05
Without loop or high-ceiling diuretics	1333 (100.0)		1342 (100.0)	
Acute renal failure (SMQ)	104 (7.8)	4.88	101 (7.5)	4.70
Volume depletion (BIcMQ)	106 (8.0)	5.04	114 (8.5)	5.38
Hypotension (BIcMQ)	92 (6.9)	4.34	103 (7.7)	4.85
With loop or high-ceiling diuretics	3869 (100.0)		3864 (100.0)	
Acute renal failure (SMQ)	483 (12.5)	8.99	446 (11.5)	8.30
Volume depletion (BIcMQ)	377 (9.7)	6.99	452 (11.7)	8.46
Hypotension (BIcMQ)	338 (8.7)	6.22	396 (10.2)	7.35

Table 48. AEs by baseline use of certain medications in SAF-HF1 – TS

Source data: [SCS appendix 2, c35146126, Tables 2.2.1.12 to 15, 2.2.8.11 to 14, 2.2.9.15 to 18]

Discontinuation due to adverse events

The frequencies of patients with AEs leading to discontinuation of study medication were similar between treatment groups. The most commonly reported ($\geq 0.2\%$ in at least one group) of these events are

summarised in Table 49. On the PT level, the most frequently reported AEs leading to discontinuation were cardiac failure and death.

MedDRA SOC	Placebo		Empa 10 mg	
MedDRA PT	N (%)	Rate/100 pt-	N (%)	Rate/100 pt-
		yrs		yrs
Number of patients	5202 (100.0)		5206 (100.0)	
Total with AEs leading to discontinuation	899 (17.3)	11.36	912 (17.5)	11.47
Cardiac disorders	261 (5.0)	3.28	224 (4.3)	2.80
Cardiac failure	135 (2.6)	1.70	110 (2.1)	1.38
Myocardial infarction	21 (0.4)	0.26	16 (0.3)	0.20
Acute myocardial infarction	17 (0.3)	0.21	19 (0.4)	0.24
Cardiac arrest	13 (0.2)	0.16	17 (0.3)	0.21
Cardiac failure congestive	16 (0.3)	0.20	11 (0.2)	0.14
Cardiac failure acute	14 (0.3)	0.18	8 (0.2)	0.10
Cardiogenic shock	8 (0.2)	0.10	6 (0.1)	0.07
Infections and infestations	109 (2.1)	1.37	136 (2.6)	1.70
Urinary tract infection	13 (0.2)	0.16	24 (0.5)	0.30
Pneumonia	23 (0.4)	0.29	19 (0.4)	0.24
COVID-19	18 (0.3)	0.23	12 (0.2)	0.15
COVID-19 pneumonia	5 (0.1)	0.06	12 (0.2)	0.15
Sepsis	8 (0.2)	0.10	9 (0.2)	0.11
Septic shock	7 (0.1)	0.09	8 (0.2)	0.10
General disorders and administration site	118 (2.3)	1.48	123 (2.4)	1.54
conditions				
Death1	57 (1.1)	0.72	69 (1.3)	0.86
Sudden cardiac death	19 (0.4)	0.24	12 (0.2)	0.15
Sudden death	11 (0.2)	0.14	14 (0.3)	0.17
Cardiac death	10 (0.2)	0.13	8 (0.2)	0.10
Renal and urinary disorders	90 (1.7)	1.13	83 (1.6)	1.04
Renal impairment	25 (0.5)	0.31	30 (0.6)	0.37
Acute kidney injury	19 (0.4)	0.24	16 (0.3)	0.20
Renal failure	17 (0.3)	0.21	8 (0.2)	0.10
Chronic kidney disease	16 (0.3)	0.20	15 (0.3)	0.19
Nervous system disorders	77 (1.5)	0.97	82 (1.6)	1.02
Ischaemic stroke	20 (0.4)	0.25	18 (0.3)	0.22
Dizziness	14 (0.3)	0.18	7 (0.1)	0.09
Cerebrovascular accident	12 (0.2)	0.15	13 (0.2)	0.16
Gastrointestinal disorders	47 (0.9)	0.59	50 (1.0)	0.63
Dyspepsia	9 (0.2)	0.11	2 (<0.1)	0.02
Vascular disorders	33 (0.6)	0.41	35 (0.7)	0.44
Hypotension	12 (0.2)	0.15	17 (0.3)	0.21

Table 49. Patients with AEs leading to discontinuation of study medication in SAF-HF1 (frequency \geq 0.2% in at least one treatment group at the PT level) – TS

1 Deaths not attributed to another PT by the investigator. The frequencies of patients with fatal AEs were balanced between treatment groups.

Source data: [SCS appendix 2, c35146126, Table 2.1.1.6]

Post marketing experience

See the periodic benefit-risk evaluation report (PBRER) for post-marketing data in patients with T2DM.

On 17 Jun 2021, empagliflozin was approved in the EU for use in patients with HFrEF (with or without T2DM). There has been no substantial post-marketing experience in these patients.

2.5.1. Discussion on clinical safety

In SAF-HF1, 10408 patients were treated, and 28.2% of patients prematurely discontinued study medication (including patients who died). More than 70% of patients had an exposure for at least 52 weeks. The exposure is considered acceptable to perform a safety evaluation.

The number of AEs and severe AEs were similar for empagliflozin compared to placebo, but the number of cardiac events were lower for empagliflozin vs. placebo. A similar number of total AEs could therefore result from a larger number of other AEs. Based on the most frequently reported AEs, this number of events is also similar for empagliflozin compared to placebo, except for hypotension (empagliflozin 372 (7.1%) placebo 313 (6.0%)) and urinary tract infections (empagliflozin 314 (6.0%) placebo 259 (5.0%))). Hypotension is a known side-effect for SGLT2i treatment and can be related to other symptoms, such as syncope and fall, discussed below. Urinary tract infections and genital infections are also known side effects of SGLT2i treatment.

