

Ospidéal Ollscoile Chorcaí Cork University Hospital

Medication Errors: Older Patients & Their Caregivers

Denis O'Mahony, Dept. of Medicine (Gerontology), University College Cork & Cork University Hospital, Ireland

Common Medication Errors in Older People

- Prescribing errors
 - Polypharmacy (caregivers sometimes complicit)
 - Potentially inappropriate medications (PIMs)
 - Potential prescribing omissions (PPOs)
 - Failure to recognise need for palliative pharmacotherapy
- Reconciliation errors
- Compliance errors
 - Packaging, presentation, formulation
 - Failure to detect cognitive problems
- Economic errors
 - Failure to prescribe generics
 - Focus of 'new, improved' drugs

How to counteract medication errors in older people

- Ensure correct drug indications
- Ensure no absolute drug contraindications
- Minimize adverse drug-drug, drug-disease interactions
- Minimize Potentially Inappropriate Medications (PIM's)
- Minimize Potential Prescribing Omissions (PPO's)
- Identify older people at high risk of and suffering the symptoms of ADR's, ADE's
- Identify older people who need palliative Rx
- Translate all medications to generics
- Ensure best value drug selection (BVDS)
- Maximize overall medication appropriateness
- Ensure optimal formulation, packaging, presentation
- Counsel patient and (where appropriate) caregiver

Unifying Theory/Concept

Polypharmacy is a core problem i.e. inappropriate over-prescribing in response to complex comorbidity

Complex comorbidity \longrightarrow Polypharmacy

Prescribing cascades

Multimorbidity and Polypharmacy are not independent variables

Polypharmacy: new definition

 "The inappropriate pharmacotherapeutic response from doctors to the presence of multimorbidity, usually in an older person, that results in heightened risk of adverse drug reactions and adverse drug events. The presence of 8 or more daily medicines represents a serious risk of adverse drugrelated morbidity, which should trigger corrective action."

O'Mahony, 2012.

Adverse Drug Reaction (ADR)

 "Any noxious, unintended and undesired effect of a drug, excluding therapeutic failures, intentional or accidental poisoning, and drug abuse."

WHO 1969

e.g. Acute haemorrhagic gastritis 48 hours after starting diclofenac 50 mg t.d.s. with no prior history of PUD and no other drug as a likely cause.

- Severe ADR \rightarrow
 - Immediate discontinuation of suspect drug
 - Required resuscitative or antidote treatment
 - Caused or contributed to hospitalization
 - Caused or contributed to death

ADR Risk Factors

- Age > 65
- Female > Male
- Polypharmacy (> 6 medicines/day)
- Multimorbid illness (≥ 4 chronic diseases)
- Chronic liver disease
- Acute, chronic kidney disease (eGFR < 60 ml/min/1.73m²)
- Chronic heart failure
- Previous ADR
- Certain drugs: insulin, anticoagulants, neuroleptics, oral hypoglycaemic agents, non-steroidal anti-inflammatories

ADR epidemiology

- 6% of hospital admissions
- 4% of hospital bed-days
- Hospital stay in ADR patients 8% longer
- 0.3% of ADRs are fatal
- Mortality in ADR patients increased x 19 times
- Incidence rate *increasing* with global ageing
- Recent USA statistics: 5th highest cause of death
- Approx. 3% of all deaths in Sweden
- Mortality in older patients increased 7 times
- Hospital admissions for ADRs increasing

ADR's in elderly patients: Cork University Hospital

- Prospective study design: July Nov 2010
- Eligibility: patients ≥ 65 years admitted via ED
- Patients reviewed admission → discharge
- ADR detection: patient interview, case-note analysis, physician consultation, review of laboratory and other investigations
- WHO-UMC causality criteria
- Discharge letters requested on all in-patients who had an in-hospital ADR (n=135)
- All 135 index hospital admissions were reviewed on the Hospital In-Patient Enquiry portal.

ADR's in hospitalized older people

- 513 hospitalised patients; \geq 65 years
- 135 in-hospital ADR's identified (affecting 26% of patients)
- 95% were defined as certain/probable (WHO-UMC criteria)

