

- 1 17 February 2025
- 2 EMA/67201/2025
- 3 Committee for medicinal products for human use (CHMP)

- 5 Guideline on the clinical investigation of medicinal
- 6 products in the treatment of patients with acute
- 7 respiratory distress syndrome
- 8 Draft

Draft agreed by MWP, IDWP, ETF, PDCO, RIWP	November 2024
	December 2024
Adopted by CHMP for release for consultation	February 2025
Start of public consultation	28 February 2025
End of consultation (deadline for comments)	31 May 2025

9 10

This guideline replaces the guideline on clinical investigation of medicinal products for the treatment of patients with acute respiratory distress syndrome (EMEA/CPMP/EWP/504/97 Rev1).

12

11

Comments should be provided using this EUSurvey <u>form</u>. For any technical issues, please contact the <u>EUSurvey Support</u>.

13

Keywords	Acute respiratory distress syndrome, biomarker, phenotype,
	pandemic preparedness

Table of contents

16	Executive summary	4
17	1. Introduction (background)	4
18	2. Scope	5
19	3. Legal basis and relevant guidelines	5
20	4. Clinical Pharmacology studies	6
21	5. Assessment of therapeutic efficacy	6
22	5.1. Patients' characteristics and selection of patients	
23	5.2. Predictive biomarkers and biomarker assays	
24	5.3. Concomitant therapy and standard of care	8
25	5.4. Efficacy criteria	8
26	5.4.1. Mortality	
27	5.4.2. Maintenance of organ function	
28	5.4.3. Biomarkers as clinical trial endpoint	
29	5.4.4. Patient-reported outcomes	
30	5.4.5. Long-term outcomes	
31	5.5. Exploratory studies	
32	6. Methodological aspects for confirmatory studies	
33	6.1. Study design	
34	6.2. Efficacy endpoints	
35	6.2.1. Primary endpoints in confirmatory trials	
36	6.2.2. Secondary endpoints in confirmatory trials	
37	6.3. Statistical considerations	
38	6.3.1. Estimation of the treatment effect (estimands)	
39	7. Safety evaluation	
40	7.1. Specific adverse events to be monitored	
41	7.2. Long term safety	
12	7.3. Mortality	
43	8. Specific considerations for clinical development	
14	8.1. Clinical development plan	
45	8.2. Biomarker and/or (sub)phenotype defined drug development	
46	8.3. Further enrichment strategies	
47	8.4. ARDS due to bronchopulmonary viral infection	
48 40	8.5. Drug development for pandemic preparedness	
49	8.6. Label claims and regulatory considerations	
50	9. Special populations	
51	9.1. Elderly patients	
52	9.1.1. Efficacy in elderly patients	
53	9.1.2. Safety in elderly patients	
54	9.2. Paediatric patients	. 18

55	References1
56	Definitions 2
57	

Executive summary

59

72

- The aim of the guideline is to provide guidance for the development of medicinal products for the
- 61 treatment of Acute Respiratory Distress Syndrome (ARDS) and/or preventing disease progression. This
- 62 is the first revision of the Guidance on clinical investigation of medicinal products in patients with ARDS
- 63 issued in 2006. Updates of the diagnosis criteria for ARDS in 2012 [D0] and 2023 [D1, P1] has
- 64 subsequent implications for identifying patients both in clinical and research settings. The key
- 65 requirements are described in terms of study population, (co)primary and secondary efficacy endpoints.
- 66 Specific issues, including biomarker and/or (sub)phenotype defined drug development and
- 67 preparedness are addressed for a potential future pandemic due to a viral pathogen that causes ARDS.
- 68 Furthermore, relevant published methodological guidance documents for decision making (e.g.
- 69 estimand(s)) were added. This document should be read in conjunction with other relevant European
- 70 Medicine Agency (EMA) and International Council for Harmonisation of Technical Requirements for
- 71 Pharmaceuticals for Human Use (ICH) guidelines (see section 3).

1. Introduction (background)

- 73 ARDS is a critical condition characterized by a sudden and severe impairment of lung function, primarily
- 74 marked by the inability of the lungs to adequately oxygenate the blood. This dysfunction stems from
- various causes, the most frequent being bronchopulmonary viral infection, sepsis, trauma, or
- aspiration, triggering an inflammatory cascade within the lungs. As a consequence, the alveolar-
- 77 capillary membrane becomes permeable, leading to the leakage of fluid into the alveolar spaces and
- 78 impairing gas exchange. Clinically, ARDS manifests with dyspnea, tachypnea, and refractory
- 79 hypoxemia, often necessitating mechanical ventilation.
- 80 The condition carries a high mortality rate, often attributed to complications such as ventilator-induced
- 81 lung injury, abnormal organ function, and nosocomial infections. The mortality of ARDS is
- 82 commensurate with the severity of the disease: 27%, 32%, and 45% for mild, moderate, and severe
- 83 disease, respectively [D3, D0].
- 84 Management involves supportive care, which includes various strategies for assisted ventilation. There
- is some evidence that mechanical ventilation with lower tidal volume maintaining, a plateau pressure as
- 86 low as possible and a sufficient positive end expiratory pressure (PEEP) significantly reduces mortality.
- High frequency ventilation, inverse ratio ventilation and the prone position are techniques that may
- 88 shortly improve gas exchange.
- 89 Standards of and approaches to critical care (e.g., pharmacological treatments, supportive care,
- 90 ventilation) in ARDS may vary between individual physicians, referral centres, and geographical
- 91 regions. Many aspects of management of critically ill patients often lack a robust evidence base. This
- 92 adds to the high degree of heterogeneity within the ARDS population.
- 93 Most patients who survive ARDS have a remarkable degree of recovery of lung function within the first
- 94 three to six months, depending on the severity of the initial lung injury. A few patients experience a
- 95 permanent decrease in lung function. Pre-existing conditions that predispose to ARDS include chronic
- lung disease, chronic alcohol consumption, and advanced age, although ARDS may occur at any age.
- 97 Several "failed" studies have underscored the challenges in all-cause ARDS research, including
- 98 difficulties in patient selection, variability in disease presentation and progression, and the lack of
- 99 understanding targeting underlying pathophysiological mechanisms.
- 100 The COVID-19 (Corona VIrus Disease 2019) pandemic had a significant impact on ARDS research and
- treatment developments. Since severe COVID-19 often led to ARDS, it brought increased attention to

- the condition, accelerating advancements in understanding, management, and research that are likely
- to benefit the broader population of ARDS patients in the future.

2. Scope

104

116

120

135

136

139

140

- 105 The current revision concerns the clinical development program of medicinal products intended to treat
- 106 ARDS and/or prevent disease progression with specific reference to the definition of the study
- 107 population, choice of clinical endpoints for inference of efficacy, and estimation of treatment effect
- 108 (estimands) in confirmatory studies.
- 109 New treatments of underlying clinical conditions are not within the scope of this document. This
- accounts in particular to antiviral medicinal products and monoclonal antibodies that targets severe
- acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as these require different considerations for
- evaluating their safety and efficacy.
- 113 The present document does not refer to respiratory distress syndrome (RDS) in preterm neonates
- 114 caused by surfactant deficiency and also not to infectious conditions presenting with a systemic
- inflammatory response syndrome, e.g., sepsis, which are addressed in a separate document.