The safety analyses in SAF-HF1 were also performed focused on AESIs and specific AEs. The numbers of events with acute renal failure (empagliflozin 547 (10.5%), placebo 587 (11.3%)), keto-acidosis (broad BIcMQ: empagliflozin 63 (1.2%), placebo 77 (1.5%); narrow BIcMQ: empagliflozin 4 (0.1%), placebo 6 (0.1%)) and hepatic injury (empagliflozin 197 (3.8%), placebo 248 (4.8%)) were not larger for empagliflozin compared to placebo. The number of AEs leading to LLA was also similar between placebo and empagliflozin treatment (empagliflozin 29 (0.6%), placebo 33 (0.7%)), both for patients with and without diabetes. The numbers of bone fractures (empagliflozin 179 (3.4%), placebo 171 (3.3%)) and confirmed hypoglycaemic events (empagliflozin 101 (1.9%), placebo 108 (2.1%)) were also similar for empagliflozin vs. placebo, except for hypoglycaemic events in T1DM, but this consisted of a very small number of events and therefore not contributing to the evaluation (empagliflozin 2/5 (40%), placebo 1/5(20%)).

As expected from previous safety evaluation and reported ADRs, urinary tract infections (empagliflozin 402 (7.7%), placebo 335 (6.4%)) and genital infections (empagliflozin 101 (1.9%), placebo 35 (0.7%)) were more common in the empagliflozin group than in the placebo group. The number of complicated urinary tract infections, urosepsis or pyelonephritis, was also more in the empagliflozin group vs placebo. The treatment difference was most pronounced in female patients for urosepsis or pyelonephritis (empagliflozin 20/1895 (1.1%), placebo 6/1915 (0.3%)) and for patients without diabetes (empagliflozin 15/2633 (0.6%), placebo 8/2620 (0.3%)). It is known that female subjects are more susceptible for urinary tract infection, and this may partly explain the increased incidence in female subjects with empagliflozin treatment. Patients without diabetes normally do not have glucosuria, but this is altered by SGLT2i treatment and could therefore increase the risk of urinary tract infection. The number of complicated genital infections was similar between empagliflozin and placebo (empagliflozin 14 (0.3%), placebo 14 (0.3%)). Urinary tract infections, including urosepsis and pyelonephritis, and genital infections are included in Section 4.8 of the SmPC. The current observations are in line with the described ARD in the SmPC.

Volume depletion was also more frequent with empagliflozin treatment (empagliflozin 566 (10.9%), placebo 483 (9.3%)), including the number of symptomatic hypotension and syncope. Serious volume depletion events were also more frequent with empagliflozin treatment (empagliflozin 113 (2.2%), placebo 91 (1.7%)). During treatment with empagliflozin, the intensity of diuretic therapy or non-diuretic anti-hypertensive therapy was more frequently reduced. Volume depletion, including hypotension, is described in Section 4.4 and 4.8 of the SmPC. The current observations are in line with de described ARD in the SmPC.

In the EMPEROR Reduced trial, falls were reported for more patients in the empagliflozin vs the placebo group. In the current SAF-HF1, the treatment difference in the number of reported falls is less pronounced (empagliflozin 261 (5.0%), placebo 249 (4.8%)). In the EMPEROR preserved trial, the number of falls is similar for the empagliflozin group vs placebo (empagliflozin 213 (7.1%), placebo 219 (7.3%)), but falls were reported much more frequent in the EMPEROR preserved trial compared to the EMPEROR-reduced (empagliflozin 43 (2.3%), placebo 27 (1.4%)). This is probably due to a difference in the study population (e.g. difference in percentage of female subjects). The difference between treatments in reported falls in the SF-HF1 and EMPEROR-preserved is considered small. The number of falls was also more frequent in the Asian subgroup with empagliflozin vs placebo. This was present in both the EMPEROR-reduced (empagliflozin 6/337 (1.8%), placebo 1/334 (0.3%)) and EMPEROR-preserved trial (empagliflozin 39/413 (9.4%), placebo 26/411 (6.3%)). The Applicant describes that each event of fall in the Asian patients of EMPEROR-preserved trial was extensively medically reviewed for the origin of the fall and that this did not lead to plausible pathophysiological causes and was not related to empagliflozin's mode of action (hypotension, volume depletion, hypoglycaemia), but mainly due to accidental falls.

Constipation is consistently more frequently reported in the empagliflozin group compared to placebo group and is included in Section 4.8 of the SmPC.

In the SAF-HF1, the number of serious adverse events was not larger for empagliflozin compared to placebo (empagliflozin 2250 (43.1%), placebo 2502 (48.1%)). The reported number of myocardial infarctions and ischaemic stroke was slightly more for empagliflozin vs placebo (myocardial infarction: empagliflozin 53 (1.0%), placebo 44 (0.8%); ischaemic stroke: empagliflozin 61 (1.2%), placebo 55 (1.1%)). However, the differences between treatments are considered very small. This finding may be related to chance and this will not be pursued further.

The Applicant performed subgroup analyses to evaluate safety in special populations. As expected, the total number of AEs are reported more frequently in the older age groups, but similar for empagliflozin compared to placebo treatment. Volume depletion and genital infection are in general more frequent in the empagliflozin group, but the difference in frequency empagliflozin vs. placebo appears more pronounced in elderly patients (>75years). Elderly patients appear, therefore, more vulnerable for these side effects. The increased risk for volume depletion in elderly patients is described in Section 4.4 of the SmPC. For genital infections (Age 50-<65 empagliflozin 19 (1.6%), placebo 8 (0.7%); age 65-<75: empagliflozin 32 (1.7%), placebo 10 (0.5%); age 75-<85 empagliflozin 43 (2.6%), placebo 11 (0.7%)), the increased risk in elderly is considered only mildly elevated and is not deemed necessary to be included in section 4.8.

As expected, the number of AEs is more in the lower eGFR subgroups compared to the higher eGFR subgroups, as the low eGFR subgroups represent a more vulnerable patient population. The effect of empagliflozin treatment on volume depletion appears larger in the eGFR subgroup 45-<60 compared to the higher eGFR subgroups (eGFR 60 - <90: empagliflozin 185 (8.6%), placebo 175 (8.2%); eGFR 45-<60: empagliflozin 182 (13.8%), placebo 121 (9.1%)). However, in the eGFR subgroup 30 -<45 (empagliflozin 117 (12.0%), placebo 122 (12.4%)), there was no difference in volume depletion frequency between empagliflozin and placebo and the observation for the eGFR subgroup 45 -<60 is therefore not consistently observed.

