

Disclosures & Acknowledgements

- Work of the members of the Dementia Research $Centre\ (DRC)$
- The DRC has conducted image analysis for a number of companies and has been a clinical site for sponsored trials
- I have advised these and other companies and also the NIH and FDA
- I am a member of the MRI-core of ADNI (Alzheimer's disease neuroimaging initiative) ADNI members have generously shared slides and data for this meeting: including

Jagust, Weiner, Jack, Foster, Reiman, Klunk

Overview

- Why neuroimaging?
- Focus on ph2/3 issues
- Roles of imaging in AD trials
 - Defining target/study populations
 - Safety
 - Measuring progression
- Assessing disease-modification
 - Problems and potential

Why neuroimaging?

- Inaccessibility of brain
 - To assess pathology
 - Drug delivery
- Complexity of brain response
 - Systems biology
- Limitation of clinical measures
- Lack simple biomarkers
- Imaging allows objective repeated
 assessment no practice effects!

Roles: define study population – exclusion/inclusion and stratification

- Is this the correct pathology?
 - AD vs non AD e.g vascular or FTD pathology
- Know what we are treating adjust if need
 - Stage/severity: more homogenous populations?
 - Subtypes of AD e.g biparietal (PCA) variant
- Open an early therapeutic window "enriched MCI" early or preclinical

 $or\ presymptomatic\ AD$

Imaging established role in <u>excluding</u> other pathology

More rigour assessing vascular path, focal atrophy FTD not just tumours etc

Inclusion criteria for AD and opening an earlier therapeutic window: predicting AD

A number of imaging features are predictive of AD pathology

- Medial temporal lobe atrophy on MRI
- Increased rates of atrophy on serial MRI (>90% sens/specificity: AD vs C)
- Hypometabolism on PET/SPECT
- Amyloid imaging

Hippocampus reduced by 20% in early AD

In vivo Amyloid Imaging with Pittsburgh Compound B (PIB)

CH
CH
Histology - Thioflavin T

PET Imaging - [11C]6-OH-BTA-1 (PIB)

Courtesy of Bill Jagust

Structure/Function: Topography Molecules: Proteomic Specificity

Alzheimer's Disease

Normal

FDG

PIB

Courtesy of Bill Jagust

MCI non-converter PIB

MCI converter PIB

Archer, Okello, Brooks, Rossor

Imaging measures of drug effect

- Safety
 - Haemorrhage
 - -Inflammation
- Unrelated adverse events
- Efficacy

Registration of serial MRI allows clear recognition of new lesions

5761aa 5761ba

Imaging markers of diseasemodification

- Measure a feature of disease that should predict clinical response (imaging change being necessary and sufficient to predict that response)
 - Associated with disease pathology
 - Progresses with clinical progression
 - On the pathogenic pathway
- Clinically meaningful

AD: brain volume vs time

Need to maximise efficiency and interpretability of trials in AD

• Clinical scales - high variance drives sample sizes

Size of trial ∞ Variance of atrophy rate in each group (Anticipated treatment effect)²

Note: Variance = SD²

Milameline trial in AD

Estimated sample size (per arm) needed to show a 50% effect on progression over 1 year

• ADAS-Cog score	320
------------------	-----

• WINDE SCOTE Z41	•	$MMSE\ score$	241
-------------------	---	---------------	-----

• Hippocampal volume 21

Imaging – disease modification markers

- Structural MRI
 - Hippocampi, entorhinal cortex
 - Whole brain, ventricles
 - Cortical thickness
- Functional PET/SPECT
- Molecular Amyloid imaging PIB

• Spectroscopy, diffusion, MTR, fMRI ...

Controls

AD

Rate of brain atrophy in early-onset AD

AD: brain volume vs time

Previously Estimated Number of AD Patients per Treatment Group Needed to Detect an Effect with 80% Power in One Year

	Treatment Effect			
	20%	30%	40%	50%
Frontal	85	38	22	14
Parietal	217	97	55	36
Temporal	266	119	68	44
Cingulate	343	153	87	57

P=0.01 (two-tailed, uncorrected for multiple comparisons)

Alexander et al, Am J Psychiatry 2002

PIB retention stable over 2 years

healthy controls (HC) and Alzheimer patients at baseline (AD 1) and follow-up (AD 2)

Engler, H. et al. Brain 2006 129:2856-66

Disease modification: differing views and difficult issues

"an effect on the underlying disease pathophysiological progression"

"a long-lasting(> 18 months) effect on disability"

Surrogates need to capture "full effects of an intervention"

Conclusions

- Imaging has an under used role in inclusion as well as exclusion for trial
- Safety imaging markers increasingly important
- Imaging may provide evidence to show effect on brain structure, metabolism or amyloid load to understand effect of intervention
- Evidence for <u>modification</u> is more difficult:
 - Robust, multiple markers & multiple time points
 - To support clinical endpoint effects

Trials will increasingly need to incorporate these markers in a considered evidence-based manner