Drug/Drug Class	Adverse Drug Reaction	No. (%)
Diuretics	Acute kidney injury/ electrolyte disturbance	45 (25%)
Benzodiazepines	Fall(s)	32 (18%)
Opiates	Acute confusion/ falls/ sedation/constipation	32 (18%)
Beta-blockers	Symptomatic bradycardia/ Orthostatic hypotension	16 (9%)
Anti-hypertensive's (excluding diuretics + beta blockers)	Orthostatic hypotension/ Acute Kidney Injury/Hyperkalemia	14 (7.8%)
NSAID's (excluding Aspirin)	Gastritis/peptic ulceration/ acute kidney injury	10 (5.6%)
Warfarin	Haemorrhage	8 (4.5%)
Anti-platelets	Haemorrhage/gastritis	6 (3.3%)
Neuroleptics	Falls/parkinsonism	3 (1.6%)
Selective Serotonin Reuptake Inhibitors	Hyponatraemia	3 (1.6%)
Antibiotics (Cephalosporins)	Clostridium difficile colitis	3 (1.6%)

Recording of ADR's in hospital

Insufficient recording of ADR's by hospitals \rightarrow Grossly under-reported rate of ADR's by Irish Medicines Board.

Can ADR risk be predicted?

Multi-Variate Analysis Variable	Odds Ratio	95% Confidence Interval		p -value
		Lower	Upper	
Age (years) 65-74				0.015
75-84	2.12	1.22	3.69	0.007
≥ 85	2.22	1.68	4.23	0.015
Renal Failure (eGFR < 60)	1.81	1.12	2.92	0.015
Liver Disease	1.86	0.90	3.84	0.090
Number of STOPP medications	2.40	1.26	4.59	0.008
Number of Medications	1.09	1.02	1.17	0.006
Assistance ≥ 1 activity of daily living	0.75	0.45	1.26	0.290

O'Connor MN et al., 2012

Evidence-based ADR prevention

 Pharmacist-led medication review (17 studies): odds ratio 0.64 (95% CI: 0.43 – 0.96) prevents ADR-related admissions

Royal S et al., *Qual Saf Health Care* 2005 (Systematic review and meta-analysis)

 Outpatient geriatric clinic care using Comprehensive Geriatric Assessment (one RCT): odds ratio 0.65 (95% CI: 0.45 – 0.93) prevents serious ADRs (outside hospital)

Schmader KE et al., *Am J Med* 2004 (Randomized controlled trial)

 In-patient structured education programme on ADR recognition, prevention (one RCT in the rehabilitation setting): odds ratio: 0.61 (95% CI not cited) prevents ADRs (in hospital)

> Trivalle C et al., *J Nutr Aging Health* 2010 (Randomized controlled trial)

Prevention of Potentially Inappropriate Prescribing for Elderly Patients: A Randomized Controlled Trial Using STOPP/START Criteria

PF Gallagher¹, MN O'Connor¹ and D O'Mahony^{1,2}

Clinical Pharmacology & Therapeutics (Nature) 2011; 41(6): 841-54.

Effect of STOPP on Medication Appropriateness

Effect of START on Omission of Appropriate Medications

ADR's caused by medications listed in STOPP/START criteria

	Number (%) of patients	Number (%) of ADR's	Number (%) of	Total
Study Arm	with at least one instance	attributable to	ADR's not	number of
	of IP according to	medications listed in	attributable to	ADR's
	STOPP/START criteria at	STOPP/START criteria	medications listed	
	randomization		in STOPP/START	
Control	158 (42.5%)	51 (57%)	38 (43%)	89
(n = 372)				
Intervention	176 (48.9%)	15 (33%)	30 (66%)	45
(n = 360)				

i.e. ADR rate in Intervention Group = 23.9%
vs. ADR rate in control Group = 12.5%
Absolute Risk Reduction = 11.4%; NNT = 9

Adjusting for number of drugs, PIMs, renal failure, liver disease, heart failure, age, dementia and falls.....

ADR risk Odds Ratio = 0.43 (CI: 0.28 - 0.67)

Prescribing Optimization: Starting with a 'blank canvas'

Drug indications

Drug-drug interaction

Drug-disease interaction

Medications reconciliation

Potential inappropriateness

Potential prescribing omissions

ADR/ADE risk factors

Indications for palliative drug therapy

Generic drug list

Cheapest brands

Assessment of overall medication appropriateness

KEEP IT SIMPLE! THERE IS MORE TO LIFE THAN TAKING TABLETS.

DON'T ADD TO CAREGIVER BURDEN BY COMPLEX DRUG REGIMENS

Summary

- Prevention of ADR's is vital, most ADR's are predictable.
- Avoidance of medication errors/medication optimization in multimorbid older people is often complex and challengingi.e. *there are no simple solutions*.
- Polypharmacy, Inappropriate Prescribing, ADR's not economically sustainable.
- Evidence-based interventions exist.
- <u>Systematic</u> scrutiny of medication essential.
- Co-ordinated, integrated efforts of prescribers and pharmacists is essential for medication optimization.
- EU-wide investment in R&D of effective and efficient pharmacotherapy optimization software systems is needed.