There was no difference in the number or the type of AEs leading to discontinuation between the empagliflozin group and the placebo group.

2.5.2. Conclusions on clinical safety

The safety profile of empagliflozin in patients with HF, with or without diabetes, appears in general similar to the safety profile in patients with HFrEF and/or T2DM. No new large safety issues have been identified.

2.5.3. PSUR cycle

The requirements for submission of periodic safety update reports for this medicinal product are set out in the list of Union reference dates (EURD list) provided for under Article 107c(7) of Directive 2001/83/EC and any subsequent updates published on the European medicines web-portal.

2.6. Risk management plan

The MAH submitted/was requested to submit an updated RMP version with this application (RMP v16, date of final sign off: 04 Aug 2021). The main proposed RMP changes were the following:

*Part I. Product overview

This part is proposed to be updated in order to include information on the proposed extension of indication to add the treatment of patients with Heart Failure with preserved ejection fraction.

*Part II. Safety specification.

The following modules have been updated:

MODULE SI Epidemiology of the indications and target populations

The MAH has updated all data of epidemiology concerning the new proposed indication.

MODULE SIII clinical trial exposure

The MAH has updated this section including data from clinical trials in patients with HFpEF (trials 1245.110, 1245.148 and 1245.167).

Four safety analysis sets were described as used for clinical trial exposure calculation:

SIII.Table 1	Overview of safety	analysis sets
--------------	--------------------	---------------

SAF	Description	Trials included
SAF-HF4	Randomised, placebo-controlled clinical trials in patients with HFpEF	1245.110, 1245.148(HFpEF arm),1245.167
SAF-HF5	Randomised, placebo-controlled clinical trials in patients with HFrEF	1245.121, 1245.168
SAF-43 ²	Randomised, double-blind, placebo- controlled trials in patients with T2DM	1245.4, 1245.9, 1245.10, 1245.15, 1245.19, 1245.20, 1245.23 (Met only and Met+SU), 1245.25, 1245.29, 1245.33, 1245.35, 1245.36, 1245.38, 1245.48, 1245.49, 1245.107, 1275.9, 1275.19, 1276.10
SAF- POOL2 ²	Randomised, placebo-controlled clinical trials across indications HFpEF, HFrEF and T2DM (comprisingSAF-H4, SAF-HF5 and SAF-43)	1245.4, 1245.9, 1245.10, 1245.15, 1245.19, 1245.20, 1245.23 (Met only, Met+SU), 1245.25, 1245.29, 1245.33, 1245.35, 1245.36, 1245.38, 1245.48, 1245.49, 1245.107, 1245.110, 1245.121, 1245.148, 1245.167, 1245.168, 1275.9, 1275.19, 1276.10

¹ Data from trial 1245.148 was not available at the time of database lock for the HFrEF submission; the trial is therefore not included in the pooling.

 $^{2}\,\text{The}$ data of extension trial 1245.31 are contained in the core trials 1245.19, 1245.20, and 1245.23.

Data source: data on file, SAF-43 Table 31.3.1.1; SAF-HF5(HFrEF), Tables 1.1 and 1.2; and SAF-HF4(HFpEF), Tables 1.1 and 1.2

MODULE SIV Populations not studied in clinical trials

Exposure of special populations included or not in clinical trial development programs has been updated.

MODULE SV Post-authorisation experience

This module has been updated with the most recent data on post-authorisation exposure up to April 2021.

MODULE SVII Identified and potential risk

No new safety concerns have been identified by the MAA following new data from clinical trials in patients with HFpEF.

The MAH has updated the characterisation of the identified and potential risks, with risk analyses from HFpEF trials (1245.110, 1245.148-HFpEFarm and 1245.168).

*Part VI Summary of the risk management plan

This part has been updated to include information on the proposed indication.

No new safety concern has been identified.

Regarding the pharmacovigilance plan, no new additional pharmacovigilance activities have been proposed, which is endorsed.

No new additional risk minimisation measures have been added either, which is also considered acceptable.

Overall, the changes of the RMP are acceptable.

2.6.1. Overall conclusion on the RMP

The CHMP received the following PRAC Advice on the submitted Risk Management Plan:

The PRAC considered that the risk management plan version 16.0, date of final sign off: 04 Aug 2021, is acceptable.

2.7. Update of the Product information

As a consequence of this new indication, sections 4.1, 4.2, 4.4, 4.8 and 5.1 of the SmPC have been updated. Particularly, a new warning with regard to Infiltrative disease or Takotsubo cardiomyopathy has been added to the product information. The Package Leaflet has been updated accordingly.

Please refer to Attachment 1 which includes all agreed changes to the Product Information.

2.7.1. User consultation

A justification for not performing a full user consultation with target patient groups on the package leaflet has been submitted by the MAH and has been found acceptable.

3. Benefit-Risk Balance

3.1. Therapeutic Context

3.1.1. Disease or condition

Chronic heart failure is a progressive syndrome characterised by the inability of the heart to provide adequate blood supply to meet the metabolic demand of different tissues, or the heart can only provide adequate blood supply at the expense of elevated left ventricular filling pressure. Symptoms include dyspnoea (shortness of breath), oedema (build-up of fluid in the body tissues), persistent coughing and wheezing (due to build-up of fluid in the lungs), tiredness or fatigue, reduced appetite or nausea, confusion, disorientation, and increased heart rate.

Worldwide, heart failure has a prevalence of 1% to 2% and affects over 64 million people as of 2017. In the US alone the prevalence is 6.2 million, and this number has been projected to grow to over 8 million by 2030. HF is associated with premature mortality and frequent hospitalisations. HF contributes to 1 in 9 deaths, and the estimated 5-year survival is about 50% at the time of diagnosis. HF is the leading cause of hospitalisation in patients above 65 years of age.