3. Legal basis and relevant guidelines

- 117 This Guideline should be read in conjunction with the introduction and general principles of Annex I to
- 118 Directive 2001/83/EC, as amended, and all other relevant EU and ICH guidelines. These include, but
- 119 are not limited to:
 - Guideline for good clinical practice EMA/CHMP/ICH/135/1995 (ICH E6[R2]);
- ICH Guideline E8 (R1) on general considerations for clinical studies EMA/CHMP/ICH/544570/1998 Corr*;
- Note for Guidance on Studies in Support of Special Populations: Geriatrics CPMP/ICH/379/95
 (ICH E7) and Questions and Answers EMA/CHMP/ICH/604661/2009 (ICH E7 Q&A);
- ICH M12 Guideline on drug interaction studies (EMA/CHMP/ICH/652460/2022);
- Note for Guidance on Population Exposure: the extent of population exposure to assess clinical safety (CPMP/ICH/375/95 [ICH E1]);
- Note for Guidance on Dose Response Information to Support Drug Registration CPMP/ICH/378/95 (ICH E4);
- Reflection paper on methodological issues associated with pharmacogenomic biomarkers in relation to clinical development and patient selection (EMA/446337/2011);
- Note for Guidance on Statistical Principles for Clinical Trials CPMP/ICH/363/96 (ICH E9) and Addendum on estimands and sensitivity analysis in clinical trials to the guideline on statistical principles for clinical trials EMA/CHMP/ICH/436221/2017 (ICH E9[R1]);
 - Note for Guidance on Ethnic Factors in the Acceptability of Foreign Clinical Data
 CPMP/ICH/289/95 (ICH E5) and Questions and Answers CPMP/ICH/5746/03 (ICH E5[R1]);
- Qualification of novel methodologies for drug development: guidance to applicants,
 (EMA/CHMP/SAWP/72894/2008);
 - Guideline on Clinical Investigation of Medicinal Products in the Paediatric Population EMA/CPMP/ICH/2711/1999 (ICH E11[R1]);

• Guideline on General Principles for Planning and Design of Multi-Regional Clinical Trials (ICH E17).

4. Clinical Pharmacology studies

- 144 Studies should be performed to characterise the pharmacokinetics (PK) of the new medicinal product
- [D6] and where possible this information should be used to study the relationship between dose,
- 146 exposure and response.
- 147 It should be considered, that in critically ill Intensive Care Unit (ICU) patients, PK may be affected by
- disease-related alterations in serum protein levels, which can impact drug binding. Fluid shifts, single
- or multiorgan dysfunction, and extracorporeal circulation (e.g., renal replacement therapy (RRT) or
- extracorporeal membrane oxygenation (ECMO)) may likewise significantly affect drug distribution.
- Population PK analyses may be used to investigate relevant covariates e.g., weight, age, sex (gender),
- healthy vs. patient population, concomitant medications, etc. which could potentially influence the
- pharmacokinetics of the drug. The dose selection for the clinical programme should be adequately
- 154 justified.

165

166

172

141

142

143

- 155 In general, the ICH guideline M12 on drug interactions [D7] should be followed to investigate possible
- 156 PK interactions with other drugs. Interactions with relevant compounds used as standard of care (SOC)
- treatment should be investigated. It is recommended that pharmacodynamic (PD) interactions between
- the test drug and any other drug that may be given simultaneously in clinical practice are explored and
- discussed either through dedicated studies or literature data. If appropriate, PK studies in patients with
- hepatic and /or renal impairment should be performed.
- 161 PD endpoints should be product-specific, defined based on the mechanism of action of the
- investigational medicinal product with the intention to provide a "proof-of-concept" and evidence of the
- pharmacological activity of the drug, as well as a characterisation of the exposure-response
- relationships with regard to the PD effect.

5. Assessment of therapeutic efficacy

5.1. Patients' characteristics and selection of patients

- The diagnosis criteria for ARDS in clinical studies must be clearly outlined in the study protocol. Two
- definitions exist: the "Berlin criteria" from 2012 [D0] and the "New Global Definition" from 2023 [D1,
- 169 D2]. Both definitions are used and define ARDS based on timing of onset, chest imaging, origin of
- oedema, and oxygenation levels, with severity graded by PaO2/FiO2 ratios (ratio of arterial oxygen
- partial pressure to fractional inspired oxygen).

Factors	Berlin Criteria	New Criteria
Timing	- Acute onset within 1 week of known clinical insult or new/worsening respiratory symptoms	- Acute onset or worsening of hypoxemic respiratory failure within 1 week of predisposing risk factor or new/worsening respiratory symptoms
Chest Imaging	- Bilateral opacities on chest X-ray or CT not fully explained by effusions, lobar/lung collapse, or nodules	- Bilateral opacities on chest radiography/CT or bilateral B lines and/or consolidations on ultrasound* - Not fully explained by effusions, atelectasis, or nodules/masses

Risk Factors and Origin of Edema	- Respiratory failure not fully explained by cardiac failure or fluid overload	- Precipitated by acute predisposing risk factor (pneumonia, infection, trauma, etc.) - Pulmonary edema not primarily attributable to cardiogenic causes or fluid overload			
Oxygenation	- Based on PaO ₂ /FiO ₂ ratio while on PEEP/CPAP ≥ 5 cmH ₂ O	- PaO ₂ /FiO ₂ or SpO ₂ /FiO ₂ ratio - HFNO (≥ 30 L/min), NIV, or CPAP (≥ 5 cmH ₂ O) used for non-intubated ARDS.			
Mild (Intubated or non-intubated)	Intubated PaO ₂ /FiO ₂ : 200 < PaO ₂ /FiO ₂ ≤ 300 mmHg - Requires positive end-expiratory pressure (PEEP) or CPAP ≥ 5 cmH ₂ O	Non-intubated PaO2/FiO2 \leqslant 300 mm Hg or SpO2/FiO2 \leqslant 315 (if SpO2 \leqslant 97%) on HFNO with flow of \geqslant 30 L/min or NIV/CPAP with at least 5 cm H2O end-expiratory pressure;			
		Intubated - 200 < PaO2:FiO2 \leq 300 mmHg or 235 < SpO2:FiO2 \leq 315 (if SpO2 \leq 97%) or SpO2:FiO2 \leq 315 (if SpO2 \leq 97%)) - No PEEP or minimum flow rate required in resource-limited settings			
Moderate (Intubated)	PaO ₂ /FiO ₂ : 100 < PaO ₂ /FiO ₂ ≤ 200 mmHg - Requires PEEP or CPAP ≥ 5 cmH ₂ O	- PaO ₂ /FiO ₂ : 100< PaO ₂ /FiO ₂ \leq 200 mmHg - SpO ₂ /FiO ₂ : 148 < SpO ₂ /FiO ₂ \leq 235 (if SpO ₂ \leq 97%)			
Severe (Intubated)	- PaO ₂ /FiO ₂ ≤ 100 mmHg - Requires PEEP or CPAP ≥ 5 cmH ₂ O	- PaO ₂ /FiO ₂ ≤ 100 mmHg - SpO ₂ /FiO ₂ ≤ 148 (if SpO ₂ ≤ 97%) - No PEEP or minimum flow rate required in resource-limited settings			

PaO2/FiO2 ratio (ratio of arterial oxygen partial pressure to fractional inspired oxygen); PEEP (positive end-expiratory pressure); NIV (Non-invasive Ventilation); HFNO (high-flow nasal oxygen (HFNO); CPAP (continuous positive airway pressure); SpO2/FiO2 (ratio of oxygen saturation as measured by pulse oximetry to fractional inspired oxygen).

