

25 January 2018 EMA/CHMP/315234/2014/Rev.1<sup>†</sup> Committee for Medicinal Products for Human Use (CHMP)

## Tadalafil film-coated tablets 2.5 mg, 5 mg, 10 mg and 20 mg product-specific bioequivalence guidance

| Draft agreed by Pharmacokinetics Working Party (PKWP) | October 2013     |
|-------------------------------------------------------|------------------|
| Adoption by CHMP for release for consultation         | 24 October 2013  |
| Start of public consultation                          | 15 November 2013 |
| End of consultation (deadline for comments)           | 15 February 2014 |
| Agreed by Pharmacokinetics Working Party              | 29 April 2015    |
| Adoption by CHMP                                      | 21 May 2015      |
| Date for coming into effect                           | 1 December 2015  |
| Draft agreed by Pharmacokinetics Working Party (PKWP) | June 2017        |
| Adoption by CHMP for release for consultation         | 20 July 2017     |
| Start of public consultation                          | 2 August 2017    |
| End of consultation (deadline for comments)           | 31 October 2017  |
| Agreed by Pharmacokinetics Working Party (PKWP)       | December 2017    |
| Adopted by CHMP                                       | 25 January 2018  |
| Date of coming into effect                            | 1 August 2018    |

30 Churchill Place • Canary Wharf • London E14 5EU • United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact



© European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged.

 $^{\dagger} This revision concerns the addition of 'T_{max}' as an additional main pharmacokinetic variable in the bioequivalence assessment section of the guideline.$ 

| Keywords | Bioequivalence, generics, tadalafil |
|----------|-------------------------------------|
| •        |                                     |

## Tadalafil film-coated tablets 2.5 mg, 5 mg, 10 mg and 20 mg product-specific bioequivalence guidance

## Disclaimer:

This guidance should not be understood as being legally enforceable and is without prejudice to the need to ensure that the data submitted in support of a marketing authorisation application complies with the appropriate scientific, regulatory and legal requirements.

## Requirements for bioequivalence demonstration (PKWP)\*

| BCS Class: I I III II Neither of the two<br>Background: tadalafil is considered a low solubility compound.                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| single dose<br>cross-over                                                                                                                                                                                                 |
| nealthy volunteers                                                                                                                                                                                                        |
| ☐ fasting 	☐ fed                                                                                                                                                                                                          |
| Background: The reference product can be taken with or without food according to the SmPC. Since the                                                                                                                      |
| pecific formulation (e.g. particle size and excipients) is known to be critical to the performance of the ormulation in fed conditions, it cannot be assumed that the impact of food will be the same regardless of       |
| ormulation. Therefore, following the requirements for "specific formulation characteristics" described in the<br>Guideline on Investigation of Bioequivalence, both fasted and fed state comparisons of test to reference |
|                                                                                                                                                                                                                           |

|                           | formulations are required.                                                                                                           |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
|                           | Strength: 20 mg<br>Background: highest strength to be used for a drug with linear pharmacokinetics and low solubility.               |  |
|                           | Number of studies: two single dose studies (20 mg fasted and 20 mg fed)                                                              |  |
| Analyte                   | ⊠ parent □ metabolite □ both                                                                                                         |  |
|                           | ⊠ plasma∕serum □ blood □ urine                                                                                                       |  |
|                           | Enantioselective analytical method: 🗌 yes 🛛 no                                                                                       |  |
| Bioequivalence assessment | Main pharmacokinetic variables: $AUC_{0-72h}$ , $C_{max}$ and $T_{max}$                                                              |  |
|                           | <b>90% confidence interval:</b> 80.00 – 125.00% for AUC <sub>0-72h</sub> and $C_{max}$ . Comparable median and range for $T_{max}$ . |  |

\* As intra-subject variability of the reference product has not been reviewed to elaborate this product-specific bioequivalence guideline, it is not possible to recommend at this stage the use of a replicate design to demonstrate high intra-subject variability and widen the acceptance range of  $C_{max}$ . If high intra-individual variability ( $CV_{intra} > 30$  %) is expected, the applicants might follow respective guideline recommendations.

\*\* This tentative BCS classification of the drug substance serves to define whether *in vivo* studies seems to be mandatory (BCS class II and IV) or, on the contrary, (BCS Class I and III) the Applicant may choose between two options: *in vivo* approach or *in vitro* approach based on a BCS biowaiver. In this latter case, the BCS classification of the drug substance should be confirmed by the Applicant at the time of submission based on available data (solubility experiments, literature, etc.). However, a BCS-based biowaiver might not be feasible due to product specific characteristics despite the drug substance being BCS class I or III (e.g. in vitro dissolution being less than 85 % within 15 min (BCS class III) or 30 min (BCS class I) either for test or reference, or unacceptable differences in the excipient composition).