Patients with HF are categorised according to measurements of left ventricular ejection fraction (LVEF); patients with LVEF \leq 40% are considered to have HFrEF, and those with LVEF >50% are considered to have HFpEF. LVEF of >40% to <50% is considered as HFpEF in many clinical trials and registries, although more recently, the term HF with "mid-range" EF (HFmEF) was introduced to categorise this group separately. The relative prevalence of HFpEF among HF patients is approximately 50% and appears to be increasing. HFrEF and HFpEF differ in several aspects, including underlying aetiologies, demographics, co-morbidities, and responses to treatment. Patients with HFpEF tend to be older, more often women, and more likely to have a history of hypertension and atrial fibrillation than patients with HFrEF. Although HFpEF and HFrEF have similarly profound impacts on patient quality of life and prognosis, historically, therapies shown to improve prognosis in patients with HFrEF do not seem to be effective in patients with HFpEF.

3.1.2. Available therapies and unmet medical need

HFrEF can be treated with drugs that act to attenuate the overactivation of endogenous neurohormonal systems. The therapeutic options for patients with HFpEF are limited.

Recommendations for the treatment of HFrEF include the use of angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), angiotensin receptor-neprilysin inhibitors (ARNi), betablockers, mineralocorticoid receptor antagonists (MRA), and the use of implantable devices like ICD and CRT, all of which have been shown to reduce mortality in patients with HFrEF.

For patients with HFpEF, no therapy has been proven to be superior to control based on the pre-specified primary endpoint in any prior pivotal clinical outcome study in patients with HFpEF. According to the current guidelines, the management of HFpEF involves control of congestive symptoms, usually with diuretics, and the treatment of co-morbidities. A lack of therapeutic options that can reduce the risk of mortality and hospitalisation in these patients represents an unmet medical need.

Empagliflozin

Empagliflozin (Jardiance) is an orally administered, potent and selective inhibitor of the human sodiumglucose cotransporter-2 (SGLT 2) developed by Boehringer Ingelheim (BI). By inhibition of SGLT 2 in the kidneys, empagliflozin reduces the reabsorption of glucose by the kidneys leading to increased urinary glucose excretion and, in consequence, to a lowering of blood glucose. Empagliflozin is approved for the treatment of T2DM worldwide as an adjunct therapy to diet and exercise to improve glycaemic control in adults with type 2 diabetes. In the United States and several other countries, it is also approved to reduce the risk of CV death in patients with T2DM and established CV disease. On 17 Jun 2021 empagliflozin was approved in the EU for the treatment of heart failure with reduced ejection fraction based on the EMPEROR-Reduced study (1245.121) results.

Empagliflozin exerts its effect by preventing sodium and glucose reabsorption. While natriuresis will be compensated within days of drug administration through changes in tubulo-glomerular feedback, glucosuria will last for as long as the medication is used. This leads to long-lasting hemodynamic changes associated with modest osmotic diuresis, blood pressure-lowering effect, improvement in arterial stiffness, reduction in oxidative stress, and decrease in rate pressure product, an indirect measure of myocardial oxygen demands, with no increase in HR and no effect on sympathetic nerve activity. The non-glycosuric physiological and hemodynamic adaptations under empagliflozin may, therefore, provide benefits for patients with HF with or without diabetes.

3.1.3. Main clinical studies

Based on the results of trial 1245.25 (EMPA-REG OUTCOME) in patients with T2DM and established CV disease, BI initiated a phase III program for empagliflozin 10 mg once daily in chronic heart failure regardless of diabetes status, including two pivotal CV outcome trials ("EMPEROR") in patients with HFrEF and HFpEF.

Based on the results of the pivotal trial 1245.110, BI sought an extension of indication, i.e. for the treatment of symptomatic chronic heart failure.

EMPEROR-preserved – trial 1245.110

Trial 1245.110 was carried out at 622 clinical sites in 23 countries in Europe, Latin America, North America, Asia, and others (South Africa, Australia, India). In total, 5988 patients were randomised to double-blind empagliflozin 10 mg (2997 patients) or placebo (2991 patients) once-daily treatment. Randomisation was stratified by region, diabetes history, LVEF, and eGFR (CKD-EPI)_{cr} at screening. Patients were to be treated with randomised study medication in addition to standard of care (in accordance with local/international guidelines) until the required number of patients with adjudicated primary endpoint events was expected to be reached. The median exposure to study medication was about 23 months. After the last intake of study medication, patients were to be followed up for 30 days.

The aim of the EMPEROR-preserved trial is to investigate the safety and efficacy of empagliflozin versus placebo on top of guideline-directed medical therapy in patients with HFpEF. The primary endpoint was the time to the first event of adjudicated CV death or adjudicated HHF. The two key secondary endpoints (confirmatory) were; the occurrence of adjudicated HHF (first and recurrent) and eGFR (CKD-EPI)_{cr} slope of change from baseline.

Patients in this trial represented a population with chronic heart failure with preserved ejection fraction (LVEF: 33.1% of patients had <50%, 34.4% had 50 to <60%, and 32.5% had \geq 60%; mean 54.3%, SD 8.8) with a NYHA class of II (81.5%), III (18.1%), or IV (0.3%, 18 patients). The average age was 71.9 years (SD 9.4); 44.7% were women, 75.9% White, 13.8% Asian, and 4.3% Black/African American. About half of patients (48.9%) had T2DM; 10 patients (0.2%) had T1DM. Half of the patients (49.9%) had an eGFR of <60 mL/min/1.73 m2 (of whom 309 patients, 5.2%, had an eGFR of <30) at baseline. At study baseline, patients were treated with drugs for symptoms and co-morbidities; 80.7% of patients were

treated with ACE inhibitors/ARBs/ARNi, 86.3% with beta-blockers, 86.2% with diuretics (37.5% MRAs) and 70.8% with lipid-lowering drugs. Demographics and baseline characteristics were balanced between the treatment groups.

3.2. Favourable effects

Cardiovascular endpoints

CV death or HHF (primary endpoint) occurred in a lower proportion of patients in the empagliflozin group than in the placebo group (empagliflozin 415/2997, 13.8%; placebo 511/2991, 17.1%), and the risk of CV death or HHF was reduced with empagliflozin treatment compared with placebo (HR empagliflozin vs placebo 0.79, 95% CI 0.69 to 0.90). Adjudicated HHF (first or recurrent, key secondary endpoint) occurred in fewer patients in the empagliflozin group than in the placebo group (HR 0.73, 95% CI 0.61 to 0.88). Fewer patients were reported with CV death with empagliflozin versus placebo, but this difference was not statistically significant (HR 0.91, 95% CI 0.76 to 1.09).