The Berlin criteria focus on patients using PEEP, while the new definition accommodates high-flow nasal oxygen (HFNO) and non-invasive methods, addressing resource-limited settings. The Berlin criteria also specify ARDS severity as mild (PaO2/FiO2 ≤300 mmHg), moderate (≤200 mmHg), or severe (≤100 mmHg). The new global definition expands this by including SpO2/FiO2 ratios and different standards for non-intubated and intubated patients, accounting for limited diagnostic resources. Both definitions stress accurate patient selection, as ARDS severity and mortality depend on various factors, including comorbidities and organ failure.

Validated scores like SOFA (Sequential Organ Failure Assessment) or APACHE (Acute physiology and Chronic Health Evaluation) should be also used to assess disease severity and prognosis at baseline. Any significant baseline differences between treatment groups may complicate data interpretation, so proper stratification is recommended.

The risk of disease progression should also carefully be estimated at baseline. Of note, a prevalence of rapidly improving ARDS ($PaO_2/FiO_2 > 300$ mmHg or extubated within the first 24 h after diagnosis) has been reported > 10% in six ARDS Network trials [D1]. This group of patients need to be accounted for when the size of the study is being calculated.

In addition, it cannot be anticipated that patients with ARDS of different aetiologies would respond to the same therapy to a similar extent. Therefore, generally, stratified randomisation and analysis should be considered. The number of factors should be restricted to the most clinically important and/or strongly prognostic covariates.

For ARDS due to bronchopulmonary viral infection with deviating underlying pathophysiology special recommendations are given in section 8.4.

5.2. Predictive biomarkers and biomarker assays

- 198 Biomarkers may help to identify patients at high risk of disease progression or poor outcomes and
- 199 could also reflect underlying pathogenic mechanisms and thus represent ARDS (sub)phenotypes. Their
- variability may align with different ARDS phases. However, co-morbidities, age, and gender can affect
- 201 biomarker levels, complicating their interpretation.
- 202 The appropriateness of using predictive biomarker should be justified. A well-founded strategy for
- 203 biomarker development and validation should be established as early as possible during the drug
- development, if applicable. Validation studies must confirm the sensitivity, specificity, reproducibility,
- and clinical utility of biomarkers, with clear justification of cut-offs as early as possible during the drug
- 206 development.

197

210

- 207 Co-development of a companion diagnostic (CDx) is anticipated in such cases. At the time of marketing
- authorisation, the CDx device should be applicable at the point of care with a short turn-around time to
- allow for prompt treatment initiation in eligible patients.

5.3. Concomitant therapy and standard of care

- 211 SOC vary to a certain degree between centre and/or region. Efforts should be made to standardize as
- 212 much as possible during confirmatory studies in alignment with the most recent European Society of
- 213 Intensive Care Medicine Taskforce on ARDS (ESICIM) recommendations [D1]. Their use should be
- 214 prospectively defined in the protocol and documented in the study report. The effects on treatment
- 215 should be discussed in the dossier.
- 216 Conservative fluid management, intermittent prone positioning as well as lung protective ventilator
- 217 strategies aiming at reduction of ventilator induced lung injury (VILI), including the use of lower
- 218 inspiratory pressures and lower tidal volumes in ventilated patients, are key elements to be taken into
- account. Of note, exclusion of these treatment modalities may impact the generalisability of the trial
- 220 results.

221 **5.4. Efficacy criteria**

222 **5.4.1. Mortality**

- 223 As ARDS is a disease of high mortality, reduction of mortality is the most important treatment goal in
- 224 patients with ARDS.
- There are several mortality endpoints that may be considered in ARDS clinical studies, each offering
- 226 different insights into the effects of a treatment:
 - All-cause mortality is the most commonly used mortality endpoint and refers to death from any cause within a specified period (e.g., 28-day mortality, 90-day mortality). It captures the overall impact of the disease and the intervention, without attributing the cause of death to ARDS specifically. All-cause mortality avoids potential biases in determining the cause of
- 231 death

227

228

229

- ARDS-related mortality focuses on deaths specifically attributable to ARDS and its complications. However, differentiating between ARDS-related mortality and mortality due to other causes (such as sepsis, multiple organ failure, or comorbid conditions) can be challenging
- and subject to interpretation, hence, it less commonly used.

- 236 Short-term mortality, such as 28-day mortality, is frequently used in ARDS trials as it captures early
- deaths that are most likely related to ARDS and the acute effects of the treatment. This timeframe
- aligns with the critical illness period and intensive care management.
- 239 Long-term Mortality (e.g., 90-Day or 180-Day Mortality) provide insights into the longer-term survival
- 240 benefits or harms of a treatment. These endpoints are valuable for understanding the durability of the
- treatment effect but may be influenced by factors beyond the acute phase of ARDS.
- 242 In-hospital mortality measures deaths that occur during the initial hospital stay. It is practical to
- 243 measure but may not fully capture deaths occurring after discharge or transfer to another facility.
- Mortality should be measured over a well-defined period, such as 28 days, 60 days, and/or 90 days
- 245 from the start of the treatment. The chosen timeframe should be justified based on the study
- 246 objectives and the natural history of ARDS. To ensure consistency and reliability, standardized criteria
- should be used to report deaths. This includes documentation of the date, cause, and circumstances of
- death. Clear guidelines should also be provided to distinguish ARDS-related deaths from other causes.
- 249 Mortality data can be collected through medical records, electronic health records (EHRs), direct
- 250 contact with healthcare providers, or follow-up with family members. It is important to have a
- 251 systematic approach to ascertain all deaths and minimize loss to follow-up.
- 252 It is essential to blind data collectors and outcome adjudicators (who may occasionally be the same
- 253 individuals) to prevent bias in determining attributable mortality. Mortality data, particularly when
- distinguishing between ARDS-related and non-ARDS-related deaths, should be reviewed by an
- 255 independent committee.

5.4.2. Maintenance of organ function

- 257 Maintenance of organ function (including not only lung, but also kidney, liver, cardiovascular) is a
- 258 clinically relevant treatment goal in ARDS patients.
- 259 Endpoints like "Ventilator-free-days" (VFD) have been used in clinical studies on ARDS. However, main
- 260 challenges for the use of ventilator related endpoints are heterogeneous weaning and extubating
- 261 criteria among centres and/or regions. In addition, variations in post-extubating treatment and the risk
- for reintubation may hamper the interpretability of ventilation related endpoints.
- On the other hand, prolonged ventilation over weeks is associated with poor prognosis. As it can be
- 264 expected that patients on successful treatment will be off ventilator within a reasonable timeframe (at
- least within 2-3 weeks), the number/proportion of patients off ventilator at 28 days are expected to be
- less dependent from heterogeneous weaning approaches and may be used as an efficacy outcome
- 267 measure.

- 268 Maintaining pulmonary function, e.g., adequate oxygenation is essential for patients with ARDS.
- 269 Efficacy measures such as Oxygenation index (OI) or Oxygenation ratio (OR) have been proposed,
- 270 however, being highly dependent on (mechanical) ventilation settings outcomes are difficult to
- interpret and thus not suitable to demonstrate a treatment effect in confirmatory clinical studies.
- Nevertheless, these measures, including information on ventilation (e.g., FiO2, PEEP) should be
- 273 reported supplementary to the clinically relevant endpoints.
- 274 Measurements aiming to quantify pulmonary permeability oedema such as extravascular lung water
- index (EVLWi) or pulmonary vascular permeability index (PVPI) can be used to guide fluid management
- 276 in ARDS patients and may be useful as exploratory endpoints, however, a predictive value on the
- overall outcome (i.e., mortality) has not been established.

- 278 Due to limited accuracy and reliability chest radiographs are not regarded as appropriate efficacy
- 279 outcome measures in clinical studies. Nevertheless, radiographs taken routinely should be documented
- 280 as supplementary information.

289

299

307

- 281 The development/resolution of clinically significant organ dysfunction other than pulmonary, in
- 282 particular renal, hepatic and cardiovascular, should also be documented (e.g., sequential organ failure
- assessment (SOFA) score, need for renal replacement therapy (RRT), need for extracorporeal
- membrane oxygenation (ECMO), monitoring of vasoactive medication).

5.4.3. Biomarkers as clinical trial endpoint

- 286 Biomarkers are currently not accepted as surrogate endpoint for efficacy in confirmatory studies as
- 287 they are not proven to predict clinical outcomes reliably. However, incorporating biomarker as
- 288 exploratory endpoint into clinical development may be useful.

5.4.4. Patient-reported outcomes

- 290 ARDS survivors often experience long-term physical, cognitive, and psychological sequelae that extend
- 291 beyond the acute phase. Patient-Reported Outcomes (PRO) may offer valuable insights into the
- 292 persistent symptoms, functional impairments, and health-related quality of life (HRQoL) of survivors.
- A number of different questionnaires are frequently used in ARDS clinical trials (e.g. Medical Outcomes
- 294 Study 36-Item Short Form Health Survey (SF-36), EQ-5D, Hospital Anxiety and Depression Scale
- 295 (HADS), Functional Status Score for the ICU (FSS-ICU)). The adequacy of these PROs, whether
- 296 existing, modified, or newly developed, as a measure to support a label claim in the Summary of
- 297 product characteristics (SmPC) Section 5.1 depends on whether its characteristics, conceptual
- framework, content validity, and other measurement properties are satisfactory.

5.4.5. Long-term outcomes

- 300 Survivors of ARDS may experience significant long-term impairments continuing after hospital
- 301 discharge and increased mortality during the first year. Common morbidities include cognitive and
- 302 psychological impairment, physical disability with reduced exercise capacity and muscle wasting (ICU
- acquired weakness (ICUAW)), pulmonary function impairments, as well as poor quality of life (QoL).
- 304 Long-term follow up visits should monitor these morbidities (e.g., neurocognitive assessments,
- 305 psychological evaluations, muscle strength testing, exercise tolerance tests, pulmonary function tests,
- 306 and HRQoL questionnaires).

5.5. Exploratory studies

- 308 The primary aim of exploratory studies in ARDS is to gather preliminary data on the safety and
- 309 potential efficacy of a new medicinal product. Unlike confirmatory studies, which focus on definitive
- 310 evidence of efficacy and safety, exploratory studies are designed to generate hypotheses and explore
- 311 mechanisms of action.
- Exploratory studies play also a crucial role in the early stages of drug development for ARDS by
- 313 identifying potential therapeutic targets, biomarkers, and appropriate patient populations. These
- 314 studies may adopt broader inclusion criteria to capture a wide range of ARDS (sub)phenotypes and
- 315 patient characteristics. This may help in understanding how different subgroups respond to the
- 316 treatment and in identifying potential responders. Alternatively, exploratory studies may already focus

- on specific (sub)phenotypes of ARDS patients based on clinical characteristics or biomarker profiles, if
- 318 sufficiently justified.
- The choice of endpoints in exploratory studies should be sufficiently justified, as most likely an effect
- 320 on mortality cannot be demonstrated due to an expected limited number of patients to be included and
- 321 short study duration. Findings from exploratory studies should inform the design of later studies and
- 322 allow integration with findings from confirmatory study(ies). This may enable assessing consistency of
- 323 results.

- 324 Exploratory studies also assess the feasibility of administering a new treatment to ARDS patients,
- 325 including dosing, administration routes, and safety profiles. This stage is crucial for identifying any
- early safety signals and determining the optimal dosing regimen.

6. Methodological aspects for confirmatory studies

328 **6.1. Study design**

- 329 Study planning, design, conduct, analysis, and interpretation must be aligned with the estimand of
- interest and special focus should be on collecting all relevant data for the targeted estimand(s)
- 331 (primary and supplementary) (see section 6.3).
- 332 Confirmatory studies should have an internal controlled, double-blind, randomised, parallel group
- design. The control arm may include a placebo and/or an active comparator, if prospectively available.
- 334 Investigational product and control treatment should be given on top of SoC, which should be defined
- in the study protocol as appropriate.
- The duration of active treatment phase is expected to be adequately justified depending on the nature
- of the product and mode of action. The double-blind period should generally include at least 28 days.
- 338 The cumulative duration of active treatment period and follow-up period should not be less than 3
- months. Preferably, follow-up visits should enable assessments at 6 and at 12 months.

340 **6.2. Efficacy endpoints**

- 341 It is recommended that a disease severity-specific approach (see ARDS definition, section 5.1) is
- adopted for the choice of the clinical endpoints to be used in confirmatory studies, also depending on
- the intended indication (treatment of ARDS vs. prevention of disease progression). The chosen
- endpoints should be clinically meaningful and consistent with the expected drug effect according to its
- 345 mechanism of action. For specific aspects regarding clinical endpoints, reference is made to the
- 346 sections 5.

347

6.2.1. Primary endpoints in confirmatory trials

- 348 All-cause mortality at day 28 since randomisation is the most relevant primary endpoint in confirmatory
- 349 studies for investigation of new medicinal products in the treatment of ARDS.
- 350 Sample sizes required to detect meaningful reductions in mortality may, however, be difficult to
- achieve depending on the selected population of patients (e.g., lower mortality in less severe ARDS). A
- 352 composite endpoint including 28-day all-cause mortality and the morbidity criterion of prolonged need
- 353 for invasive mechanical ventilation (defined as invasive mechanical ventilation for 28 days or longer)
- 354 could be considered instead.