Renal endpoints

An initial dip in eGFR was observed with empagliflozin treatment, followed by a slower decrease in eGFR over time. The change of eGFR slope from baseline (key secondary endpoint) showed a slower decline in eGFR in the empagliflozin group, with an estimated difference in slope of 1.363 mL/min/1.73 m² per year vs placebo (99.9% CI 0.861 to 1.865). The results for the composite renal endpoint (i.e. chronic dialysis, renal transplant, or sustained reduction in eGFR; secondary/exploratory endpoint) are similar for empagliflozin vs. placebo (empagliflozin 108/2997 (3.6%), placebo 112/2991 (3.7%), HR 0.95 95% CI 0.73 to 1.24). The proportion of patients progressing to macroalbuminuria (secondary/exploratory endpoint) was less with empagliflozin vs. placebo (HR 0.82, 95% CI 0.68, to 0.98).

Mortality

All-cause mortality was similar in both treatment groups (HR 1.00, 95% CI 0.87 to 1.15). The number of CV death are described above. The number of non-CV death was larger with empagliflozin, but this difference was not statistically significant (empagliflozin 203/2997, placebo 183/2991, HR 1.13, 95% CI 0.92 to 1.38).

Patient reported outcomes

The change from baseline in KCCQ clinical summary score was a secondary/exploratory endpoint. The mean treatment difference in change was 1.32, 95% CI 0.45 to 2.19. The proportion of patients achieving a clinically relevant change (i.e. 5 points) was larger in the empagliflozin group compared to placebo (empagliflozin 1126 patients, 41.7%; placebo 1034 patients, 38.7%).

Elderly patients

In elderly patients, i.e. age \geq 70 years, the point estimate of treatment effect was larger compared to patients < 70 for the primary endpoint (age \geq 70 years HR 0.75, 95% CI 0.64-0.95, age <70 years HR 0.88, 95% CI 0.70-1.11) and key secondary endpoint (HHF) (age \geq 70 years HR 0.65, 95% CI 0.52-0.82, age <70 years HR 0.92, 95%CI 0.67-1.26).

In addition, the applicant discussed efficacy results and the safety data of both EMPEROR trials in patients aged \geq 85 years. The number of patients aged \geq 85 years that were included is 483 patients. The data do not suggest that patients aged \geq 85 years benefit less form treatment of the indication of chronic symptomatic heart failure. The efficacy in general appears similar. The safety profile also appears similar across the age groups. The applicant therefore concluded that "limited therapeutic experience" in the elderly population is no longer suitable and amended sections 4.2 and 4.4 in the SmPC and the Package Leaflet to remove the warning. The amendments proposed by the MAH are considered acceptable.

3.3. Uncertainties and limitations about favourable effects

Effects independent of LVEF

Although HFpEF has been defined from a LVEF >40%, the range between 40 and 50% is currently considered HFmEF, and this group of patients may differ in the aetiology and treatment response compared to patients with LVEF >50%/HFpEF. Retrospective analyses have suggested that the benefits of neurohormonal antagonists in patients with HFrEF extend to those with a mildly reduced ejection fraction (Dewan P et al. Eur J Heart Fail 2020). This may affect the interpretation of the overall efficacy results. Stratified randomisation was performed for LVEF subgroups (i.e. LVEF <50%, LVEF 50-<60% and LVEF \geq 60%), and the number of patients was equally distributed between the LVEF subgroups. Subgroup analyses for LVEF were performed for the primary and key secondary endpoints. Although the p value for interaction was not significant (p=0.2098) for the primary endpoint (CV death or HHF), the effect was more pronounced in patients with LVEF <50% (LVEF <50% HR 0.71, 95%CI 0.57-0.88; LVEF 50-<60%, HR 0.80, 95%CI 0.64-0.99; LVEF >60%, HR 0.87, 95%CI 0.69-1.10). As the effect of empagliflozin on the primary endpoint was beneficial for all LVEF subgroups, the indication for the treatment of heart failure in patients with HFpEF is acceptable. As the indication for the treatment of heart failure is for all types of heart failure, the wording "*for the treatment of symptomatic chronic heart failure."* is considered acceptable.

It could, however, be suggested that there is a modification of the treatment effect in subjects with higher LVEF for the key secondary endpoint, i.e. adjudicated HHF (first and recurrent), where the point estimate for the subgroup LVEF \geq 60% is HR 1.06 (95%CI 0.76-1.46) and p for interaction 0.0077. This could indicate that patients with LVEF \geq 60% benefit less from treatment with empagliflozin. The lower HR in the subgroup \geq 70%, however, contradicts this suggestion, although the number of subjects was small in this subgroup. The analyses on the contribution of HHF events by number of events experienced per patient showed that only a small number of patients contributed to the high number of recurrent HHF in the empagliflozin group, which may contribute to the imbalance in the analysis of the first and recurrent HHF in this subgroup. This may be related to chance.

Renal endpoints

The change of eGFR (CKD-EPI)cr slope from baseline was a key secondary endpoint and showed a slower decline in eGFR in the empagliflozin group, with an estimated difference in slope of 1.363 mL/min/1.73 m2 per year. This endpoint has the limitation that a long treatment period, i.e. more than 2 years, is considered needed to confirm a beneficial effect. The effect on the renal composite endpoint is preferred for evaluation of renal effects. The effect of empagliflozin on the eGFR slope is not supported or confirmed by the observed effects on the composite renal endpoint (i.e. chronic dialysis, renal transplant, or sustained reduction in eGFR), as the results are similar for empagliflozin vs. placebo (empagliflozin 108/2997 (3.6%), placebo 112/2991 (3.7%), HR 0.95 95%CI 0.73, 1.24). However, the finding in the eGFR slope was supported by other additional pre-specified analyses, i.e. eGFR change from pre-treatment (baseline) to post-treatment

(follow-up; FU) analysed with ANCOVA, "true slope" (annualised change from pre-treatment to posttreatment weighted by time of FU squared) and progression to or reversal from macro-albuminuria. Although all exploratory, these findings indicate a consistent finding and this appears clinical relevant.