- 355 If a composite endpoint is used, separate analyses of the different components of the composite
- 356 endpoint should be provided to give insights into the relative contributions of each outcome to the
- 357 overall result. It should be noted that inconsistent results across the components of the primary
- 358 endpoint may raise concerns.
- 359 Since there is limited experience with studies aiming at preventing disease progression in patients with
- 360 mild ARDS, no specific recommendations regarding study design and primary endpoint can be given.
- 361 Engaging with regulatory authorities and scientific advice is recommended prior to initiation of
- 362 confirmatory studies.

370

386

6.2.2. Secondary endpoints in confirmatory trials

- 364 Secondary endpoints should include the assessment of mortality at different time points (e.g. at day
- 365 60, 90 and 1 year), but also at earlier time points (e.g., at day 7) should be considered.
- Other secondary endpoints should inform on pulmonary function (e.g., oxygenation index, EVLWi/PVPI,
- 367 need for ventilatory support) and other organ function (e.g., SOFA score, renal/hepatic/cardiovascular
- function/measures of support) at early time points but should also be reported at later stages.
- 369 Endpoints should include assessments of HRQoL (see Section 5.4.4).

6.3. Statistical considerations

- 371 Statistical analysis of study data should be aligned to the estimand (as described below) and generally
- 372 follow the Intention-To-Treat (ITT) principle. A predefined data analysis plan should be established
- 373 before data collection commences, and it is expected that statistical methods and estimators for the
- defined estimands are described unambiguously in the protocol with sufficient detail.
- 375 Adequate sample size is crucial to ensure the statistical power of a confirmatory study for detecting
- 376 clinically meaningful differences between treatment groups in this setting with a considerable number
- of "failed" studies. Sample size calculations should consider-., the expected effect size, level of
- 378 significance, power of the study, anticipated dropout rates, and variability in outcome measures.
- 379 In a multi-regional study stratification for region is expected according to ICH E17 [D4], unless
- otherwise justified. Stratifying a study taking into account the SOC in different regions, e.g. between
- 381 Europe and the United States (US), can be considered and requires careful observation of several
- 382 factors to ensure the validity, generalizability, and relevance of study findings. Pre-defined relevant
- 383 stratification factors can be considered for stratified randomisation or stratified analysis. Further,
- 384 appropriate sensitivity analysis should be implemented to evaluate potential effect modification by
- region, adherence to local treatment guidelines or ventilation strategies on study outcomes.

6.3.1. Estimation of the treatment effect (estimands)

- The scientific question(s) of interest, i.e. what the study seeks to address, and the target(s) of
- 388 estimation (estimand) should be clearly specified in the study protocol. Study planning, design,
- 389 conduct, analysis, and interpretation must be aligned with the estimand. Reference is made to ICH E9
- 390 (R1) addendum on estimands and sensitivity analysis in studies [D5]. The estimand attributes should
- 391 be described. In ARDS treatment conditions of interest may consist of individual interventions, but add-
- on or combination treatments are likely in this complex condition. A disease-specific approach should
- be adopted for primary and secondary estimands, with the definition of the main clinical endpoints to
- 394 be driven by the intended use of a medicinal drug and target population, as defined by disease stage.
- 395 As a general consideration for ARDS patients, the primary outcome should be either all-cause mortality

or composite of mortality and ventilation status. Intercurrent events of general nature and specific to settings of ARDS studies should be considered in the definition of the primary estimand.

398 Intercurrent events expected to be potential modifiers of treatment effect in the context of ARDS 399 include treatment discontinuation, changes in background therapies with effects on the ventilation 400 status or drug-to-drug interactions, as well as terminal events (i.e. death). The nature of the specific 401 intercurrent events and their probability to occur vary depending on the target population, as defined 402 by disease severity and presence of comorbidities. It is expected that the study protocol identifies and 403 clearly defines relevant strategies to handle pre-specified intercurrent events. Moreover, protocol 404 violations and deviations should be considered. Generally, unless an alternative strategy is duly 405 justified, treatment discontinuation should be handled with a treatment policy strategy addressing the 406 treatment effect regardless of discontinuing treatment. Similarly, a treatment policy strategy is relevant 407 for changes in background therapies, which is equivalent to considering them as part of the treatment 408 regimen of interest. Supplemental estimands may be needed to characterise the treatment effect, e.g., 409 in case of use of effective rescue medication. Composite strategies may be considered for this 410 intercurrent event.

The primary estimand definition should consider recommendations on the primary outcome (see above and section 6.2.1). The estimator should be aligned to the primary estimand and the population level summary should be clearly described. In ARDS studies rate differences from baseline to the fixed maximum follow-up timepoint (e.g. day 90, or another predefined timepoint, e.g., day 28) between the investigational treatment and a control treatment have traditionally been used and landmark analysis should be provided at least as supplemental estimand. Alternative approaches can be considered if appropriately justified. Time to event analysis in a limited timeframe is likely not meaningful.

Generally, efforts should be made to collect all relevant data for the primary and important other

estimands to minimize the need to rely on untestable assumptions in the analysis and interpretation of

the study results. Data obtained after discontinuation of treatment or other intercurrent events are of principle interest for the treatment-policy strategy. In case data are missing after treatment discontinuation, appropriate methods that do not unfairly favour the active treatment would have to be applied. For handling of missing data methods that accommodate different missing data assumptions for different types of intercurrent events or reasons for missingness should be considered for the targeted estimand. In any case, assumptions underlying the primary analysis should be examined

through pre-specified sensitivity analysis (e.g., tipping point analyses) addressing the same estimand.

7. Safety evaluation

418

419

420

421

422

423

424

425

426

- Safety evaluation in clinical studies for ARDS is of paramount importance to ensure the well-being of participants and to accurately assess the risks associated with investigational treatments. By implementing comprehensive safety evaluation strategies, researchers can minimize risks to participants, ensure the integrity and reliability of study data, and contribute to the ethical and responsible conduct of clinical studies in ARDS.
- In general, the ICH E1 Guideline on the extent of population exposure to assess clinical safety [S1] should be taken into consideration.
- 435 All adverse effects occurring during a clinical study should be fully documented. Any groups especially 436 at-risk should be identified. Special efforts should be made to assess potential adverse effects that are 437 characteristic of the class of drug being investigated.
- Adverse drug events occurring during the treatment should be carefully recorded throughout all study phases, including data about their nature, frequency, intensity, and relevance.

- 440 An overall follow-up of at least 90 days is anticipated. Preferably, follow-up visits should also enable
- safety assessments at 6 and at 12 months.

442 7.1. Specific adverse events to be monitored

- 443 Adverse events of special interest should be identified and pre-specified in the study design, including
- 444 but not limited to allergic/immunologic reactions, severe infections and/or specific AEs of Major
- 445 adverse cardiovascular events (MACE).
- 446 All specific events mentioned below are common events/complications on ICU and not necessarily
- 447 ARDS or treatment specific and thus important to monitor:
- Ventilator-Associated Complications:
- 449 Ventilator-Associated Lung Injury (VALI): Monitoring for exacerbation of lung injury due to mechanical
- ventilation, such as barotrauma (e.g. pneumothorax) or volutrauma (e.g. excessive tidal volumes).
- 451 Ventilator-Associated Pneumonia (VAP): Surveillance for new or worsening pneumonia secondary to
- 452 mechanical ventilation.
- Hemodynamic Instability:
- 454 Hypotension: Monitoring for drops in blood pressure, especially during interventions that may affect
- 455 fluid balance or systemic vascular resistance.
- 456 Arrhythmias: Assessing for new-onset or exacerbated cardiac arrhythmias, which can be related to
- 457 underlying cardiac dysfunction or electrolyte disturbances.
- Infections and Sepsis:
- 459 Secondary Infections: Monitoring for new infections, including bloodstream infections or urinary tract
- infections, which can complicate the course of ARDS and impact outcomes.
- Sepsis: Keeping vigilant for signs of systemic inflammatory response syndrome (SIRS) or sepsis, which
- can occur as a consequence of ARDS or other complications.
- Renal Dysfunction:
- Acute Kidney Injury (AKI): Evaluating renal function and monitoring for signs of AKI, which can be
- exacerbated by fluid management strategies or nephrotoxic medications.
- Coagulation Abnormalities:
- 467 Disseminated Intravascular Coagulation (DIC): Assessing for signs of abnormal coagulation parameters
- or bleeding complications, which may arise in severe cases of ARDS.
- Metabolic Disturbances:
- 470 Electrolyte Imbalances: Monitoring electrolyte levels (e.g. sodium, potassium) and correcting
- 471 abnormalities promptly to prevent cardiac and neuromuscular complications.
- 472 Metabolic Acidosis: Assessing for changes in acid-base balance that can occur due to respiratory and
- 473 metabolic derangements in ARDS.
- Neurological Complications:
- 475 Delirium: Evaluating for acute changes in mental status, which can be associated with critical illness
- and prolonged hospitalization.

- 477 Neuromuscular Weakness: Monitoring for development of weakness related to critical illness
- 478 polyneuropathy or myopathy.

479 **7.2. Long term safety**

- 480 The impact of ARDS extends beyond the acute phase, with increased mortality and disability for
- 481 months to years after hospitalization. Thus, it is advisable to have follow-up periods as long as possible
- 482 (e.g., at least 1 year) in ARDS clinical studies. Furthermore, an appropriate risk management plan is
- always required to monitor events in the post-marketing phase.

484 *7.3. Mortality*

498

507

- 485 Even if all-cause mortality is included as part of a composite efficacy endpoint, a direct observation of
- the effect on mortality is important to rule out a harmful safety profile of a new medicinal product. Any
- detriment or uncertainty would generally be considered to impact negatively on the benefit risk
- 488 assessment based on all available evidence and uncertainties.
- 489 A separate analysis distinguishing pulmonary mortality from other mortality as a safety endpoint is
- 490 encouraged, even though these outcomes may overlap.

8. Specific considerations for clinical development

- 492 An ideal strategy would be the development of a medicinal product that is effective in the whole range
- of ARDS conditions. However, taking into account the increasing knowledge about diverse mechanisms
- 494 underlying different ARDS conditions, this aim is not likely to be achievable for new medicinal product
- developed for the treatment of ARDS and/or prevention of disease progression.
- 496 Recommendations on how to address these challenges are outlined in the following chapters. Alternative
- 497 approaches are acceptable if adequately justified

8.1. Clinical development plan

- 499 Sequential clinical studies offer a strategic and efficient framework for drug development, especially in
- 500 conditions like ARDS where patient variability and complex pathophysiology challenge traditional study
- designs. Consequently, beginning with exploratory studies to identify appropriate biomarkers and
- 502 subpopulations, followed by confirmatory trials to validate efficacy in these targeted groups, represents
- a valuable strategy in ARDS development.
- 504 Confirmatory studies in ARDS are designed to confirm the efficacy and safety of interventions and to
- provide robust evidence to support clinical decision-making.
- 506 Randomised clinical trials (RCTs) are required to demonstrate efficacy.

8.2. Biomarker and/or (sub)phenotype defined drug development

- 508 Biomarker and/or (sub)phenotype defined drug development involves designing and developing
- medicinal products tailored to patients based on their unique biomarker and/or phenotype profiles. This
- approach holds promise in ARDS due to the syndrome's heterogeneity in terms of aetiology,
- 511 pathophysiology, and patient response to treatments.
- Several biomarkers (e.g., inflammatory or coagulation biomarkers) and/or (sub)phenotypes (e.g.,
- 513 hyper- or hypo-inflammatory or fibroproliferative) are currently being investigated for their potential
- use in defining subgroups for targeted drug development in ARDS.

515	Tailoring	treatment	strategies	based of	on biomarkers	and/or the	predominant ((sub)phenotype	e mav

- 516 potentially optimize study outcomes. For example, anti-inflammatory agents may be more beneficial in
- 517 hyperinflammatory phenotypes, while agents targeting fibrosis may be relevant for fibroproliferative
- 518 phenotypes. However, further research is needed to elucidate the mechanisms underlying ARDS
- (sub)phenotypes and validation of their clinical relevance.
- 520 Further, it is not anticipated that a single study will serve both to justify the study population as well as
- 521 establish the efficacy of the new medicinal product. Thus, sequential clinical studies are expected. A
- 522 first stage would explore the definition of an appropriate biomarker over a range of expression and/or
- an appropriate population (sub)phenotype. A broad range of endpoints are foreseen. Subsequently,
- 524 efficacy in the selected target population would be confirmed in a larger confirmatory study using a
- 525 clinically relevant endpoint.
- New (innovative) approaches regarding the development [D9] / validation of predictive biomarkers
- 527 and/or corresponding new assay formats (candidate CDx devices) should preferably be confirmed by a
- 528 CHMP qualification opinion [D8].

8.3. Further enrichment strategies

- 530 To address the limitations of conventional study designs, further enrichment strategies have emerged
- as an approach to optimize patient selection and improve the likelihood of clinical study success, e.g.:
- 532 <u>Prognostic Enrichment</u>:

529

544

- 533 Prognostic enrichment involves selecting patients who are more likely to have a specific outcome, such
- as disease progression, death, or prolonged mechanical ventilation, regardless of treatment. This
- 535 strategy helps in detecting a treatment effect by increasing the event rate in the control group.
- Patients with moderate to severe ARDS (e.g., lower PaO2/FiO2 ratios, higher SOFA scores) are more
- 537 likely to experience worse outcomes, making it easier to detect a difference between treatment and
- 538 control groups. Also, tools like the APACHE score can be used to identify patients with a high risk of
- poor outcomes, thereby enriching the study population.
- 540 <u>Time-to-Intervention Enrichment</u>
- 541 Since early intervention may have a greater impact on outcomes, clinical studies may also focus on
- patients who are within a specific time frame (e.g., within 6-12 hours or 24-48 hours of ARDS onset)
- to increase the likelihood of observing a treatment effect.