Mortality

All-cause mortality was similar in both treatment groups (HR 1.00, 95%CI 0.87 – 1.15). The number of non-CV death was larger with empagliflozin, but this difference was not statistically significant (empagliflozin 203/2997, placebo 183/2991, HR 1.13, 95%CI 0.92 – 1.38). The Applicant provided an extensive evaluation of the causes of non-CV death and could not show a specific increase in a cause of death during empagliflozin treatment. A beneficial effect on all-cause mortality with empagliflozin treatment in patients with HFpEF could not be demonstrated.

Patient reported outcomes

A larger difference in change from baseline in KCCQ clinical summary was observed in the empagliflozin vs. placebo group. Although statistically significant, the treatment difference appears modest, and the clinical relevance is questionable. The proportion of patients achieving a clinically relevant change (i.e. 5 points) was not defined as a secondary endpoint and resulted in a larger proportion of patients with clinically relevant change, but the difference in percentages is small. The treatment effects are considered small.

Combined treatment

Although effectiveness of treatment with ACEi/ARB, MRA's and/or ARNI's have not been demonstrated in patients with HFpEF, the majority of the patients used these treatments during the trial, i.e. ACEi/ARB's, 82.6%, MRA's 46.0%, ARNI's 4.4%. Empagliflozin was, therefore, evaluated on top of these medication, but these medications are not registered for the treatment of HFpEF. The Applicant described the baseline use of these agents in the trial population in Section 5.1 of the SmPC. The subgroup analysis for baseline use of ACEi/ARB/ARNI's and/or MRA's resulted in a similar risk reduction with empagliflozin vs. placebo for the primary and key secondary endpoints for patients using these agents compared to patients not using these agents, it is considered acceptable that the indication for the treatment of HFpEF is independent of the baseline use of these agents.

3.4. Unfavourable effects

In SAF-HF1, 10408 patients were treated and 28.2% of patients prematurely discontinued study medication (including patients who died). More than 70% of patients had an exposure for at least 52 weeks. The exposure is considered acceptable to perform a safety evaluation.

Adverse events

The number of AEs and severe AEs were similar for empagliflozin compared to placebo (any AE; empagliflozin 81.4%, placebo 80.0%, severe AE; empagliflozin 26.5%, placebo 24.3%). Based on the most frequently reported AEs, this number of events is also similar for empagliflozin compared to placebo, except for hypotension (empagliflozin 372 (7.1%) placebo 313 (6.0%)) and urinary tract infections (empagliflozin 314 (6.0%) placebo 259 (5.0%)).

Deaths, serious adverse events and adverse events leading to treatment discontinuation

In the SAF-HF1, the number of serious adverse events was not larger for empagliflozin compared to placebo (empagliflozin 43.1%, placebo 48.1%). The frequencies of patients with AEs leading to discontinuation of study medication were similar between treatment groups (empagliflozin 17.5%, placebo 17.3%). There was not a difference between the type of AEs leading to discontinuation between the empagliflozin group and the placebo group. Number of deaths/mortality did not differ between the treatment groups.

Adverse events of special interest

Urinary tract infections

Urinary tract infections (empagliflozin 402 patients (7.7%), placebo 335 patients (6.4%)) were more common in the empagliflozin group than in the placebo group. The number of complicated urinary tract infections, urosepsis or pyelonephritis, was also more in the empagliflozin group vs placebo. The treatment difference was most pronounced in female patients for urosepsis or pyelonephritis (empagliflozin 20/1895 (1.1%), placebo 6/1915 (0.3%)) and for patients without diabetes (empagliflozin 15 patients (0.6%), placebo 8 patients (0.3%)).

Genital infections

Genital infections (empagliflozin 101 patients (1.9%), placebo 35 patients (0.7%)) were more common in the empagliflozin group than in the placebo group. The number of complicated genital infections was similar between empagliflozin and placebo (empagliflozin 14 patients (0.3%), placebo 14 patients (0.3%)). Genital infections with empagliflozin treatment were reported slightly more frequently in elderly patients (Age 50-<65 empagliflozin 19 (1.6%), placebo 8 (0.7%); age 65-<75: empagliflozin 32 (1.7%), placebo 10 (0.5%); age 75-<85 empagliflozin 43 (2.6%), placebo 11 (0.7%)).

Volume depletion

Volume depletion was also more frequent with empagliflozin treatment (empagliflozin 566 patients (10.9%), placebo 483 patients (9.3%)), including the number of symptomatic hypotension and syncope. Serious volume depletion events were also more frequent with empagliflozin treatment (empagliflozin 113 patients (2.2%), placebo 91 patients (1.7%)). During treatment with empagliflozin, the intensity of diuretic therapy or non-diuretic anti-hypertensive therapy was more frequently reduced.

Keto-acidosis

Based on the broad BIcMQ, events suggestive of ketoacidosis were reported for 63 patients (1.2%) in the empagliflozin group and for 77 patients (1.5%) in the placebo group. The narrow BIcMQ ketoacidosis included 4 patients (0.1%) in the empagliflozin group and 6 patients (0.1%) in the placebo group.

Lower limb amputation

The number of AEs leading to LLA was similar between placebo and empagliflozin treatment (empagliflozin 29 (0.6%), placebo 33 (0.7%)), both for patients with and without diabetes.

Decreased renal function

The numbers of events with acute renal failure (empagliflozin 547 patients (10.5%), placebo 587 patients (11.3%)) were not larger in the empagliflozin group compared to placebo.

Hepatic injury

The frequency of patients with hepatic injury was not higher in the empagliflozin group (197 patients (3.8%)) than in the placebo group (248 patients (4.8%)). The most frequent PTs were liver injury, hepatic function abnormal, and hepatic steatosis.

Hypoglycaemia

The numbers of confirmed hypoglycaemic events (empagliflozin 101 patients (1.9%), placebo 108 patients (2.1%)) were similar for empagliflozin vs. placebo, except for hypoglycaemic events in T1DM (empagliflozin 2/5 (40%), placebo 1/5(20%)).

Constipation

Constipation was reported for more patients in the empagliflozin group (153 patients (2.9%)) than in the placebo group (107 patients (2.1%)). The number of serious events or events leading to treatment discontinuation was low in both treatment groups.