8.4. ARDS due to bronchopulmonary viral infection

- ARDS caused by bronchopulmonary viral infections (such as SARS-CoV-2) presents unique challenges
- and considerations for clinical studies. The pathophysiology, clinical presentation, progression, and
- 547 treatment response differ from non-viral ARDS. Furthermore, the incidence of disease and seasonality
- is such that the timely conduct of studies of patients with ARDS due to bronchopulmonary viral
- infection may be challenging, e.g. following the emergence of omicron variants, the incidence of ARDS
- due to SARS-CoV-2 has declined substantially.
- 551 Targeted therapies have been explored, often relying on a single mode of action aimed at specific
- aspects of the inflammatory or coagulation pathways. While such approaches have shown promise in
- certain contexts, they may be insufficient to address the multifaceted nature of ARDS. For example,
- the coagulation patterns observed in ARDS due to COVID-19, characterized by widespread micro
- 555 thrombosis and endothelial damage, differ significantly from those seen in ARDS caused by other viral

- 556 infections or non-infectious triggers. This underscores the risk of relying too heavily on a single
- therapeutic strategy without considering the underlying cause of ARDS.
- Also in such cases, it is anticipated that viral aetiology may remain an important effect modifier.
- 559 Therefore, strata of patients with SARS-CoV-2, influenza and potentially other pathogens should be
- 560 sufficiently large to be informative. The differing importance of secondary bacterial infection depending
- on viral aetiology should be also considered, if combining patients with SARS-CoV-2 and influenza in
- the same study.

580

- If patients with SARS-CoV-2 are included, safety assessments should also include long-term follow-up
- for potential sequelae of COVID-19 (e.g., pulmonary fibrosis, cardiovascular complications). This is
- important for understanding the risk-benefit profile of the medicinal product.
- 566 Clinical studies must also account for potential bacterial or fungal co-infections, which are common in
- ARDS caused by bronchopulmonary viral infections. Patient selection criteria should consider the
- 568 presence of any co-infections that may affect treatment response and outcomes. Also,
- immunomodulatory therapies can increase the risk of secondary infections.

8.5. Drug development for pandemic preparedness

- 571 There is a medical need to develop medicinal products for ARDS that may be efficacious regardless of
- the causative infectious agent. However, in the absence of successful examples, sponsors planning the
- 573 development of e.g. host-targeting medicinal products covering a variety of etiologies that would be
- 574 supportive of pandemic preparedness are encouraged to seek an early and continued dialogue with the
- 575 Emergency Task Force (ETF) of the EMA, on the design of the clinical study program.
- 576 During emergencies, based on the experience with the COVID-19 pandemic and the large number of
- 577 simultaneous COVID-19 studies, there is a potential risk of patient overlap or competition for
- 578 enrolment. Coordination within study networks and registries can help optimize patient recruitment
- and prevent duplication of efforts.

8.6. Label claims and regulatory considerations

- 581 Broad label claims should be supported by robust data from adequately powered clinical study(ies) that
- account for the heterogeneity of ARDS.
- Using any enrichment strategies, which although could increase likelihood of study success, will have
- 584 implications for external validity of the study results and may lead to restriction of a target population
- as described in the indication of the medicinal product. Furthermore, the expectations for biomarker
- thresholds and their practical implementation in clinical practice should be clearly defined prior to the
- 587 confirmatory study(ies) to ensure that treatment strategies are both effective and feasible.
- 588 Specific considerations are also needed when extrapolating from studies conducted in specific
- subgroups, such as those with ARDS caused by SARS-CoV-2. The unique pathophysiology of ARDS
- 590 caused by SARS-CoV-2, particularly its distinct immunological and coagulation profiles, presents a
- 591 significant challenge in extrapolating study results to other types of ARDS. While ARDS caused by
- 592 SARS-CoV-2 has been extensively studied, the evidence suggests that the mechanisms driving ARDS
- in this context may not be representative of ARDS caused by other factors. For example, while
- immunomodulatory therapies have shown efficacy in ARDS caused by SARS-CoV-2, their applicability
- 595 to ARDS resulting from bacterial infections or trauma remains uncertain. This variability highlights the
- need for caution in generalizing findings from ARDS caused by SARS-CoV-2 also to other causes of
- 597 ARDS.

9. Special populations

9.1. Elderly patients

- In accordance with ICH and EMA guidelines, it is essential to gather evidence on clinical pharmacology,
- 601 efficacy, and safety that accurately represents this subgroup as well as the various elderly age
- 602 categories [E0, E1]. The prevalence and mortality rate for ARDS increases with age though this is not
- 603 fully reflected in ICU admissions, possibly due to age-related differences in recognition of ARDS and
- admission criteria [E2, E3]. Thus, new medicinal products should be also studied in elderly patients, for
- which they will have significant utility.
- 606 COVID-19 related ARDS has a higher mortality rate in elderly and high-risk patients (e.g., those with
- obesity, diabetes, cardiovascular disease, and immunosuppression). Clinical studies need to consider
- 608 including these patients to generate relevant efficacy and safety data, as they may respond differently
- 609 to treatments.

598

599

610

9.1.1. Efficacy in elderly patients

- If clinical studies are conducted in patients aged 65 years or older additional surrogate measures and
- endpoints that are age-specific, especially with respect to the mechanism of action of the treatment,
- i.e. cognitive function, level of independence may be called for [E4, E5].
- Age is also embedded in several Intensive Care Unit (ICU) scoring system which may inflict prognostic
- assessment and decision whether a patient is likely to benefit from intensive care.

9.1.2. Safety in elderly patients

- 617 Safety in patients aged 65 years or older should be reported separately, as in other special populations.
- 618 Cognitive and neurological, pulmonary, renal and hepatic function should be reported as well as
- adverse events and mortality. It is recommended to report outcome in age intervals in the elderly. It is
- 620 recommended to collect and report treatment restriction decisions.

621 **9.2. Paediatric patients**

- Paediatric ARDS (PARDS) is a rare disease. PARDS is recognised as a distinct sub-phenotype of ARDS,
- due to the maturing lung and immune system. In clinical PARDS studies, ARDS should be defined by
- the PALICC-2 criteria [P10], while the same endpoints can be used as in adult studies. Subgrouping by
- stage of development and lung maturation is recommended [P2 and P6].
- 626 All patients less than 18 years old without active perinatal lung disease should be diagnosed with
- 627 PARDS using PALICC-2 criteria [P10].
- 628 Long-term pulmonary function, health-related quality of life, physical and neurocognitive function are
- 629 important long-term outcomes in the paediatric population that should be addressed in the
- 630 development program. As prolonged observation periods are required to come to robust and
- 631 meaningful conclusions, it might not be possible to fully address these issues in the initial submission
- 632 for a marketing authorization but monitoring and assessments should continue in accordance with
- 633 current guidance documents (e.g. PALICC-2) and results should be reported post approval.
- 634 Paediatric patients with COVID-19 can present with different ARDS manifestations or associated
- 635 conditions (e.g., Multisystem Inflammatory Syndrome in Children (MIS-C)). Studies may require
- 636 separate cohorts or tailored protocols for paediatric populations.

- 637 It is unknown to which extend sub-phenotypes and endotypes of PARDS and ARDS overlap. Therefore,
- extrapolating data from the adults to the paediatric setting requires considerations on a case-by-case
- 639 basis.