Laboratory findings

In trials 1245.110 and 1245.121, haemoglobin and haematocrit values increased on treatment and then partially returned to baseline after treatment discontinuation in the empagliflozin group, with small decreases observed in the placebo group. There was a decrease in uric acid (urate) values in the empagliflozin group compared with the placebo group. After treatment discontinuation, uric acid values returned towards baseline in the empagliflozin group.

Vital signs

No meaningful changes in blood pressure (systolic or diastolic) or in heart/pulse rate were observed with empagliflozin treatment compared with placebo in any of the HF trials. There were no relevant differences in new ECG findings after baseline between empagliflozin and placebo.

3.5. Uncertainties and limitations about unfavourable effects

The safety profile of empagliflozin in patients with HF, with or without diabetes, appears in general similar to the safety profile in patients with T2DM. However, uncertainties remain about several unfavourable effects:

Urinary tract infection

Urinary tract infections were more common in the empagliflozin group than in the placebo group and the difference was most pronounced in female patients for urosepsis or pyelonephritis. It is known that female subjects are more susceptible for urinary tract infection, and this may partly explain the increased incidence in female subjects with empagliflozin treatment. Urinary tract infections, including urosepsis and

pyelonephritis, are included in Section 4.8 of the SmPC. The current observations are in line with the described ADRs in the SmPC.

Hypoglycaemia

The numbers of confirmed hypoglycaemic events were similar for empagliflozin vs. placebo, except for hypoglycaemic events in T1DM. But the latter consisted of a very small number of events (empagliflozin 2/5 (40%), placebo 1/5(20%)) and does therefore not contribute to the evaluation for increased risk.

Elderly patients

As expected, the total AEs are reported more frequently in the older age groups, but similar for empagliflozin compared to placebo treatment. Volume depletion and genital infection are in general more frequent in the empagliflozin group, but the difference in frequency vs. placebo appears more pronounced in elderly patients (>75years). Elderly patients appear, therefore, more vulnerable for these side effects. The increased risk for volume depletion in elderly patients is described in Section 4.4 of the SmPC. The increased risk for genital infections is not described in the SmPC, but this risk is considered only mildly elevated in elderly patients and is not deemed necessary to be included in section 4.8.

3.6. Effects Table

Effect	Short description	Unit	Empagliflozin (10mg)		Uncertainties (Unc) / Strength of evidence (SoE)	Trial			
Favourable Effects									
CV death or HHF	Composite primary endpoint	N (%)	415/2997 (13.8)	511/2991 (17.1)	SoE : HR 0.79, 95%CI 0.69 to 0.90, p<0.0001 Unc: seems mainly driven by HHF	EMPEROR- preserved, (trial 1245.110)			
First and recurrent HHF	adjudicated HHF event (key secondary endpoint)	N (%)	259 (8.6%)	352 (11.8%)	SoE: HR 0.79, 95%CI 0.69 to 0.90, p=0.0009				
					Unc: beneficial effect not demonstrated in all subgroups	EMPEROR- preserved			
					LVEF <50%: HR 0.57, 95%CI 0.42-0.79 LVEF 50-<60% : HR 0.66, 95%CI 0.48- 0.91) LVEF ≥60%: HR 1.06, 95%CI 0.76-1.46				
					SoE: HR 1.00, 95%CI 0.87 to 1.15				
	all-cause mortality	N (%)	422 (14.1%)	427/2991 (14.3%)	Unc:	EMPEROR- preserved			
Mortality					CV death similar for empagliflozin and placebo (HR 0.91, 95%CI 0.76 to 1.09)				
					number of non-CV death higher for empagliflozin				
eGFR slope	eGFR slope of change from baseline (key secondary endpoint)	Slope [/year] estimate (95% CI)	-1.253 (-1.465, -1.041)	-2.616 (-2.827, -2.405)	SoE: Difference vs placebo: 1.363, 99%CI 0.861 to 1.865, p<0.0001	EMPEROR- preserved			
					Unc: not supported by combined renal endpoint				
	Unfavourable Effects								
AEs		%	80.0	81.4		SAF-HF1, (trial 1245.110 and 1245.121)			

Table 50. Effects Table for Jardiance for the treatment of HFpEF

Effect	Short description	Unit	Empagliflozin (10mg)		Uncertainties (Unc) / Strength of evidence (SoE)	Trial
SAEs		%	43.2	48.1	Mainly driven by cardiac events	SAF-HF1
Volume depletion	(including hypotension)	N (%)	566 (10.9)	483 (9.3)	Serious volume depletion events more frequent with empagliflozin. Volume more frequent in elderly patients	SAF-HF1
Genital infections		N (%)	101 (1.9)	35 (0.7)	Seemingly effect of treatment more outspoken for elderly patients	SAF-HF1
Urinary tract infections		N (%)	402 (7.7)	335 (6.4)	Difference was most pronounced in female patients for urosepsis or pyelonephritis	SAF-HF1

Abbreviations: AE, adverse events; CI, confidence interval; CV, cardio vascular; GFR, glomerular filtration rate; HR, hazard ratio; N, number; SAE, serious adverse events

Notes: Favourable effect based on EMPEROR preserved (Trial 1245.110), unfavourable effects based on SAF-HF1

3.7. Benefit-risk assessment and discussion

3.7.1. Importance of favourable and unfavourable effects

HF is a progressive syndrome with a high global prevalence. A treatment-induced decrease in HF-related complications such as HHF and CV death is therefore important. Especially for patients with HFpEF, the registered treatment options are limited. The finding in the EMPEROR-preserved trial of decreased occurrence of HHF or CV death with empagliflozin treatment (HR 0.79, 95%CI 0.69 to 0.90) is considered an important benefit. During the trial period, the number of patients who would need to have been treated with empagliflozin to prevent one primary event (NNT) was 31 (95%CI 20 to 69). Although this effect seems mainly due to the decrease in HHF and to a lesser extent to the decrease in CV death, it is still regarded as clinically relevant, especially as the normal progression of HF is still associated with a high frequency of rehospitalizations. Importantly, there was, however, no benefit on all-cause mortality. The number of non-CV death was larger with empagliflozin, but this difference was not statistically significant. The Applicant provided an extensive evaluation of the causes of non-CV death and could not show a specific increase in a cause of death during empagliflozin treatment.

This current application is an indication for the treatment of chronic heart failure independent of LVEF. For the primary endpoint a positive effect of empagliflozin treatment was observed overall and in all the predefined LVEF subgroups. The p for interaction was not significant. However, for the secondary endpoint (first and recurrent HHF) the HR point estimate and the level of precision for the subgroup LVEF \geq 60% is 1.06 (95%CI 0.76-1.46, p for interaction p=0.0077). This finding in subjects with LVEF \geq 60% could indicate a decrease in efficacy in the higher LVEF subgroups for this endpoint. The lower HR in the subgroup \geq 70%, however, contradicts this suggestions, although the number of subjects was small in this subgroup. The analyses on the contribution of HHF events by number of events experienced per patient showed that only a small number of patients contributed to the high number of recurrent HHF in the empagliflozin group, which may contribute to the imbalance in the analysis of the first and recurrent HHF in this subgroup. This may be related to chance. Based on these findings it is not considered supported that there is a decrease in efficacy in patients with higher LVEF.

The finding of a slower eGFR slope decline with empagliflozin treatment (estimated difference in slope of 1.733 mL/min/1.73 m2 per year vs placebo (99.9% CI 0.669, 2.796; p<0.0001)), could be regarded as not convincing. Although this endpoint was a key secondary endpoint, the slope analysis modelling is better suited in providing descriptive information on renal outcomes than providing definitive statistical and clinical evidence of a renal effect as it is used now. The data on the eGFR slope were not supported by a beneficial effect on the preferred renal composite (secondary/exploratory) outcome endpoint (i.e. chronic dialysis,

renal transplant, or sustained reduction in eGFR) (HR 0.95 95%CI 0.73 to 1.24). The results are also not fully in line with earlier observations in patients with HFrEF or T2DM. However, the finding in the eGFR slope was supported by other additional pre-specified analyses, i.e. eGFR change from pre-treatment (baseline) to post-treatment (follow-up; FU) analysed with ANCOVA, "true slope" (annualised change from pre-treatment to post-treatment weighted by time of FU squared) and progression to or reversal from macro-albuminuria. Although all exploratory, these findings indicate a consistent finding and this appears clinical relevant.

In the EMPEROR-preserved trial, the KCCQ 'clinical summary score' was used to measure as a secondary/exploratory endpoint of a patient-reported outcome. Although statistically significant, the treatment difference appears modest, and the clinical relevance is questionable. The Applicant also provided the proportion of patients achieving a clinically relevant change (i.e. 5 points), but again the difference in percentages is small. The potential beneficial effects of empagliflozin on HF-related symptoms are not established robustly and are, therefore, of questionable importance.

Treatment with empagliflozin in patients with HFpEF generally revealed no new large safety findings compared with the known safety profile of empagliflozin in patients with HFrEF and/or T2DM. The numbers of reported AEs and SAEs were equally distributed between the treatment groups. As expected, genital infections, urinary tract infections and volume depletion were more reported during empagliflozin treatment, but these are known side-effects and included in the SmPC. They have previously not affected the benefit-risk balance to a negative ratio for the indication for the treatment of HFrEF and/or T2DM.

3.7.2. Balance of benefits and risks

The MAH agreed to amend the initially applied indication i.e.

The final agreed indication is:

<u>Heart failure</u>

Jardiance is indicated in adults for the treatment of symptomatic chronic heart failure with reduced ejection fraction.

The reduced incidence of HHF or CV death is an important benefit and significantly contributes to a positive B/R ratio. It is important to point out that this finding is mainly driven by an effect on HHF, as no relevant reduction in CV death was observed.

A beneficial effect on the primary endpoint was observed across all LVEF subgroups and the indication for the treatment of heart failure in patients with HFpEF is acceptable. As the indication for the treatment of heart failure is for all types of heart failure, the wording "*for the treatment of symptomatic chronic heart failure."* is considered acceptable.

Results on the key secondary endpoint, i.e. first and recurrent HHF, could indicate that there a decrease in effect in patients with higher LVEF (\geq 60%). Additional analyses, i.e. further subgroup analyses based on LVEF and analyses on the contribution of HHF events by number of events experienced per patient, suggest that this finding is related to chance.

Treatment with empagliflozin in patients with HFpEF generally revealed no new large safety findings compared with the known safety profile of empagliflozin in patients with HFrEF and/or T2DM.

3.8. Conclusions

The overall B/R of Jardiance in the treatment of symptomatic chronic heart failure is positive.

4. Recommendations

Outcome

Based on the review of the submitted data, the CHMP considers the following variation acceptable and therefore recommends the variation to the terms of the Marketing Authorisation, concerning the following change:

Variation accept	Туре	Annexes affected	
C.I.6.a	C.I.6.a - Change(s) to therapeutic indication(s) - Addition of a new therapeutic indication or modification of an	Type II	I and IIIB
	approved one		

Extension of indication to add the treatment of treatment of symptomatic chronic heart failure based on the results from the clinical study 1245.110 EMPEROR-preserved.

As a consequence, sections 4.1, 4.2, 4.4, 4.8 and 5.1 of the SmPC and sections 1, 2 and 4 of the PIL are updated accordingly.

Further, the MAH applied for an additional year of market protection. The updated RMP v 16.0 has also been submitted.

In addition, the statement 'sodium free' was re-located from section 2 of the SmPC to section 4.4. to comply with EMA'S QRD guidance and minor linguistic changes to the national translations are included in this submission.

The variation leads to amendments to the Summary of Product Characteristics and Package Leaflet and to the Risk Management Plan (RMP).

Amendments to the marketing authorisation

In view of the data submitted with the variation, amendments to Annex(es) I and IIIB and to the Risk Management Plan are recommended.

Additional market protection

Furthermore, the CHMP reviewed the data submitted by the MAH, taking into account the provisions of Article 14(11) of Regulation (EC) No 726/2004, and considers that the new therapeutic indication brings significant clinical benefit in comparison with existing therapies (see appendix 1).