As experience is limited, scientific advice is recommended.

References

- D0. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al.; ARDS Definition
- Task Force. Acute respiratory distress syndrome: the Berlin definition. JAMA 2012;307:2526–2533.
- D1. Grasselli G, Calfee CS, Camporota L, Poole D, Amato MBP, Antonelli M, et al.; European Society of
- Intensive Care Medicine Taskforce on ARDS. ESICM guidelines on acute respiratory distress syndrome:
- definition, phenotyping and respiratory support strategies. Intensive Care Med 2023;49:727–759.
- D2. Matthay MA, Arabi Y, Arroliga AC, Bernard G, Bersten AD, Brochard LJ, Calfee CS, Combes A,
- Daniel BM, Ferguson ND, Gong MN, Gotts JE, Herridge MS, Laffey JG, Liu KD, Machado FR, Martin TR,
- 649 McAuley DF, Mercat A, Moss M, Mularski RA, Pesenti A, Qiu H, Ramakrishnan N, Ranieri VM, Riviello
- 650 ED, Rubin E, Slutsky AS, Thompson BT, Twagirumugabe T, Ware LB, Wick KD. A New Global Definition
- of Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2024 Jan 1;209(1):37-47.
- 652 D3. Sedhai YR, Yuan M, Ketcham SW, Co I, Claar DD, McSparron JI, Prescott HC, Sjoding MW.
- Validating Measures of Disease Severity in Acute Respiratory Distress Syndrome. Ann Am Thorac Soc.
- 654 2021 Jul;18(7):1211-1218.
- 655 D4. Guideline on General Principles for Planning and Design of Multi-Regional Clinical Trials (ICH E17).
- 656 D5. Addendum on estimands and sensitivity analysis in clinical trials to the guideline on statistical
- principles for clinical trials EMA/CHMP/ICH/436221/2017 (ICH E9[R1]).
- D6. Pharmacokinetic studies in man (EMA 3CC3a).
- 659 D7. ICH M12 Guideline on drug interaction studies (EMA/CHMP/ICH/652460/2022).
- D8. Qualification of novel methodologies for drug development: guidance to applicants,
- 661 EMA/CHMP/SAWP/72894/2008.
- 662 D9: complex clinical trials questions and answers. medicinal ga complex clinical-trials en.pdf

663 References Safety

- 664 S1. Note for Guidance on Population Exposure: the extent of population exposure to assess clinical
- 665 safety (CPMP/ICH/375/95 [ICH E1]).

666 References Elderly

- 667 E0. Note for Guidance on Studies in Support of Special Populations: Geriatrics CPMP/ICH/379/95
- 668 (ICH E7)
- 669 E1. Questions and Answers EMA/CHMP/ICH/604661/2009 (ICH E7 Q&A).
- 670 E2. Bellani G Laffey JG Pham T et al. Epidemiology, patterns of care, and mortality for patients with
- acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016; 315: 788-800
- https://pubmed.ncbi.nlm.nih.gov/26903337/
- 673 E3. Eachempati S, Soumitra R. MD, FACS; Hydo, Lynn J. MBA; Shou, Jian MD, FACS; Barie, Philip S.
- MD, MBA, FACS, FCCM. Outcomes of Acute Respiratory Distress Syndrome (ARDS) in Elderly Patients.

- The Journal of Trauma: Injury, Infection, and Critical Care 63(2):p 344-350, August 2007.
- 676 https://pubmed.ncbi.nlm.nih.gov/17693834/
- 677 E4. Ryan Brown Michael C. McKelvey Sinéad Ryan Shannice Creane1 Dermot Linden Joseph C. Kidney
- Daniel F. McAuley Clifford C. Taggart Sinéad Weldon. The Impact of Aging in Acute Respiratory Distress
- 679 Syndrome: A Clinical and Mechanistic Overview. E Front. Med., 26 October 2020. Sec. Pulmonary
- 680 Medicine. Volume 7 2020 | https://doi.org/10.3389/fmed.2020.589553
- 681 E5. Laffey, J.G., Bellani, G., Pham, T. et al. Potentially modifiable factors contributing to outcome from
- acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med 42, 1865-1876
- 683 (2016). https://doi.org/10.1007/s00134-016-4571-5

684 References Paediatrics

- 685 P10. Emeriaud G et al. Executive Summary of the Second International Guidelines for the Diagnosis
- and Management of Pediatric Acute Respiratory Distress Syndrome (PALICC-2). Pediatr Crit Care Med
- 687 2023 Feb 1;24(2):143-168. doi: 10.1097/PCC.000000000003147. Epub 2023 Jan 20.
- 688 P2. Flori H et al. Pediatric Acute Lung Injury Prospective Evaluation of Risk Factors Associated with
- 689 Mortality. Am J Respir Crit Care Med Vol 171. pp 995–1001, 2005
- 690 P6. Khemani R et al Pediatric Acute Respiratory Distress Syndrome: Definition, Incidence, and
- 691 Epidemiology: Proceedings From the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit
- 692 Care Med 2015; 16:S23–S40 DOI: 10.1097/PCC.000000000000432

Definitions

- 694 AKI: Acute Kidney Injury
- 695 APACHE: Acute physiology and Chronic Health Evaluation
- 696 ARDS: Acute Respiratory Distress Syndrome
- 697 CDx: Companion diagnostic
- 698 COVID-19: Corona VIrus Disease 2019
- 699 CPAP: Continuous positive airway pressure
- 700 DIC: Disseminated Intravascular Coagulation
- 701 ECMO: Extracorporeal Membrane Oxygenation
- 702 EMA: European Medicines Agency
- 703 EVLWi: Extravascular lung water index
- 704 FiO2: fractional inspired oxygen
- 705 FSS-ICU: Functional Status Score for the ICU
- 706 HFNO: High-flow nasal oxygen
- 707 HADS: Hospital Anxiety and Depression Scale
- 708 HROoL: Health-related quality of life
- 709 ICU: Intensive Care Unit
- 710 ICUAW: ICU acquired weakness
- 711 ICH: International Collaboration Harmonisation
- 712 MACE: Major adverse cardiovascular events
- 713 OI: Oxygenation index
- 714 OR: Oxygenation ratio
- 715 PALICC-2: Pediatric Acute Respiratory Distress Syndrome
- 716 PaO2/FiO2 ratio: ratio of arterial oxygen partial pressure to fractional inspired oxygen
- 717 PARDS: Paediatric ARDS
- 718 PEEP: Positive end expiratory pressure
- 719 PD : Pharmacodynamic
- 720 PK: Pharmacokinetics
- 721 PRO: Patient-Reported Outcomes
- 722 PVPI :Pulmonary vascular permeability index
- 723 RCT: Randomised clinical trials
- 724 QoL: Quality of life
- 725 RDS: Respiratory Distress Syndrome

RRT: Renal Replacement Therapy SF-36: Short Form Health Survey SOC: standard of care 726 727

728

SOFA: Sequential Organ Failure Assessment VALI: Ventilator-Associated Lung Injury VAP: Ventilator-Associated Pneumonia 729 730 731

VFD: Ventilator-free-days 732